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Abstract

Most work on unsupervised entailment
rule acquisition focused on rules between
templates with two variables, ignoring
unary rules - entailment rules between
templates with a single variable. In this pa-
per we investigate two approaches for un-
supervised learning of such rules and com-
pare the proposed methods with a binary
rule learning method. The results show
that the learned unary rule-sets outperform
the binary rule-set. In addition, a novel
directional similarity measure for learning
entailment, termed Balanced-Inclusion, is
the best performing measure.

1 Introduction

In many NLP applications, such as Question An-
swering (QA) and Information Extraction (IE), it
is crucial to recognize whether a specific target
meaning is inferred from a text. For example, a
QA system has to deduce that “SCO sued IBM” is
inferred from “SCO won a lawsuit against IBM”
to answer “Whom did SCO sue?”. This type of
reasoning has been identified as a core semantic
inference paradigm by the generic Textual Entail-
ment framework (Giampiccolo et al., 2007).

An important type of knowledge needed for
such inference is entailment rules. An entailment
rule specifies a directional inference relation be-
tween two templates, text patterns with variables,
such as ‘X win lawsuit against Y → X sue Y ’.
Applying this rule by matching ‘X win lawsuit
against Y ’ in the above text allows a QA system to
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infer ‘X sue Y ’ and identify “IBM”, Y ’s instantia-
tion, as the answer for the above question. Entail-
ment rules capture linguistic and world-knowledge
inferences and are used as an important building
block within different applications, e.g. (Romano
et al., 2006).

One reason for the limited performance of
generic semantic inference systems is the lack of
broad-scale knowledge-bases of entailment rules
(in analog to lexical resources such as WordNet).
Supervised learning of broad coverage rule-sets is
an arduous task. This sparked intensive research
on unsupervised acquisition of entailment rules
(and similarly paraphrases) e.g. (Lin and Pantel,
2001; Szpektor et al., 2004; Sekine, 2005).

Most unsupervised entailment rule acquisition
methods learn binary rules, rules between tem-
plates with two variables, ignoring unary rules,
rules between unary templates (templates with
only one variable). However, a predicate quite of-
ten appears in the text with just a single variable
(e.g. intransitive verbs or passives), where infer-
ence requires unary rules, e.g. ‘X take a nap→X
sleep’ (further motivations in Section 3.1).

In this paper we focus on unsupervised learn-
ing of unary entailment rules. Two learning ap-
proaches are proposed. In our main approach,
rules are learned by measuring how similar the
variable instantiations of two templates in a corpus
are. In addition to adapting state-of-the-art similar-
ity measures for unary rule learning, we propose a
new measure, termed Balanced-Inclusion, which
balances the notion of directionality in entailment
with the common notion of symmetric semantic
similarity. In a second approach, unary rules are
derived from binary rules learned by state-of-the-
art binary rule learning methods.

We tested the various unsupervised unary rule

849



learning methods, as well as a binary rule learn-
ing method, on a test set derived from a standard
IE benchmark. This provides the first comparison
between the performance of unary and binary rule-
sets. Several results rise from our evaluation: (a)
while most work on unsupervised learning ignored
unary rules, all tested unary methods outperformed
the binary method; (b) it is better to learn unary
rules directly than to derive them from a binary
rule-base; (c) our proposed Balanced-Inclusion
measure outperformed all other tested methods in
terms of F1 measure. Moreover, only Balanced-
Inclusion improved F1 score over a baseline infer-
ence that does not use entailment rules at all .

2 Background

This section reviews relevant distributional simi-
larity measures, both symmetric and directional,
which were applied for either lexical similarity or
unsupervised entailment rule learning.

Distributional similarity measures follow the
Distributional Hypothesis, which states that words
that occur in the same contexts tend to have similar
meanings (Harris, 1954). Various measures were
proposed in the literature for assessing such simi-
larity between two words, u and v. Given a word q,
its set of features Fq and feature weights wq(f) for
f ∈ Fq, a common symmetric similarity measure
is Lin similarity (Lin, 1998a):

Lin(u, v) =

∑
f∈Fu∩Fv

[wu(f) + wv(f)]∑
f∈Fu

wu(f) +
∑

f∈Fv
wv(f)

where the weight of each feature is the pointwise
mutual information (pmi) between the word and
the feature: wq(f) = log[Pr(f |q)

Pr(f) ].
Weeds and Weir (2003) proposed to measure the

symmetric similarity between two words by av-
eraging two directional (asymmetric) scores: the
coverage of each word’s features by the other. The
coverage of u by v is measured by:

Cover(u, v) =

∑
f∈Fu∩Fv

wu(f)∑
f∈Fu

wu(f)

The average can be arithmetic or harmonic:
WeedsA(u, v) = 1

2 [Cover(u, v) + Cover(v, u)]

WeedsH(u, v) =
2 · Cover(u, v) · Cover(v, u)
Cover(u, v) + Cover(v, u)

Weeds et al. also used pmi for feature weights.

