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Abstract

We present procedures which pool lexical
information estimated from unlabeled data
via the Inside-Outside algorithm, with lex-
ical information from a treebank PCFG.
The procedures produce substantial im-
provements (up to 31.6% error reduction)
on the task of determining subcategoriza-
tion frames of novel verbs, relative to a

smoothed Penn Treebank-trained PCFG.

Even with relatively small quantities of
unlabeled training data, the re-estimated
models show promising improvements in
labeled bracketindg-scores on Wall Street
Journal parsing, and substantial benefit
in acquiring the subcategorization prefer-
ences of low-frequency verbs.

I ntroduction

trained on annotated data. The Zipfian nature of
a text corpus results in PCFG parameters related
to the properties of specific words being espe-
cially badly estimated. For instance, about 38% of
verbs in the training sections of the Penn Treebank
(PTB) (Marcus et al., 1993) occur only once —the

lexical properties of these verbs (such as their most
common subcategorization frames ) cannot be rep-
resented accurately in a model trained exclusively
on the Penn Treebank.

The research reported here addresses this issue.
We start with an unlexicalized PCFG trained on
the PTB. We then re-estimate the parameters of
this PCFG from raw text using an unsupervised
estimation method based on the Inside-Outside al-
gorithm (Lari and Young, 1990), an instance of
the Expectation Maximization algorithm (Demp-
ster et al., 1977) for PCFG induction. The re-
estimation improves-score on the standard test
section of the PTB significantly. Our focus is on

In order to obtain the meaning of a sentence ays,ning |exical parameters i.e. those parameters
tomatically, it is necessary to have access 10 it|ateq to the lexico-syntactic properties of open-

syntactic analysis at some level of complexityass words. Examples of such properties are: sub-
Many NLP applications like translation, question-,eqqrization frames of verbs and nouns, attach-

answering, etc. "ment preference of adverbs to sentential, verbal or

might benefit from the avail
ability of syntactic parses. Probabilistic parsers,,minal nodes, attachment preference of PPs to a

trained over labeled data have high accuracy on Narbal or nominal node. etc
domain data: lexicalized parsers getfastore of '

up to 90.0% on Wall Street Journal data (Charniak The. currenf[ _research_ 'S r'elated to_ semi-
supervised training paradigms like self-training —

and Johnson (2005)’s re-ranking parser), while res . -
cently, unlexicalized PCFGs have also been shovevtFl1ese methods are currently being explored to im

to perform much better than previously beIieve(Erove the performance of existing PCFG models

. : - y utilizing unlabeled data. For example, Mc-
(I_(Iem and Manning, .2903)' However, Fhe IImIteCICloskey et al. (2006) achieve a 1.1% improvement
size of annotated training data results in many pa labeled bracketing-score by the use of un-
rameters of a PCFG being badly estimated Wh%ltbeled data to self-train the parser-reranker sys-
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(Pereira and Schabes, 1992; Carroll and Rooth, \ this paper\ Schmid\ K&M

1998; Beil et al., 1999; imWalde, 2002). In Recall 86.5 86.3 85.1
some of these cases, an initial model is derived Precision 86.7 86.9 86.3
by other means — inside-outside is usedrée F-score 86.6 86.6 85.7

estimatethe initial model. However, many ques-
tions still remain open about its efficacy for PCFGTable 1: Labeled bracketing scores, PTB sec. 23.
re-estimation. Grammars used previously have

not been treebank grammars (for e.g., Carroll an . .
Rooth (1998) and Beil et al. (1999) used handl-o e, there is a feature on verbs which denotes the

rization frame of the verb (with val
crafted grammars), hence these models could nSlflbcategO ation frame of the verb (with values

. . . ﬁke intransitive, transitive, etc.). Similarly, there
be evaluated according to standardized evaluations . .
) o are features which denote the type of clause (fi-
in the parsing literature. In the current work, we".~ =", .
) nite, infinite, small clause, etc.), the subject type
use a Penn Treebank based grammar; hence all ref\-
. . of clausal nodes, the attachment of adverbs, va-
estimated grammars can be evaluated using st

dardized criteria Fence of nouns, etc. Unlike most existing treebank
The rest of th.e aper is oraanized as foIIowsPCFGS’ all PTB function tags are retained, as are
. Ne pape g . all empty categories.

