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Abstract

We present an approach to ontology popu-
lation based on a lexical substitution tech-
nique. It consists in estimating the plausi-
bility of sentences where the named entity
to be classified is substituted with the ones
contained in the training data, in our case,
a partially populated ontology. Plausibility
is estimated by using Web data, while the
classification algorithm is instance-based.
We evaluated our method on two different
ontology population tasks. Experiments
show that our solution is effective, out-
performing existing methods, and it can
be applied to practical ontology population
problems.

1 Introduction

Semantic Web and knowledge management appli-
cations require to populate the concepts of their
domain ontologies with individuals and find their
relationships from various data sources, including
databases and natural language texts. As the ex-
tensional part of an ontology (the ABox) is often
manually populated, this activity can be very time-
consuming, requiring considerable human effort.
The development of automatic techniques for on-
tology population is then a crucial research area.
Natural language processing techniques are natu-
ral candidates to solve this problem as most of the
data contained in the Web and in the companies’
intranets is free text. Information extraction (IE)
is commonly employed to (semi-) automate such a
task.
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Current state-of-the-art IE systems are mostly
based on general purpose supervised machine
learning techniques (e.g., kernel methods). How-
ever, supervised systems achieve acceptable accu-
racy only if they are supplied with a sufficiently
large amount of training data, usually consisting of
manually annotated texts. Consequently, they can
be only used to populate top-level concepts of on-
tologies (e.g., people, locations, organizations). In
fact, when the number of subclasses increases the
number of annotated documents required to find
sufficient positive examples for all subclasses be-
comes too large to be practical. As domain ontolo-
gies usually contain hundreds of concepts arranged
in deep class/subclass hierarchies, alternative tech-
niques have to be found to recognize fine-grained
distinctions (e.g., to categorize people as scientists
and scientists as physicists, mathematicians, biol-
ogists, etc.).

In this paper, we present an approach to the clas-
sification of named entities into fine-grained onto-
logical categories based on a method successfully
employed in lexical substitution.1 In particular, we
predict the fine-grained category of a named en-
tity, previously recognized, by simply estimating
the plausibility of sentences where the entity to be
classified is substituted with the ones contained in
the training data, in our case, a partially populated
ontology.

In most of the cases, ontologies are partially
populated during the development phase and af-
ter that the annotation cost is practically negligi-
ble, making this method highly attractive in many
applicative domains. This allows us to define an
instance-based learning approach for fine-grained

1Lexical substitution consists in identifying the most
likely alternatives (substitutes) of a target word given its con-
text (McCarthy, 2002).
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entity categorization that exploits the Web to col-
lect evidence of the new entities and does not re-
quire any labeled text for supervision, only a par-
tially populated ontology. Therefore, it can be used
in different domains and languages to enrich an
existing ontology with new entities extracted from
texts by a named-entity recognition system and/or
databases.

We evaluated our method on the benchmark pro-
posed by Tanev and Magnini (2006) to provide a
fair comparison with other approaches, and on a
general purpose ontology of people derived from
WordNet (Fellbaum, 1998) to perform a more ex-
tensive evaluation. Specifically, the experiments
were designed to investigate the effectiveness of
our approach at different levels of generality and
with different amounts of training data. The results
show that it significantly outperforms the base-
line methods and, where a comparison is possible,
other approaches and achieves a good performance
with a small number of examples per category. Er-
ror analysis shows that most of the misclassifica-
tion errors are due to the finer-grained distinctions
between instances of the same super-class.

2 Lexical Substitutability and Ontology
Population

Our approach is based on the assumption that en-
tities that occur in similar contexts belong to the
same concept(s). This can be seen as a special
case of the distributional hypothesis, that is, terms
that occur in the same contexts tend to have similar
meanings (Harris, 1954).

If our assumption is correct, then given an in-
stance in different contexts one can substitute it
with another of the same ontological type (i.e.,
of the same category) and probably generate true
statements. In fact, most of the predicates that
can be asserted for an instance of a particular cate-
gory can also be asserted for other instances of the
same category. For instance, the sentence “Ayr-
ton Senna is a F1 Legend” preserves its truthful-
ness when Ayrton Senna is replaced with Michael
Schumacher, while it is false when Ayrton Senna
is replaced with the MotoGP champion Valentino
Rossi.