Binary rule learning algorithms adopted such
lexical similarity approaches for learning rules be-
tween templates, where the features of each tem-
plate are its variable instantiations in a corpus,
such as {X=‘SCO’, Y =‘IBM’} for the example
in Section 1. Some works focused on learning
rules from comparable corpora, containing com-
parable documents such as different news articles
from the same date on the same topic (Barzilay
and Lee, 2003; Ibrahim et al., 2003). Such corpora
are highly informative for identifying variations of
the same meaning, since, typically, when variable
instantiations are shared across comparable docu-
ments the same predicates are described. However,
it is hard to collect broad-scale comparable cor-
pora, as the majority of texts are non-comparable.

A complementary approach is learning from the
abundant regular, non-comparable, corpora. Yet,
in such corpora it is harder to recognize varia-
tions of the same predicate. The DIRT algorithm
(Lin and Pantel, 2001) learns non-directional bi-
nary rules for templates that are paths in a depen-
dency parse-tree between two noun variables X
and Y . The similarity between two templates t and
t′ is the geometric average:

DIRT (t, t′) =
√
Linx(t, t′) · Liny(t, t′)

where Linx is the Lin similarity between X’s in-
stantiations of t and X’s instantiations of t′ in
a corpus (equivalently for Liny). Some works
take the combination of the two variable instantia-
tions in each template occurrence as a single com-
plex feature, e.g. {X-Y =‘SCO-IBM’}, and com-
pare between these complex features of t and t′

(Ravichandran and Hovy, 2002; Szpektor et al.,
2004; Sekine, 2005).

Directional Measures Most rule learning meth-
ods apply a symmetric similarity measure between
two templates, viewing them as paraphrasing each
other. However, entailment is in general a direc-
tional relation. For example, ‘X acquire Y →
X own Y ’ and ‘countersuit against X → lawsuit
against X’.

(Weeds and Weir, 2003) propose a directional
measure for learning hyponymy between two
words, ‘l→ r’, by giving more weight to the cov-
erage of the features of l by r (with α > 1

2 ):

WeedsD(l, r)=αCover(l, r)+(1−α)Cover(r, l)

When α=1, this measure degenerates into
Cover(l, r), termed Precision(l, r). With
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Precision(l, r) we obtain a “soft” version of
the inclusion hypothesis presented in (Geffet and
Dagan, 2005), which expects l to entail r if the
“important” features of l appear also in r.

Similarly, the LEDIR algorithm (Bhagat et al.,
2007) identifies the entailment direction between
two binary templates, l and r, which participate
in a relation learned by (the symmetric) DIRT, by
measuring the proportion of instantiations of l that
are covered by the instantiations of r.

As far as we know, only (Shinyama et al., 2002)
and (Pekar, 2006) learn rules between unary tem-
plates. However, (Shinyama et al., 2002) relies
on comparable corpora for identifying paraphrases
and simply takes any two templates from compa-
rable sentences that share a named entity instan-
tiation to be paraphrases. Such approach is not
feasible for non-comparable corpora where statis-
tical measurement is required. (Pekar, 2006) learns
rules only between templates related by local dis-
course (information from different documents is
ignored). In addition, their template structure is
limited to only verbs and their direct syntactic ar-
guments, which may yield incorrect rules, e.g. for
light verbs (see Section 5.2). To overcome this lim-
itation, we use a more expressive template struc-
ture.

3 Learning Unary Entailment Rules

3.1 Motivations

Most unsupervised rule learning algorithms fo-
cused on learning binary entailment rules. How-
ever, using binary rules for inference is not enough.
First, a predicate that can have multiple arguments
may still occur with only one of its arguments.
For example, in “The acquisition of TCA was suc-
cessful”, ‘TCA’ is the only argument of ‘acqui-
sition’. Second, some predicate expressions are
unary by nature. For example, modifiers, such as
‘the elected X’, or intransitive verbs. In addition,
it appears more tractable to learn all variations for
each argument of a predicate separately than to
learn them for combinations of argument pairs.