First, we describe in brief the construction of an .

unlexicalized PCFG from the PTB. We then de- As ameasure of the quality of the transformed-

scribe a procedure based on the inside-outside aﬁ:r B based PCFG, Table 1 gives the labeled brack-

) . : ?ting scores on the standard test section 23 of
gorithm to re-estimate the lexical parameters ohe PTB. comparing them to unlexicalized PCEG
this PCFG from unlabeled Wall Street Journa} ' baring

data. Finally, we present evaluations of the re=> o> in (Schmid, 2006) and (Klein and Man-
’ Y, P ning, 2003) (K&M). The current PCF&score is

estimated models, based on labeled bracketin ) -
c%mparable to the state-of-the-art in unlexicalized

measures and on the detection of subcategorizati i
frames of verbs: there is a 31.6% reduction in engGS ((Schmid, 2006), to our knowledge). We

ror for novel verbs and up to 8.97% reduction instopped grammar development when frecore

overall subcategorization error. re_ached state-of-the-ar_t since our goal was to_use
this grammar as the initial model and baseline

2  Unlexicalized treebank PCEG for the unsupervised re-estimation procedure, de-
scribed in the next section.

We build an unlexicalized PCFG from the stan-
dard training sections of the PTB. As is commor8 |nside-Outside Re-estimation
(Collins, 1997; Johnson, 1998; Klein and Man- _ . _ _
ning, 2003; Schmid, 2006), the treebank is firsf\S @ basic unsupervised estimation method, we
transformed in various ways, in order to give an acUSe standard inside-outside estimation of PCFGs,
curate PCFG. In our framework, treebank trees aMéhich realizes EM estimation (Lari and Young,
augmented with extra features; the methodology990; Pereira and Schabes, 1992). We use the
involves constructing a feature-constraint grammdotation (€, ¢) to designate the new frequency
from a context-free treebank backbone grammafodel, computed via inside-outside from the cor-
The detailed methodology is described in Deoskd?us C' by using a probability model based on the
and Rooth (2008) A PCFG is trained on the frequency modet3. The iterative inside-outside
transformed treebank, with these added featuré§-estimation procedure has the following sim-
incorporated into the PCFG's non-terminal cateP!€ form (Eq.1), where each successive frequency
gories. The framework affords us the flexibility M0delei1 is estimated from the corpus using a
to stipulate the features to be incorporated in therobability model determined by the previous fre-
PCFG categories, as parameters of the PCFG. guency modet;. Our notation always refers to fre-
) Ou_r _features are I?rgely designed to have ?ﬁguistic interpretation, but result in a good PCFG, suslaa
linguistically relevant interpretatidn For exam- parentfeature on some categories, following Johnson (1998).
- 3The inside-outside algorithm uses an existing grammar
'The reason for using this framework (as opposed to usingiodel and a raw text corpus (incomplete data) to obtain cor-
available unlexicalized PCFGs) is that it allows us flexibil responding complete data (a set of analyses/parses foothe ¢
in designing features of interest, and can also be usedrier lapus sentences). A new grammar model is then estimated from

guages other than English with existing treebanks. this complete data. See (Prescher, 2003) for an explanation
2In addition we also have some features that do not havewsing the standard EM notions of incomplete/complete data.
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quency models such ag, rather than the relative- bank modek (hence represented @%c;, t)).
frequency probability models they deternfine

do=1 smoothed treebank model
a1 =1(C,dp) estimation step
e1 = I1(C,ep) o di = T(cy,t) transformation step
civ1 =1(C,ei) cir1 = 1(C, d;) estimation step
_ . dit1 =T(cit1,1) transformation step
3.1 Interleaved Inside-Outside 2)