For our purposes, the Web provides a simple and
effective solution to the problem of determining
whether a statement is true or false. Due to the high
redundancy of the Web, the high frequency of a
statement generated by a substitution usually pro-

vides sufficient evidence for its truth, allowing us
to easily implement an automatic method for fine-
grained entity classification. Following this intu-
ition, we developed an ontology population tech-
nique adopting pre-classified entities as training
data (i.e., a partially populated ontology) to clas-
sify new ones.

When a new instance has to be classified, we
first collect snippets containing it from the Web.
Then, for each snippet, we substitute the new in-
stance with each of the training instances. The
snippets play a crucial role in our approach be-
cause we expect that they provide the features that
characterize the category to which the entity be-
longs. Thus, it is important to collect a sufficiently
large number of snippets to capture the features
that allow a fine-grained classification.

To estimate the correctness of each substitution,
we calculate a plausibility score using a modified
version of the lexical substitution algorithm intro-
duced in Giuliano et al. (2007), that assigns higher
scores to the substitutions that generate highly fre-
quent sentences on the Web. In particular, this
technique ranks a given list of synonyms accord-
ing to a similarity metric based on the occur-
rences in the Web 1T 5-gram corpus,2 which spec-
ify n-grams frequencies in a large Web sample.
This technique achieved the state-of-the-art perfor-
mance on the English Lexical Substitution task at
SemEval 2007 (McCarthy and Navigli, 2007).

Finally, on the basis of these plausibility scores,
the algorithm assigns the new instance to the cat-
egory whose individuals show a closer linguistic
behavior (i.e., they can be substituted generating
plausible statements).

3 The IBOP algorithm

In this section, we describe the algorithmic and
mathematical details of our approach. The
instance-based ontology population (IBOP) algo-
rithm is an instance-based supervised machine
learning approach.3 The proposed algorithm is
summarized as follows:

Step 1 For each candidate instance i, we collect
the first N snippets containing i from the Web.
For instance, 3 snippets for the candidate instance
Ayrton Senna are “The death of Ayrton Senna at

2http://www.ldc.upenn.edu/Catalog/
CatalogEntry.jsp?catalogId=LDC2006T13.

3An analogy between instance-based learning methods
and our approach is left to future work.
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the 1994 San Marino GP”, “triple world cham-
pion Ayrton Senna”, and “about F1 legend Ayrton
Senna”.

Step 2 Then, for each retrieved snippet qk (1 6
k 6 N ), we derive a list of hypothesis phrases
by replacing i with each training instance j from
the given ontology. For instance, from the snippet
“about F1 legend Ayrton Senna”, we derive “about
F1 legend Michael Schumacher” and “about F1
legend Valentino Rossi”, assuming to have the for-
mer classified as F1 driver and the latter as Mo-
toGP driver.

Step 3 For each hypothesis phrase hj , we calcu-
late the plausibility score sj using a variant of the
scoring procedure defined in Giuliano et al. (2007).
In our case, sj is given by the sum of the point-
wise mutual information (PMI) of all the n-grams
(1 < n 6 5) that contain j divided by the self-
information of the right and left contexts.4 Divid-
ing by the self-information allows us to penalize
the hypotheses that have contexts with a low infor-
mation content, such as sequences of stop words.
The frequency of the n-grams is estimated from
the Web 1T 5-gram corpus. For instance, from
the hypothesis phrase “about F1 legend Michael
Schumacher”, we generate and score the following
n-grams: “legend Michael Schumacher”, “F1 leg-
end Michael Schumacher”, and “about F1 legend
Michael Schumacher”.

Step 4 To obtain an overall score sc for the cat-
egory c, we sum the scores obtained from each
training instance of category c for all snippets, as
defined in Equation 1.

sc =

NX
k=1

MX
l=1

sl, (1)

where M is the number of training instances for
the category c.5

Step 5 Finally, the instance i is categorized with
that concept having the maximum score:

c∗ =

(
argmax

c
sc if sc > θ;

∅ otherwise.
(2)

4The pointwise mutual information is defined as the log of
the deviation between the observed frequency of a n-gram and
the probability of that n-gram if it were independent and the
self-information is a measure of the information content of a
n-gram (− log p, where p is the probability of the n-gram).

