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Abstract 
This paper proposes a discriminative HMM 
(DHMM) with long state dependence (LSD-
DHMM) to segment and label sequential data. 
The LSD-DHMM overcomes the strong context 
independent assumption in traditional generative 
HMMs (GHMMs) and models the sequential data 
in a discriminative way, by assuming a novel 
mutual information independence. As a result, the 
LSD-DHMM separately models the long state 
dependence in its state transition model and the 
observation dependence in its output model. In 
this paper, a variable-length mutual information-
based modeling approach and an ensemble of 
kNN probability estimators are proposed to 
capture the long state dependence and the 
observation dependence respectively. The 
evaluation on shallow parsing shows that the 
LSD-DHMM not only significantly outperforms 
GHMMs but also much outperforms other 
DHMMs. This suggests that the LSD-DHMM can 
effectively capture the long context dependence to 
segment and label sequential data. 

1. Introduction 
A Hidden Markov Model (HMM) is a model 
where a sequence of observations is generated in 
addition to the Markov state sequence. It is a latent 
variable model in the sense that only the 
observation sequence is known while the state 
sequence remains “hidden”. In recent years, 
HMMs have enjoyed great success in many 
tagging applications, most notably part-of-speech 
(POS) tagging (Church 1988; Weischedel et al 
1993; Merialdo 1994) and named entity 
recognition (Bikel et al 1999; Zhou et al 2002). 
Moreover, there have been also efforts to extend 
the use of HMMs to word sense disambiguation 
(Segond et al 1997) and shallow/full parsing 
(Brants et al 1997; Skut et al 1998; Zhou et al 
2000). 

Traditionally, a HMM segments and labels 
sequential data in a generative way, assigning a 
joint probability to paired observation and state 
sequences. More formally, a generative (first-order) 

HMM (GHMM) is given by a finite set of states  
including an designated initial state and an 
designated final state, a set of possible observation 

, two conditional probability distributions: a 
state transition model from s  to ,  for 

and an output model,  for 
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. A sequence of observations is 
generated by starting from the designated initial 
state, transmiting to a new state according to 

, emitting an observation selected by that 
new state according to p , transmiting to 
another new state and so on until the designated 
final state is generated.  
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There are several problems with this generative 
approach. First, many tasks would benefit from a 
richer representation of observations—in particular 
a representation that describes observations in 
terms of many overlapping features, such as 
capitalization, word endings, part-of-speech in 
addition to the traditional word identity. Note that 
these features always depends on each other. 
Furthermore, to define a joint probability over the 
observation and state sequences, the generative 
approach needs to enumerate all the possible 
observation sequences. However, in some tasks, 
the set of all the possible observation sequences is 
not reasonably enumerable. Second, the generative 
approach fails to effectively model the dependence 
in the observation sequence. Moreover, it is 
difficult for the generative approach to model the 
long state dependence since it is not reasonably 
practical for ngram modeling(e.g. bigram for the 
first-order GHMM and trigram for the secnod-
order GHMM) to be beyond trigram. Third, the 
generative approach normally estimates the 
parameters to maximize the likelihood of the 
observation sequence. However, in many NLP 
tasks, the goal is to predict the state sequence given 
the observation sequence. In other words, the 
generative approach inappropriately applies a 
generative joint probability model for a conditional 
probability problem. In summary, the main reasons 
behind these problems of the generative approach 
are the strong context independent assumption and 
the generative nature in modeling sequential data. 



While the dependence between successive states 
can be directly modeled by its state transition 
model, the generative approach fails to directly 
capture the observation dependence in the output 
model. From this viewpoint, a GHMM can be also 
called an observation independent HMM. 