It is well-known that while lexicalization is use- The lexical parameters for the treebank model
ful, lexical parameters determined from the tree? the re-estimated modets are represented as
bank are poorly estimated because of the sparsé:7,¢) Of ¢i(w,7,¢), wherew is the terminal
ness of treebank data for particular words (e.gVord: 7 is the PTB-style PoS tag, andis the
Hindle and Rooth (1993)). Gildea (2001) and&duence of addltlongl fegtures mcprporated into
Bikel (2004) show that removing bilexical de-the PoS tag (the entries in our lexicon have the
pendencies hardly hurts the performance of thfrm w.7.. with an associated frequency). The
Collins Model2 parser, although there is the benransformatioril” preserves the marginal frequen-
efit of lexicalization in the form of lexico-syntactic Ci€S Seen in the treebank model. A marginal tag-
dependencies — structures being conditioned dRcorporation frequency is defined by summation:
words. On the other hand, structural parameters f(re) = Zf(vav L). ©)

are comparatively well-estimated from treebanks w

since they are not keyed to particular words. Thusthe transformatiof is used to obtain the derived

it might be beneficial to use a combination of Sumodelsd; and consists of two parts, corresponding
pervised and unsupervised estimation for lexicab the syntactic and the lexical parameters/of
parameters, while obtaining syntactic (structural)
parameters solely by supervised estimation (i.e.
from a treebank). The experiments in this paper
are based on this idea. In an unlexicalised PCFG e To obtain the lexical parameters df, lex-
like the one described if2, it is easy to make ical parameters from the treebank model
the distinction between structural parameters (non-  and lexical parameters from the re-estimated
terminal rules) and lexical parameters (preterminal  model are linearly combined, shown in Eqg. 4.
to terminal rules). di(w,7,10) = (1 — Ar )t (w, 7, ) + Ao (w, 7, 1)

To this end, we define a modified inside-outside ()
procedure in which a frequency'tran'sformatioquhere/\T’L is a parameter with < \,, < 1 which
T(c,t) is mte_rleaved _between the iterations of th‘?nay depend on the tag and incorporation. The
standard inside-outside procedure. The form Ggm e, (w, 7, ) in Eq. 4 is obtained by scaling the

this interleaved procedure is shown in Eq. 2. fequencies in; (w, 7, ¢), as shown in Eq. 5.
Eq. 2,t designates a smoothed treebank model (the

smoothing procedure is described lateg®l.1). Gi(w,7,1) = t(7, )
This smoothed treebank model is used as the prior ¢i(T;1)
model for the inside-outside re-estimation proceln terms of probability models determined from
dure. For each iteratiof c; represent models ob- the frequency models, the effectBfis to allocate
tained by inside-outside estimationl; represent a fixed proportion of the probability mass for each
derivedmodels obtained by performing a transfor-r, « to the corpus, and share it out among wouds
mation7’ on ¢;. The transformatiorf’ combines in proportion to relative frequencié%% in the
the re-estimated mode} and the smoothed tree- inside-outside estimaig. Eqs. 6 and 7 verify that

- marginals are preserved in the derived matiel
*We use a frequency-based notation because we use out-
of-the-box software Bitpar (Schmid, 2004) whichimplengent ¢(7,¢) = >, ¢(w,T,t) =Y Mc(zm T, L)

e The syntactic parameters af are copied
fromt.

ci(w, ). (5)

inside-outside estimation — Bitpar reads in frequency rede ) w o)

and converts them to relative frequency models. We justify = C(Tib) >owc(w,T,0)

the use of the frequency-based notation by ensuring that all (T _

marginal frequencies in the treebank model are always pre- = C(T,i)c(7—7 L) = t(7,0).

served in all other models. (6)
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d(r,0) =3, d(w,T,¢) subcategorization frames of novel verbs. We also
=2 (I = Ar)t(w, 7, 0) + Are(w, 7,1)  construct another testset (Testset 1) by holding out
= (1= Ary) 2 t(w, 7,0) every 10"" sentence in PTB sections 0-22 (4310
+ Aru 2w E(w, 7,0) sentences).
= (1= A )T, 1) + Arie(7,0) The corpus used for re-estimation is about 4 mil-
= (1 = A )7, 0) + Arut(7,0) lion words of unannotated Wall Street Journal text
=t(7,1) (year 1997) (sentence lengtl5 words). The re-