For these reasons, it seems that unary rule learn-
ing should be addressed in addition to binary rule
learning. We are further motivated by the fact that
some (mostly supervised) works in IE found learn-
ing unary templates useful for recognizing relevant
named entities (Riloff, 1996; Sudo et al., 2003;
Shinyama and Sekine, 2006), though they did not
attempt to learn generic knowledge bases of entail-

ment rules.
This paper investigates acquisition of unary en-

tailment rules from regular non-comparable cor-
pora. We first describe the structure of unary
templates and then explore two conceivable ap-
proaches for learning unary rules. The first ap-
proach directly assesses the relation between two
given templates based on the similarity of their in-
stantiations in the corpus. The second approach,
which was also mentioned in (Iftene and Balahur-
Dobrescu, 2007), derives unary rules from learned
binary rules.

3.2 Unary Template Structure

To learn unary rules we first need to define their
structure. In this paper we work at the syntac-
tic representation level. Texts are represented by
dependency parse trees (using the Minipar parser
(Lin, 1998b)) and templates by parse sub-trees.

Given a dependency parse tree, any sub-tree can
be a candidate template, setting some of its nodes
as variables (Sudo et al., 2003). However, the num-
ber of possible templates is exponential in the size
of the sentence. In the binary rule learning litera-
ture, the main solution for exhaustively learning all
rules between any pair of templates in a given cor-
pus is to restrict the structure of templates. Typi-
cally, a template is restricted to be a path in a parse
tree between two variable nodes (Lin and Pantel,
2001; Ibrahim et al., 2003).

Following this approach, we chose the structure
of unary templates to be paths as well, where one
end of the path is the template’s variable. How-
ever, paths with one variable have more expressive
power than paths between two variables, since the
combination of two unary paths may generate a
binary template that is not a path. For example,
the combination of ‘X call indictable’ and ‘call Y
indictable’ is the template ‘X call Y indictable’,
which is not a path between X and Y .

For every noun node v in a parsed sentence, we
generate templates with v as a variable as follows:

1. Traverse the path from v towards the root of
the parse tree. Whenever a candidate pred-
icate is encountered (any noun, adjective or
verb) the path from that node to v is taken as
a template. We stop when the first verb or
clause boundary (e.g. a relative clause) is en-
countered, which typically represent the syn-
tactic boundary of a specific predicate.
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2. To enable templates with control verbs and
light verbs, e.g. ‘X help preventing’, ‘X
make noise’, whenever a verb is encoun-
tered we generate templates that are paths be-
tween v and the verb’s modifiers, either ob-
jects, prepositional complements or infinite
or gerund verb forms (paths ending at stop
words, e.g. pronouns, are not generated).

3. To capture noun modifiers that act as predi-
cates, e.g. ‘the losingX’, we extract template
paths between v and each of its modifiers,
nouns or adjectives, that are derived from a
verb. We use the Catvar database to identify
verb derivations (Habash and Dorr, 2003).

As an example for the procedure, the templates
extracted from the sentence “The losing party
played it safe” with ‘party’ as the variable are:
‘losing X’, ‘X play’ and ‘X play safe’.

3.3 Direct Learning of Unary Rules

We applied the lexical similarity measures pre-
sented in Section 2 for unary rule learning. Each
argument instantiation of template t in the corpus
is taken as a feature f , and the pmi between t and
f is used for the feature’s weight. We first adapted
DIRT for unary templates (unary-DIRT, apply-
ing Lin-similarity to the single feature vector), as
well as its output filtering by LEDIR. The various
Weeds measures were also applied1: symmetric
arithmetic average, symmetric harmonic average,
weighted arithmetic average and Precision.

After initial analysis, we found that given a right
hand side template r, symmetric measures such
as Lin (in DIRT) generally tend to prefer (score
higher) relations 〈l, r〉 in which l and r are related
but do not necessarily participate in an entailment
or equivalence relation, e.g. the wrong rule ‘kill X
↔ injure X’.

On the other hand, directional measures such as
Weeds Precision tend to prefer directional rules in
which the entailing template is infrequent. If an in-
frequent template has common instantiations with
another template, the coverage of its features is
typically high, whether or not an entailment rela-
tion exists between the two templates. This behav-
ior generates high-score incorrect rules.

Based on this analysis, we propose a new
measure that balances the two behaviors, termed

1We applied the best performing parameter values pre-
sented in (Bhagat et al., 2007) and (Weeds and Weir, 2003).