To resolve above problems in GHMMs, some 
researches have been done to move from  the 
generative approach to the discriminative approach. 
Discriminative HMMs (DHMMs) do not expend 
modeling effort on the observation sequnce, which 
are fixed at test time. Instead, DHMMs model the 
state sequence depending on arbitrary, non-
independent features of the observation sequence, 
normally without forcing the model to account for 
the distribution of those dependencies. Punyakanok 
and Roth (2000) proposed a projection-based 
DHMM (PDHMM) which represents the 
probability of a state transition given not only the 
current observation but also past and future 
observations and used the SNoW classifier (Roth 
1998, Carlson et al 1999) to estimate it (SNoW-
PDHMM thereafter). McCallum et al (2000) 
proposed the extact same model and used 
maximum  entropy to estimate it (ME-PDHMM 
thereafter). Lafferty et al (2001) extanded ME-
PDHMM using conditional random fields by 
incorporating the factored state representation of 
the same model (that is, representing the 
probability of a state given the observation 
sequence and the previous state)  to alleviate the 
label bias problem in projection-based DHMMs, 
which can be biased towards states with few 
successor states (CRF-DHMM thereafter). Similar 
work can also be found in Bouttou (1991). 
Punyakanok and Roth (2000) also proposed a non-
projection-based DMM which separates the 
dependence of a state on the previous state and the 
observation sequence, by rewriting the GHMM in 
a discriminative way and heuristically extending 
the notation of an observation to the observation 
sequence. Zhou et al (2000) systematically derived 
the exact same model as in Punyakanok and Roth 
(2000) and used back-off modeling to esimate the 
probability of a state given the observation 
sequence (Backoff-DHMM thereafter) while 
Punyakanok and Roth (2000) used the SNoW 
classifier to estimate it(SNoW-DHMM thereafter). 

This paper follows our previous work in Zhou 
et al (2000) and proposes an alternative non-
projection-based DHMM with long state 
dependence (LSD-DHMM), which separates the 
dependence of a state on the previous states and 
the observation sequence. Moreover, a variable-
length mutual information based modeling 
approach (VLMI) is proposed to capture the long 
state dependence of a state on the previous states. 

In addition, an ensemble of kNN probability 
estimators is proposed to capture the observation 
dependence of a state on the observation sequence. 
Experimentation shows that VLMI effectively 
captures the long state dependence. It also shows 
that the kNN ensemble captures the dependence 
between the features of the observation sequence 
more effectively than classifier-based approaches, 
by forcing the model to account for the distribution 
of those dependencies.  

The layout of this paper is as follows. Section 2 
first proposes the LSD-DHMM and then presents 
the VLMI to capture the long state dependence. 
Section 3 presents the kNN probability estimator to 
capture the observation dependence while Section 
4 presents the kNN ensemble. Section 5 introduces 
shallow parsing, while experimental results are 
given in Section 6. Finally, some conclusion will 
be drawn in Section 7. 

2. LSD-DHMM: Discriminative HMM with 
Long State Dependence 

In principle, given an observation sequence 
, the goal of a conditional 

probability model is to find a stochastic optimal 
state sequence s  that maximizes 
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By applying the Bayes’ rule, we can rewrite the 
equation (1) as: 

}),()({logmaxarg

)}|({logmaxarg

111

11
*

1

1

nnn

s

nn

s

osMIsp

osps

n

n

+=

=
         (2) 

Obviously, the second term MI  
captures the mutual information between the state 
sequence  and the observation sequence o . To 
compute  efficiently, we propose a 
novel mutual information independence 
assumption: 
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That is, we assume a state is only dependent on 
the observation sequence o  and independent on 
other states in the state sequence s . This 
assumption is reasonable because the dependence 
among the states in the state sequence  has been 
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directly captured by the first term log in 
equation (2). 
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By applying the assumption (3) into the 
equation (2) and using the chain rule, we have: 
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The above model consists of two models: the 

state transition model ∑  which 

measures the state dependence of a state given the 
previous states, and the output model 

which measures the observation 

dependence of a state given the observation 
sequence in a discriminative way. Therefore, we 
call the above model as in equation (4) a 
discriminative HMM (DHMM) with long state 
dependence (LSD-DHMM). The LSD-DHMM 
separates the dependence of a state on the previous 
states and the observation sequence. The main 
difference between a GHMM and a LSD-DHMM 
lies in their output models in that the output model 
of a LSD-DHMM directly captures the context 
dependence between successive observations in 
determining the “hidden” states while the output 
model of the GHMM fails to do so. That is, the 
output model of a LSD-DHMM overcomes the 
strong context independent assumption in the 
GHMM and becomes observation context 
dependent. Therefore, the LSD-DHMM can also 
be called an observation context dependent HMM. 
Compared with other DHMMs, the LSD-DHMM 
explicitly models the long state dependence and 
the non-projection nature of the LSD-DHMM 
alleviates the label bias problem inherent in 
projection-based DHMMs. 
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Computation of a LSD-DHMM consists of two 
parts. The first is to compute the state transition 