(7)  estimation was carried out using Bitpar (Schmid,
311 Smoothing thetresbank model 2004_) for inside-outside estimation. The .pgrame-
ter A in Eqg. 4 was set to 0.5 for afl and., giving

To initialize the iterative procedures, a smooth-equal weight to the treebank and the re-estimated

ing schefme. is required which allocates fre(_]uencl)éxicons. Starting from a smoothed treebank gram-
to combinations of worda and PoS tags which mart¢, we separately ran 6 iterations of the inter-

are not present in the treebank model but ARaved estimation procedure defined in Eq. 2, and

present in the corpus, and also to 6_‘” pqs&ble " iterations of standard inside-outside estimation.
corporations of a PoS tag. Otherwise, if the un

This gave us two series of models corresponding
smoothed tre_ebank modeh) has zero frequgncy to the two procedures.
for some lexical parameter, the inside-outside es-

timate I(C', ) for that parameter would also be4 | abeled Bracketing Results
zero, and new lexical entries would never be in-
duced. As a basic evaluation of the re-estimated gram-
The smoothed treebank modés obtained from Mmars, we report the labeled bracketing scores on
the unsmoothed mode} as follows. First a PoS the standard test section 23 of the PTB (Table 2).
tagger (Treetagger, (Schmid, 1994)) is run on th¥/Sing the re-estimated models, maximum proba-
unsupervised corpu§, which assigns PTB-style bility (viterbi) parses were obtained for all sen-
PoS tags to the corpus. Tokens of words antgnces in sec. 23, after stripping away the treebank
PoS tags are tabulated to obtain a frequency tabf@notation, including the pre-terminal tag. The
g(w, ). Each frequency(w, ) is split among baseline is the treebank modgl®>. The scores
possible incorporationsin proportion to a ratio of for re-estimated grammars from successive itera-

marginal frequencies ity: tions are under columns It 1, It 2, etc. All models
obtained using the interleaved procedure show an
g(w,7,0) = to(T, L)g(w 7) ®) improvement over the baseline. The best model

T to(7) ’ is obtained after 2 iterations, after which the score

reduces a little. Statistically significant improve-
ments are marked with *, with40.005 for recall
and p<0.0001 for precision for the best model. Ta-
ble 2 also shows scores for grammars estimated
using the standard inside-outside procedure. The
Hw,m0) = (L= Arto(w, 7,0) + Arug(w, 7, % first re-estimated model is better than any model
©) obtained from either procedure. Notice however,
3.2 Experimental setup the disparity in precision and recall — precision

. . . (58 much lower than recall. This is not surpris-
The treebank grammar is trained over sections 0= "~ S .
ing; inside-outside is known to converge to incor-

22 of the transf d PTB (mi bout 7000 sen- ) :
otthe transforme (minus abou >en ct solutions for PCFGs (Lari and Young, 1990;

hel f ing). T I ins 1 .
tences held out for testing). Testset | contains 3d o Marcken, 1995). This causes fhscore to de-

sentences and is constructed as follows: First, we". ) L .
: . teriorate in successive iterations.
select 117 verbs whose frequency in PTB sections

0-22 is between 10-20 (mid-frequency verbs). All This baseline is slightly lower than that reported in Ta-

. le 1 due to holding out an additional 7000 sentences from
sentences containing occurrences of these Ver&% treebank training set. In order to accommodate unknown

are held out from the training data to form TesStwords from the test data (sec 23), the treebank mesiés
set |. The effect of hoIding out these sentences Enoothed in a manner similar to that shown in Eq. 9, with

. . . the test words (tagged using Treetagger) formitg, 7) and
to make these 117 verbsvel(i.e. unseen in train- A = 0.1. A testset is always merged with a given model in

ing). This testset is used to evaluate the learning diis manner before parsing, to account for unknown words.

The smoothed modelis defined as an interpola-
tion of g andt for lexical parameters as shown in
9, with syntactic parameters copied fram
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tor It1 It2 It3 It4 It5 It 6
Interleaved| Recall 86.48| 86.72| *86.79 | *86.79 | *86.78 | 86.81| 86.72
Procedure | Precision| 86.61| 86.95| *87.07 | *87.06 | *87.07 | 87.04| 87.01
f-score 86.55| 86.83| *86.93 | *86.92 | *86.92 | 86.92 | 86.86
Standard | Recall 86.48| 87.95| 87.11 | 86.42 | 85.55
Procedure | Precision| 86.61| 85.99| 84.79 | 83.37 | 82.06
f-score 86.5 | 86.96| 85.93 | 84.87 | 83.77

Table 2: Labeled Bracketing scores for various models, oB §8ction 23.