Balanced-Inclusion (BInc). BInc identifies entail-
ing templates based on a directional measure but
penalizes infrequent templates using a symmetric
measure:

BInc(l, r) =
√
Lin(l, r) · Precision(l, r)

3.4 Deriving Unary Rules From Binary Rules

An alternative way to learn unary rules is to first
learn binary entailment rules and then derive unary
rules from them. We derive unary rules from a
given binary rule-base in two steps. First, for each
binary rule, we generate all possible unary rules
that are part of that rule (each unary template is
extracted following the same procedure described
in Section 3.2). For example, from ‘X find solu-
tion to Y → X solve Y ’ we generate the unary
rules ‘X find→ X solve’, ‘X find solution→ X
solve’, ‘solution to Y → solve Y ’ and ‘find solu-
tion to Y → solve Y ’. The score of each generated
rule is set to be the score of the original binary rule.

The same unary rule can be derived from dif-
ferent binary rules. For example, ‘hire Y → em-
ploy Y ’ is derived both from ‘X hire Y → X em-
ploy Y ’ and ‘hire Y for Z → employ Y for Z’,
having a different score from each original binary
rule. The second step of the algorithm aggregates
the different scores yielded for each derived rule
to produce the final rule score. Three aggregation
functions were tested: sum (Derived-Sum), aver-
age (Derived-Avg) and maximum (Derived-Max).

4 Experimental Setup

We want to evaluate learned unary and binary rule
bases by their utility for NLP applications through
assessing the validity of inferences that are per-
formed in practice using the rule base.

To perform such experiments, we need a test-
set of seed templates, which correspond to a set of
target predicates, and a corpus annotated with all
argument mentions of each predicate. The evalu-
ation assesses the correctness of all argument ex-
tractions, which are obtained by matching in the
corpus either the seed templates or templates that
entail them according to the rule-base (the latter
corresponds to rule-application).

Following (Szpektor et al., 2008), we found the
ACE 2005 event training set2 useful for this pur-
pose. This standard IE dataset includes 33 types of
event predicates such as Injure, Sue and Divorce.

2http://projects.ldc.upenn.edu/ace/
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All event mentions are annotated in the corpus, in-
cluding the instantiated arguments of the predicate.
ACE guidelines specify for each event its possible
arguments, each associated with a semantic role.
For instance, some of the Injure event arguments
are Agent, Victim and Time.

To utilize the ACE dataset for evaluating entail-
ment rule applications, we manually represented
each ACE event predicate by unary seed templates.
For example, the seed templates for Injure are ‘A
injure’, ‘injure V ’ and ‘injure in T ’. We mapped
each event role annotation to the corresponding
seed template variable, e.g. ‘Agent’ to A and
‘Victim’ to V in the above example. Templates
are matched using a syntactic matcher that han-
dles simple morpho-syntactic phenomena, as in
(Szpektor and Dagan, 2007). A rule application
is considered correct if the matched argument is
annotated by the corresponding ACE role.

For testing binary rule-bases, we automatically
generated binary seed templates from any two
unary seeds that share the same predicate. For ex-
ample, for Injure the binary seeds ‘A injure V ’, ‘A
injure in T ’ and ‘injure V in T ’ were automatically
generated from the above unary seeds.

We performed two adaptations to the ACE
dataset to fit it better to our evaluation needs. First,
our evaluation aims at assessing the correctness of
inferring a specific target semantic meaning, which
is denoted by a specific predicate, using rules.
Thus, four events that correspond ambiguously to
multiple distinct predicates were ignored. For in-
stance, the Transfer-Money event refers to both do-
nating and lending money, and thus annotations of
this event cannot be mapped to a specific seed tem-
plate. We also omitted 3 events with less than 10
mentions, and were left with 26 events (6380 argu-
ment mentions).

Additionally, we regard all entailing mentions
under the textual entailment definition as correct.
However, event mentions are annotated as correct
in ACE only if they explicitly describe the target
event. For instance, a Divorce mention does en-
tail a preceding marriage event but it does not ex-
plicitly describe it, and thus it is not annotated as
a Marry event. To better utilize the ACE dataset,
we considered for a target event the annotations of
other events that entail it as being correct as well.
We note that each argument was considered sep-
arately. For example, we marked a mention of a
divorced person as entailing the marriage of that

person, but did not consider the place and time of
the divorce act to be those of the marriage .