5Experiments using the sum of average or argmax score
yield worst results.

Where a higher value of the parameter θ increases
precision but degrades recall.

4 Benchmarks

For evaluating the proposed algorithm and com-
paring it with other algorithms, we adopted the two
benchmarks described below.

4.1 Tanev and Magnini Benchmark

Tanev and Magnini (2006) proposed a benchmark
ontology that consists of two high-level named
entity categories (i.e., person and location) both
having five fine-grained subclasses (i.e., mountain,
lake, river, city, and country as subtypes of loca-
tion; statesman, writer, athlete, actor, and inventor
are subtypes of person). WordNet and Wikipedia
were used as primary data sources for populating
the evaluation ontology. In total, the ontology is
populated with 280 instances which were not am-
biguous (with respect to the ontology). We ex-
tracted the training set from WordNet, collecting
20 examples per sub-category, of course, not al-
ready contained in the test set.

4.2 People Ontology

The benchmark described in the previous section
is clearly a toy problem, and it does not allow us
to evaluate the effectiveness of our method, in par-
ticular the ability to perform fine-grained classifi-
cations. To address this problem, we developed
a larger ontology of people (called People Ontol-
ogy), characterized by a complex taxonomy hav-
ing multiple layers and containing thousands of in-
stances. This ontology has been extracted from
WordNet, that we adapted to our purpose after a
re-engineering phase. In fact, we need a formal
specification of the conceptualizations that are ex-
pressed by means of WordNet’s synsets, and, in
particular, we need a clear distinction between in-
dividuals and categories, as well as a robust cate-
gorization mechanism to assign individuals to gen-
eral concepts.

This result can be achieved by following the di-
rectives defined by Gangemi et al. (2003) for On-
toWordNet, in which the informal WordNet se-
mantics is re-engineered in terms of a description
logic. We follow an analogous approach. Firstly,
any possible instance in WordNet 1.7.1 has been
identified by looking for all those synsets contain-
ing at least one word starting with a capital letter.
The result is a set of instances I . All the remaining
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Figure 1: The taxonomy of the People Ontology extracted from WordNet 1.7.1. Numbers in brackets are
the total numbers of individuals per category. Concepts that have less than 40 instances were removed.

synsets are then regarded as concepts, collected in
the set C. Then, is a relations between synsets are
converted into one of the following standard OWL-
DL constructs:
X subclass of Y if X is a Y and X ∈ C and Y ∈ C

X instance of Y if X is a Y and X ∈ I and Y ∈ C
The formal semantics of both subclass of
and instance of is formally defined in OWL-
DL. subclass of is a transitive relation (i.e.,
Xsubclass ofY and Y subclass ofZ implies
Xsubclass ofZ) and the instance of relation
has the following property: Xinstance ofY and
Y subclass ofZ implies Xinstance ofZ.

To define the People Ontology, we selected
the sub-hierarchy of WordNet representing peo-
ple, identifying the corresponding top-level synset
X = {person, individual, someone, somebody,
mortal, soul}, and collecting all the classes Y such
that Y is a subclass of X and all the instances I
such that I is an instance of Y . We discovered
that many concepts in the derived hierarchy were
empty or scarcely populated. As we need a suffi-
cient amount data to obtain statistically significant
results, we eliminated the classes that contain less
than 40 instances from the ontology. The derived
ontology contains 1627 instances structured in 21
sub-categories (Figure 1). Finally, we randomly
split its individuals into two equally sized subsets.
The results reported in the following section were
evaluated using two-fold cross-validation on these
two subsets.

5 Evaluation

In this section, we present the performance of the
IBOP algorithm on the evaluation benchmarks de-
scribed in the previous section.