VP An- -

The improvement in labeled bracketifigcore

for the interleaved procedure is small, but is an en- VBD aus-hass REnol.vp.- VPhase- e
couraging result. The benefit to the re-estimated E,L nlm VE't/\St\

models comes only from better estimates of lex- I

ical parameters. We expect that re-estimation e
will benefit parameters associated with low fre- T Psn-
quency words - lexical parameters for high fre- tID VB_{__\@
quency words are bound to be estimated accurately mlnd
from the treebank. We did not expect a large im-

pact on labeled bracketing scores, given that low

frequency words have correspondingly few occur-Figure 1: A subcat. frame for control veviant
rences in this test dataset. It is possible that the im-

pact ont-score will be higher for a test set from agc ) The third feature encodes the nature of the

different domain. Note also that the size of our unéubject of the clausal complements (empty cate-

labeled training corpgs{4M words) is relatively gory or non-empty). For example, the verbn-
small —only about 4 times the PTB. sideredin the treebank sentendéey are officially
considered strategigets a preterminal sequence of
VBD.s.e.sc. This sequence indicates a past tense
We focus on learning verbal subcategorization, agerb (vBD) with a clausal complement (s) which
a typical case of lexico-syntactic information. Thehas an empty subject (e) since the sentence is pas-
subcategorization frames§) of verbs is a parame- sive and is of the typemall clausgsc). A control
ter of our PCFG - verbal tags in the PCFG are folverb (with an infinitival complement) in the sen-
lowed by an incorporation sequence that denotégnce fragment.did not want to fund X.gets the
the sr for that verb. We evaluate the re-estimatedrame s.e.to (see Fig. 1 for an example of a verb
models on the task of detecting correes of verbs  with its complement, as parsed by our PCFG). We
in maximum-probability (viterbi) parses obtainedhave a total of 81 categories s#s (without count-
using the models. All tokens of verbs and theiing specific prepositions for prepositional frames),
preterminal symbols (consisting of a PoS tag anthaking fairly fine-grained distinctions of verbal
an incorporation sequence encodings$iigare ex- categories.
tracted from the viterbi parses of sentences in a )
testset. This tag+ sequence is compared to a gold-1 L €arning Subcat Frames of Novel Verbs
standard, and is scored correct if the two match eXA'e measure the error rate in the detection of the
actly. PoS errors are scored as incorrect, even if trgeibcategorization frame of 1360 tokens of 117
SFis correct. The gold standard is obtained fronverbs in Testset |. Recall from§3.2 that these
the transformed PTB trees. verbs are novel verbs with respect to the treebank
The incorporation sequence corresponding tmodel. Table 3 shows this error rate (i.e. the
the sF consists of 3 features: The first one denoteaction of test items which receive incorrect tag-
basic categories of subcategorization such as traimcorporations in viterbi parses) for various mod-
sitive, intransitive, ditransitiveNpP-pP, S, etc. The els obtained using the interleaved and standard re-
second feature denotes, for clausal complementsstimation proceduregy;; is the treebank model
the type of clause (finite, infinite, small clauset, with the test data from Testset | merged in (to

5 Verbal Subcategorization
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Iteration: | Interleaved| Standard TB Freq| tow It1 | Abs.Reduc| %Reduc