5 Results and Analysis

We implemented the unary rule learning algo-
rithms described in Section 3 and the binary DIRT
algorithm (Lin and Pantel, 2001). We executed
each method over the Reuters RCV1 corpus3,
learning for each template r in the corpus the top
100 rules in which r is entailed by another tem-
plate l, ‘l→ r’. All rules were learned in canonical
form (Szpektor and Dagan, 2007). The rule-base
learned by binary DIRT was taken as the input for
deriving unary rules from binary rules.

The performance of each acquired rule-base was
measured for each ACE event. We measured the
percentage of correct argument mentions extracted
out of all correct argument mentions annotated for
the event (recall) and out of all argument mentions
extracted for the event (precision). We also mea-
sured F1, their harmonic average, and report macro
average Recall, Precision and F1 over the 26 event
types.

No threshold setting mechanism is suggested in
the literature for the scores of the different algo-
rithms, especially since rules for different right
hand side templates have different score ranges.
Thus, we follow common evaluation practice (Lin
and Pantel, 2001; Geffet and Dagan, 2005) and test
each learned rule-set by taking the top K rules for
each seed template, whereK ranges from 0 to 100.
WhenK=0, no rules are used and mentions are ex-
tracted only by direct matching of seed templates.

Our rule application setting provides a rather
simplistic IE system (for example, no named entity
recognition or approximate template matching). It
is thus useful for comparing different rule-bases,
though the absolute extraction figures do not re-
flect the full potential of the rules. In Secion 5.2
we analyze the full-system’s errors to isolate the
rules’ contribution to overall system performance.

5.1 Results

In this section we focus on the best performing
variations of each algorithm type: binary DIRT,
unary DIRT, unary Weeds Harmonic, BInc and
Derived-Avg. We omitted the results of methods
that were clearly inferior to others: (a) WeedsA,
WeedsD and Weeds-Precision did not increase

3http://about.reuters.com/researchandstandards/corpus/
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Recall over not using rules because rules with in-
frequent templates scored highest and arithmetic
averaging could not balance well these high scores;
(b) out of the methods for deriving unary rules
from binary rule-bases, Derived-Avg performed
best; (c) filtering with (the directional) LEDIR did
not improve the performance of unary DIRT.

Figure 1 presents Recall, Precision and F1 of the
methods for different cutoff points. First, we ob-
serve that even when matching only the seed tem-
plates (K=0), unary seeds outperform the binary
seeds in terms of both Precision and Recall. This
surprising behavior is consistent through all rule
cutoff points: all unary learning algorithms per-
form better than binary DIRT in all parameters.
The inferior behavior of binary DIRT is analyzed
in Section 5.2.

The graphs show that symmetric unary ap-
proaches substantially increase recall, but dramati-
cally decrease precision already at the top 10 rules.
As a result, F1 only decreases for these methods.
Lin similarity (DIRT) and Weeds-Harmonic show
similar behaviors. They consistently outperform
Derived-Avg. One reason for this is that incorrect
unary rules may be derived even from correct bi-
nary rules. For example, from ‘X gain seat on
Y → elect X to Y ’ the incorrect unary rule ‘X
gain→ electX’ is also generated. This problem is
less frequent when unary rules are directly scored
based on their corpus statistics.

The directional measure of BInc yields a more
accurate rule-base, as can be seen by the much
slower precision reduction rate compared to the
other algorithms. As a result, it is the only algo-
rithm that improves over the F1 baseline of K=0,
with the best cutoff point at K=20. BInc’s re-
call increases moderately compared to other unary
learning approaches, but it is still substantially bet-
ter than not using rules (a relative recall increase of
50% already at K=10). We found that many of the
correct mentions missed by BInc but identified by
other methods are due to occasional extractions of
incorrect frequent rules, such as partial templates
(see Section 5.2). This is reflected in the very low
precision of the other methods. On the other hand,
some correct rules were only learned by BInc, e.g.
‘countersuit againstX→X sue’ and ‘X take wife
→ X marry’.