5.1 Experimental Setting

For each individual, we collected 100 entity men-
tions in their context by querying GoogleTM. As
most of them are names of celebrities, the Web
provided sufficient data.6

We approached the population task as a stan-
dard categorization problem, trying to assign new
instances to the most specific category. We mea-
sured standard precision/recall figures. In addition,
we evaluated the classifier accuracy at the most ab-
stract level, by inheriting the predictions from sub-
concepts to super-concepts. For example, when
an instance is assigned to a specific category (e.g.,
Musician), it is also (implicitly) assigned to all its
super-classes (e.g., Artist and Creator). This op-
eration is performed according to the extensional
semantics of the description logic, as described in
the previous section. Following this approach, we
are able to evaluate the effectiveness of our algo-
rithm at any level of generality. The micro- and
macro-averaged F1 have been evaluated by taking
into account both specific and generic classes at
the same time. In this way, we tend to penalize the

6A study of how the number of snippets N would impact
the performance of the IBOP algorithm has been deferred to
future work.
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Figure 2: Learning curve on the People Ontology.

gross misclassification errors (e.g., Biologist vs.
Poet), while minor errors (e.g., Poet vs. Drama-
tist) are less relevant. This approach is similar to
the one proposed by Melamed and Resnik (2000)
for a similar hierarchical categorization task.

5.2 Accuracy

Table 1 shows micro- and macro-averaged results
of the proposed method obtained on the Tanev
and Magnini (2006) benchmark and compares
them with the class-example (Tanev and Magnini,
2006), IBLE (Giuliano and Gliozzo, 2007), and
class-word (Cimiano and Völker, 2005) methods,
respectively. Table 2 shows micro- and macro-
averaged results of the proposed method obtained
on the People Ontology and compares them with
the random and most frequent baseline methods.7

In both experiments, the IBOP algorithm was
trained on 20 examples per category and setting
the parameter θ = 0 in Equation 2.

For the People Ontology, we performed a dis-
aggregated evaluation, whose results are shown in
Table 3, while Figure 2 shows the learning curve.
The experiment was conducted setting the param-
eter θ = 0.

System Micro-F1 Macro-F1

IBOP 73 71
Class-Example 68 62
IBLE 57 47
Class-Word 42 33

Table 1: Comparison of different ontology popula-
tion techniques on the Tanev and Magnini (2006)
benchmark.

7The most frequent category has been estimated on the
training data.

System Micro-F1 Macro-F1

IBOP 70.1 62.3
Random 15.4 15.5
Most Frequent 20.7 3.3

Table 2: Comparison between the IBOP algorithm
and the baseline methods on the People Ontology.

Class Prec Recall F1

Scientist 84.4 73.3 78.4
Physicist 63.0 39.3 48.4
Mathematician 25.0 67.5 36.5
Chemist 44.2 52.0 47.7
Biologist 62.5 13.2 21.7
Social scientist 43.1 30.1 35.5

Performer 76.5 66.9 71.4
Actor 67.5 67.9 67.7
Musician 68.1 48.9 56.9

Creator 70.6 84.5 76.9
Film Maker 52.9 68.7 59.7
Artist 72.8 85.5 78.6

Painter 74.4 86.1 79.8
Musician 68.9 81.6 74.7

Comunicator 76.4 83.1 79.6
Writer 78.6 76.6 77.6

Poet 67.4 61.2 64.1
Dramatist 65.0 70.7 67.7

Representative 84.8 76.7 80.6
Business man 47.2 40.5 43.6
Health professional 29.3 25.0 27.0
micro 69.6 70.7 70.1
macro 62.3 70.7 62.3

Table 3: Results for each category of the People
Ontology.

5.3 Confusion Matrix
Table 4 shows the confusion matrix for the People
Ontology task, in which the rows are ground truth
classes and the columns are predictions. The ex-
periment was conducted using 20 training exam-
ples per category and setting the parameter θ =
0. The matrix has been calculated for the finer-
grained categories and, then, grouped according to
their top-level concepts.

5.4 Precision/Recall Tradeoff
Figure 3 shows the precision/recall curve for the
People Ontology task obtained varying the param-
eter θ in Equation 2. The experiment was con-
ducted using 20 training examples per category.