Procedure| Procedure all 18.5 | 16.84 1.66 *8.97

ton 33.36 33.36 0 41.26| 33.01 8.25 *19.99

1 *24.40 28.69 1 32.69| 24.52 8.17 *24.99

2 *23.45 25.56 2 36.55| 22.76 13.79 *37.73

3 *23.05 27.86 3 26.59| 19.08 7.51 *28.24

4 *22.89 28.41 4 22.38| 20.28 2.1 9.38

5 *22.81 - 5 24.63| 19.40 5.23 *21.23

6 *22.83 - 6-10 22.24| 19.59 2.65 **11.92

11-20 21.54| 18.02 3.52 *16.34

Table 3: Subcat. error for novel verbs (Testset ). 21-50 19.41] 19.11 0.3 1.55

51-100 | 19.44| 19.09 0.35 1.80

. . 101-200| 18.71| 18.57 0.14 0.75

account for unknown words) using the smoothing 201-500| 23.06| 22.31 0.75 395

sche_me .glven |n. Eg. 9. This model has no verb501_1K 18.07 | 16.82 125 6.92

specific information for the test verbs. For each 1K2K | 12.38] 1225 013 1.05
test verb, it has a smoothesk distribution pro- ’ ) i :

. o 2K-5K 9.42 | 7.62 1.8 *19.11

portional to thesr distribution for all verbs of that 5K 10.54| 10.13 0.41 389
tag. The baseline error is 33.36%. This means tha? ' ' ' '

there is enough information in the average distri-
bution of all verbs to correctly assign the subcat-
egorization frame to novel verbs in 66.64% cases.

For the models obtained using the interleaved rgziey Table 4 shows the error rates for verbs di-
estimation, the error rate falls to the lowest Valu?/ided into these sets. We present error rates only
of 22.81% for the model obtained in tﬁéh_ eI~ for Iteration 1 in Table 4, since most of the error
ation: an absolute reduction of 10.55 points, anpeduction takes place with the iteration. Sta-

a percentage error-reduction of 31.6%. The efgsically significant reductions are marked with *

ror reduction is statistically significant for all it- (confidence-99.9) and ** (~95). The second row
erations compared to the baseline, with #eit- (o< arror rates for verbs which have zero fre-

eration being also significantly better than tté. quency in the treebank training data (i.e. novel

The models obtained using standard re-estimatiQjy ). Note that this error reduction is much less
do not perform as well. Even for the model fromy, ., the 31.6% in Testset I. These verbs are truly
the first iteration, whose labeled bracketing SCOMByre and hence have much fewer occurrences in
was highest, thesF error is higher than the cor- y,o nlabeled corpus than Testset | verbs, which
responding model from the interleaved procedurg,ere arificially made novel (but are really mid-

(possibly due to the low precision of this model).feqyency verbs). This might indicate that error
The error rate for the standard procedure starts {85 will decrease further if the size of the unla-
increase after th@¢ iteration in contrast to the in- beled corpus is increased. There is substantial er-
terleaved procedure. ror reduction for low-frequency verbs<@l PTB
occurrences). This is not hard to understand: the
PTB does not provide enough data to have good
While the re-estimation clearly results in gains irparameter estimates for these verbs. For mid-to-
SF detection for novel verbs, we also perform arhigh frequency verbs (from 21 to 500), the benefit
evaluation for all verbs (novel and non-novel) in aof the unsupervised procedure reduces, though er-
given testset (Testset Il as described312). The ror reduction is still positive. Surprisingly, the er-
overall error reduction using the interleaved proceror reduction for very high frequency verbs (more
dure is 8.97% (in Iteration 1). In order to better unthan 500 occurrences in the treebank) is also fairly
derstand the relative efficacy of the supervised artigh: we expected that parameters for high fre-
unsupervised estimation for lexical items of differ-quency words would benefit the least from the un-
ent frequencies, we break up the set of test verlsipervised estimation, given that they are already
into subsets based on their frequency of occurreno®@mmon enough in the PTB to be accurately esti-
in the PTB training data, and evaluate them sepanated from it. The high frequency verbs %00

Table 4: Subcat. error breakup (Testset I1)

5.2 Analysisof subcategorization learning
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occurrences) consist of very few types— mainlgearch as well, we obtain statistically significant
auxiliaries, some light verbsr{ake do) and a few but quite small improvements frscore §4). Since
others (ose say). It is possible that re-estimation we are interested in acquisition of PCFG lexicons,
from large data is beneficial for light verbs sincene focus our evaluations on verbal subcategoriza-
they have a larger number of frames. The fretion of token occurrences of verbs in viterbi parses.
quency rang@ K-5K consists solely of auxiliary

verbs. Examination of viterbi parses shows thad Conclusions

improved results are largely due to better detection _
of predicative frames in re-estimated models. Ve have presented a methodology for incorporat-