When only one argument is annotated for a spe-
cific event mention (28% of ACE predicate men-
tions, which account for 15% of all annotated ar-

Figure 1: Average Precision, Recall and F1 at dif-
ferent top K rule cutoff points.

guments), binary rules either miss that mention, or
extract both the correct argument and another in-
correct one. To neutralize this bias, we also tested
the various methods only on event mentions an-
notated with two or more arguments and obtained
similar results to those presented for all mentions.
This further emphasizes the general advantage of
using unary rules over binary rules.
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5.2 Analysis
Binary-DIRT We analyzed incorrect rules both
for binary-DIRT and BInc by randomly sampling,
for each algorithm, 200 rules that extracted incor-
rect mentions. We manually classified each rule ‘l
→ r’ as either: (a) Correct - the rule is valid in
some contexts of the event but extracted some in-
correct mentions; (b) Partial Template - l is only a
part of a correct template that entails r. For exam-
ple, learning ‘X decide→ X meet’ instead of ‘X
decide to meet → X meet’; (e) Incorrect - other
incorrect rules, e.g. ‘charge X → convict X’.

Table 1 summarizes the analysis and demon-
strates two problems of binary-DIRT. First, rela-
tive to BInc, it tends to learn incorrect rules for
high frequency templates, and therefore extracted
many more incorrect mentions for the same num-
ber of incorrect rules. Second, a large percentage
of incorrect mentions extracted are due to partial
templates at the rule left-hand-side. Such rules are
leaned because many binary templates have a more
complex structure than paths between arguments.
As explained in Section 3.2 the unary template
structure we use is more expressive, enabling to
learn the correct rules. For example, BInc learned
‘take Y into custody → arrest Y ’ while binary-
DIRT learned ‘X take Y → X arrest Y ’.

System Level Analysis We manually analyzed
the reasons for false positives (incorrect extrac-
tions) and false negatives (missed extractions) of
BInc, at its best performing cutoff point (K=20),
by sampling 200 extractions of each type.

From the false positives analysis (Table 2) we
see that 39% of the errors are due to incorrect rules.
The main reasons for learning such rules are those
discussed in Section 3.3: (a) related templates that
are not entailing; (b) infrequent templates. All
learning methods suffer from these issues. As was
shown by our results, BInc provides a first step to-
wards reducing these problems. Yet, these issues
require further research.

Apart from incorrectly learned rules, incorrect
template matching (e.g. due to parse errors) and
context mismatch contribute together 46% of the
errors. Context mismatches occur when the entail-
ing template is matched in inappropriate contexts.
For example, ‘slam X → attack X’ should not be
applied when X is a ball, only when it is a person.
The rule-set net effect on system precision is better
estimated by removing these errors and fixing the
annotation errors, which yields 72% precision.

Binary DIRT Balanced Inclusion
Correct 16 (70) 38 (91)
Partial Template 27 (2665) 6 (81)
Incorrect 157 (2584) 156 (787)
Total 200 (5319) 200 (959)

Table 1: Rule type distribution of a sample of 200
rules that extracted incorrect mentions. The corre-
sponding numbers of incorrect mentions extracted
by the sampled rules is shown in parentheses.

Reason % mentions
Incorrect Rule learned 39.0
Context mismatch 27.0
Match error 19.0
Annotation problem 15.0

Table 2: Distribution of reasons for false positives
(incorrect argument extractions) by BInc at K=20.

Reason % mentions
Rule not learned 61.5
Match error 25.0
Discourse analysis needed 12.0
Argument is predicative 1.5

Table 3: Distribution of reasons for false negatives
(missed argument mentions) by BInc at K=20.

Table 3 presents the analysis of false negatives.
First, we note that 12% of the arguments cannot
be extracted by rules alone, due to necessary dis-
course analysis. Thus, a recall upper bound for en-
tailment rules is 88%. Many missed extractions are
due to rules that were not learned (61.5%). How-
ever, 25% of the mentions were missed because of
incorrect syntactic matching of correctly learned
rules. By assuming correct matches in these cases
we isolate the recall of the rule-set (along with the
seeds), which yields 39% recall.

6 Conclusions

We presented two approaches for unsupervised ac-
quisition of unary entailment rules from regular
(non-comparable) corpora. In the first approach,
rules are directly learned based on distributional
similarity measures. The second approach de-
rives unary rules from a given rule-base of binary
rules. Under the first approach we proposed a
novel directional measure for scoring entailment
rules, termed Balanced-Inclusion.

We tested the different approaches utilizing a
standard IE test-set and compared them to binary
rule learning. Our results suggest the advantage of
learning unary rules: (a) unary rule-bases perform
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better than binary rules; (b) it is better to directly
learn unary rules than to derive them from binary
rule-bases. In addition, the Balanced-Inclusion
measure outperformed all other tested methods.

In future work, we plan to explore additional
unary template structures and similarity scores,
and to improve rule application utilizing context
matching methods such as (Szpektor et al., 2008).
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