5.5 Discussion
The results obtained are undoubtedly satisfactory.
Table 1 shows that our approach outperforms the
other three methods on the Tanev and Magnini
(2006) benchmark. Note that the Class-Example
approach has been trained on 1194 named enti-
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Scientist Performer Creator Communicator Business Health
Phy Mat Che Bio Soc Act Mus Fil Pai Mus Poe Dra Rep man prof

Phy 68 40 25 3 11 2 0 0 3 1 7 1 7 2 3
Mat 3 27 1 0 0 0 0 1 0 0 4 0 2 1 1
Che 12 10 53 2 7 3 1 2 2 0 1 0 4 4 1
Bio 4 12 13 10 3 3 0 1 5 2 4 1 11 2 5
Soc 6 3 4 1 22 4 0 2 2 3 4 1 12 0 9
Act 3 1 2 0 0 106 6 20 0 3 2 4 7 1 1

Mus 1 1 2 0 0 16 64 5 2 28 2 2 7 0 1
Fil 0 0 0 0 0 7 0 46 0 4 1 1 4 3 1
Pai 2 1 0 0 1 1 1 2 93 3 1 0 2 1 0

Mus 1 0 0 0 0 1 16 2 3 142 1 3 2 1 2
Poe 1 2 1 0 1 2 3 3 6 12 93 20 6 1 1
Dra 0 2 1 0 0 3 0 2 2 3 9 65 1 2 2
Rep 0 6 7 0 3 6 1 0 3 2 5 0 189 1 0
Bus 3 3 6 0 0 0 1 1 0 1 2 0 6 17 2
Hea 4 0 5 0 3 3 1 0 4 2 2 2 10 0 12

Table 4: Confusion matrix for the finer-grained categories grouped according to their top-level concepts
of the People Ontology.
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Figure 3: Precision/recall curve on the People On-
tology.

ties, almost 60 examples per category, whereas we
achieved the same result with around 10 examples
per category. On the other hand, as Table 2 shows,
the IBOP algorithm is effective in populating a
more complex ontology and significantly outper-
forms the random and most frequent baselines.

An important characteristic of the algorithm is
the small number of examples required per cate-
gory. This affects both the prediction accuracy and
the computation time (this is generally a common
property of instance-based algorithms). Therefore,
finding an optimal tradeoff between the training
size and the performance is crucial. The learn-
ing curve (Figure 2) shows that the algorithm out-
performs the baselines with only 1 example per
category and achieves a good accuracy (F1 ≈
67%) with only 10 examples per category, while
it reaches a plateau around 20 examples (F1 ≈

70%), but leaving a little room for improvement.
Table 4 shows that misclassification errors are

largely distributed among categories belonging to
the same super-class (i.e., the blocks on the main
diagonal are more densely populated than others).
As expected, the algorithm is much more accurate
for the top-level concepts (i.e., Scientist, Commu-
nicator, etc.), where the category distinctions are
clearer, while a further fine-grained classification,
in some cases, is even difficult for human anno-
tators. In particular, results are higher for fine-
grained categories densely populated and with a
small number of sibling categories (i.e., Painter
and Musician). We have observed that the results
on sparse categories can be made more precise by
increasing the training size, generally at the ex-
pense of a lower recall.

We tried to maximize precision by varying the
parameter θ in Equation 2, that is, avoiding all
assignments where the plausibility score is lower
than a given threshold. Figure 3 shows that the
precision can be significantly enhanced (∼ 90%)
at the expense of poor recall (∼ 20%), while the
algorithm achieves 80% precision at around 50%
recall.

Finally, we performed some preliminary error
analysis, investigating the misclassifications in the
categories Scientists and Musicians. Several errors
are due to lack of information in WordNet, For ex-
ample, Leonhard Euler was a mathematician and
physicist, however, in WordNet, he is classified as
physicist, and our system classifies him as math-
ematician. On the other hand, for simplicity, the
algorithm returns a single category per instance,
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however, the test set contains many entities that are
classified in more than one category. For instance,
Bertolt Brecht is both poet and dramatist and the
system classified him as dramatist. Another inter-
esting case is the presence of two categories Musi-
cian, one is subclass of Performer and the other of
Artist, in which, for instance, Ringo Starr is a per-
former while John Lennon is an artist, while the
system classified both as performers.