To measure the impact of more unlabeled trainnd additional lexical information from unlabeled

ing data, we ran the interleaved procedure with 8I\,2lea,‘ta |r|1to an unIeX|c§I|zt§d trgib;?k _PC(:thG. :{Ve 0b-
words of WSJ text. TheFerror for novel verbs re- o & large errorreauc lon (31.6%) g detection

duces to 22.06% in th&"*¢ iteration (significantly :‘_Or no_}_/ﬁl \{e:bsl as cdomparet:_d Ki_ a tree;]bank b_ase-
different from the best error of 22.81% in th& "< o € Interieave 're-lezlrln?j 'Sn SIS eme gives
iteration for 4M words of training data)). We also? !9 icant increase in labeled bracketing scores

get an improved overall error reduction of 9.9% orf“’m a relatively small unlabeled corpus. The in-

Testset Il for the larger training data, as Compareﬁrlzavedts_(;he;ngngs e:n aij_vantage over Stgr;)d?;d
t0 8.97% previously. Inside-outside estimation, as measured bo

by labeled bracketing scores and on the task of de-
tectingsrs of novel verbs. Since our re-estimated
models are treebank models, all evaluations are

While there has been substantial previous worRgainst treebank standards.

on the task ofsF acquisition from corpora (Brent The grammar we worked with has very few in-
(1991); Manning (1993); Briscoe and Carrollcorporated features compared to the grammar used
(1997); Korhonen (2002), amongst others), we finbly, say Klein and Manning (2003). It would make
that relatively few parsing-based evaluations areense to experiment with grammars with much
reported. Since their goal is to build probabilisticricher sets of incorporated features. Features re-
SF dictionaries, these systems are evaluated eithi@ted to structure-selection by categories other than
against existing dictionaries, or on distributionalverbs — nouns, adverbs and adjectives — might be
similarity measures. Most are evaluated on testsdteneficial. These features should be incorporated
of high-frequency verbs (unlike the present work)as PCFG parameters, similar to verbal subcate-
in order to gauge the effectiveness of the acquisgorization. Experiments with 8 million words of
tion strategy. Briscoe and Carroll (1997) report draining data gave significantly better results than
token-based evaluation for seven verb types— theiith 4 million words, indicating that larger train-
system gets an average recall accuracy of 80.9% sets will be beneficial as well. It would also be
for these verbs (which appear to be high-frequenadyseful to make the transformatian of lexical pa-
verbs). This is slightly lower than the present sysrameters sensitive to treebank frequency of words.
tem, which has an overall accuracy of 83.16% (ofor instance, more weight should be given to the
Testset Il (It 1), as shown in Table 4). Howeverfreebank model rather than the corpus model for
for low frequency verbs (exemplars10) they re- mid-to-high frequency words, by making the pa-
port that their results are around chance. A parsingmeter) in 7" sensitive to frequency.

evaluation of their lexicon using an unlexicalized This methodology is relevant to the task of
grammar as baseline, on 250 sentences from themain-adaption Hara et al. (2007) find that re-
Suzanne treebank gave a small (but not statisticaltyaining a model of HPSG lexical entry assign-
significant) improvement ifiscore (from 71.49 to ments is more critical for domain adaptation than
72.14%). Korhonen (2002) reports a parsing-base®-training a structural model alone. Our PCFG
evaluation on 500 test sentences. She foundcaptures many of the important dependencies cap-
small increase if-score (of grammatical relations tured in a framework like HPSG; in addition, we
markup) from 76.03 to 76.76. In generRSE  can use unlabeled data from a new domain in an
VAL measures are not very sensitive to subcategansupervised fashion for re-estimating lexical pa-
rization (Carroll et al., 1998); they therefore useameters, an important consideration in domain-
a dependency-based evaluation. In the present @daption. Preliminary experiments on this task us-

5.3 Previous Work
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ing New York Times unlabeled data with the PTB- ating Impact of Re-training a Lexical Disam-
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