6 Related work

Brin (1998) defined a methodology to extract in-
formation from the Web starting from a small set
of seed examples, then alternately learning extrac-
tion patterns from seeds, and further seeds from
patterns. Despite the fact that the evaluation was
on relation extraction the method is general and
might be applied to entity extraction and catego-
rization. The approach was further extended by
Agichtein and Gravano (2000). Our approach dif-
fers from theirs in that we do not learn patterns.
Thus, we do not require ad hoc strategies for gen-
erating patterns and estimating their reliability, a
crucial issue in these approaches as “bad” patterns
may extract wrong seeds instances that in turn may
generate even more inaccurate patterns in the fol-
lowing iteration.

Fleischman and Hovy (2002) approached the
ontology population problem as a supervised clas-
sification task. They compare different machine
learning algorithms, providing instances in their
context as training examples as well as more global
semantic information derived from topic signature
and WordNet.

Alfonseca and Manandhar (2002) and Cimiano
and Völker (2005) present similar approaches re-
lying on the Harris’ distributional hypothesis and
the vector-space model. They assign a particu-
lar instance represented by a certain context vec-
tor to the concept corresponding to the most simi-
lar vector. Contexts are represented using lexical-
syntactic features.

KnowItAll (Etzioni et al., 2005) uses a search
engine and semantic patterns (similar to those de-
fined by Hearst (1992)) to classify named entities
on the Web. The approach uses simple techniques
from the ontology learning field to perform extrac-
tion and then annotation. It also is able to perform
very simple pattern induction, consisting of look-
ing at n words before and n words after the occur-
rence of an example in the document. With pat-

tern learning, KnowItAll becomes a bootstrapped
learning system, where rules are used to learn new
seeds, which in turn are used to learn new rules.
A similar approach is used in C-PANKOW (Cimi-
ano et al., 2005). Compared to KnowItAll and
C-PANKOW, our approach does not need hand-
crafted patterns as input. They are implicitly found
by substituting the training instances in the con-
texts of the input entities. Another key difference
is that concepts in the ontology do not need to be
lexicalized.

Tanev and Magnini (2006) proposed a weakly-
supervised method that requires as training data a
list of terms without context for each category un-
der consideration. Given a generic syntactically
parsed corpus containing at least each training en-
tity twice, the algorithm learns, for each category, a
feature vector describing the contexts where those
entities occur. Then, it compares the new (un-
known) entity with the so obtained feature vec-
tors, assigning it to the most similar category. Even
though we used a significantly smaller number of
training instances, we obtained better results on
their benchmark.

More recently, Giuliano and Gliozzo (2007)
proposed an unsupervised approach based on lexi-
cal entailment, consisting in assigning an entity to
the category whose lexicalization can be replaced
with its occurrences in a corpus preserving the
meaning. A disadvantage is that the concepts in the
ontology have to be lexicalized, as they are used
as training examples. Our approach is based on a
similar idea, but with the main difference that an
instance is substituted with other instances rather
than with their category names. Considering that,
in most of the cases, ontologies are partially popu-
lated during the development phase, and hence the
annotation cost is marginal, our approach is a re-
alistic alternative for practical ontology population
problems.

7 Conclusions and Future Work

We have described an instance-based algorithm
for automatic fine-grained categorization of named
entities, previously identified by an entity recogni-
tion system or already present in a database. This
method is meant to provide an effective solution to
the ontology population problem. It exploits the
Web or a domain corpus to collect evidence of the
new instances and does not require labeled texts
for supervision, but a partially populated ontology.
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The experimental results show that, where a com-
parison is possible, our method outperforms previ-
ous methods and it can be applied to different do-
mains and languages to (semi-) automatically en-
rich an existing ontology.

Future work will address the definition of a hi-
erarchical categorization strategy where instances
are classified in a top-down manner, in order to ef-
ficiently populate very large ontologies, since we
plan to apply this method to extract structured in-
formation from Wikipedia. Furthermore, we will
investigate how co-reference resolution might well
benefit from our ontology classification. Finally,
we plan to exploit the IBOP algorithm for ontol-
ogy mapping and multilingual alignment of lexical
resources.
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