model: . Traditionally, ngram 

modeling(e.g. bigram for the first-order GHMM 
and trigram for the second-order GHMM) is used 

to estimate the state transition model. However, 
such approach fails to capture the long state 
dependence since it is not reasonably practical for 
ngram modeling to be beyond trigram. In this 
paper, a variable-length mutual information-based 
modeling approach (VLMI) is proposed as follow: 
For each i
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In this way, the long state dependence can be 
captured maximally in a dynamical way. Here, the 
frequencies of variable-length state sequences are 
estimated using the simple Good-Turing approach 
(Gale et al 1995). 
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The second is to estimate the output 

model: . Ideally, we would have 

sufficient training data for every event whose 
conditional probability we wish to calculate. 
Unfortunately, there is rarely enough training data 
to compute accurate probabilities when decoding 
on new data. Traditionally, there are two existing 
approaches to resolve this problem: linear 
interpolation (Jelinek 1989) and back-off (Katz 
1987). However, these two approaches only work 
well when the number of different information 
sources is limited. When a long context is 
considered, the number of different information 
sources is exponential and not reasonably 
enumerable. The current tendency is to recast it as 
a classification problem and use the output of a 
classifier, e.g. the maximum entropy classifier 
(Ratnaparkhi 1999) to estimate the state probability 
distribution given the observation sequence. In the 
next two sections, we will propose a more effective 
ensemble of kNN probability estimators to resolve 
this problem. 

3. kNN Probability Estimator 
The main challenge for the LSD-DHMM is how to 
reliably estimate p  in its output model. 
For efficiency, we can always 
assume , where the pattern 
entry . That is, we only 
consider the observation dependence in a window 
of 2N+1 observations (e.g. we only consider the 
current observation, the previous observation and 
the next observation when N=1). For convenience, 
we denote P  as the conditional state 
probability distribution of the states given E  and i
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The kNN probability estimator estimates 
 by first finding the K nearest neighbors 

of frequently occurring pattern entries  
and then 

aggregating them to make a proper estimation of 
. Here, the conditional state probability 

distribution is estimated instead of the 
classification in a traditional kNN classifier. To do 
so, all the frequently occurring pattern entries are 
extracted from the training corpus in an exhaustive 
way and stored in a dictionary 

. In order to limit the 
dictionary size and keep efficiency, we constrain a 
valid set of pattern entry forms ValidEntry  
to consider only the most informative information 
sources. Generally, ValidEntry  can be 
determined manually or automatically according to 
the applications. In Section 5, we will give an 
example. 

},...,2,1|{ KkE k
i =

arytryDiction

Form

Form

Given a pattern entry E  and a dictionary of 
frequently occurring pattern entries 

, a simple algorithm is 
applied to find the K nearest neighbors of the 
pattern entry  from the dictionary as follows: 

i

arytryDiction

iE
• compare  with each entry in the dictionary  

and find all the compatible entries 
iE

• compute the cosine similarity between E  and 
each of the compatible entries 

i

• sort out the K nearest neighbors according to 
their cosine similarities 
Finally, the conditional state probability 

distribution of the pattern entry is aggregated over 
those of its K nearest neighbors weighted by their 
frequencies and cosine similarities 

:  

)( k
iEf

)

∑

∑

=

=

⋅

•⋅⋅

K

k

k
i

k
i

K

k

k
i

k
i

k
i

EfkNNEp

EPEfkNNEp

1

1

)()|(ˆ

)|()()|(ˆ

      (5) p

4. kNN Ensemble 
In the literature, an ensemble has been widely used 
in the classification problem to combine several 
classifiers (Breiman 1996; Hamamoto 1997; 
Dietterich 1998; Zhou Z.H. et al 2002; Kim et al 
2003). It is well known that an ensemble often 

outperforms the individual classifiers that make it 
up (Hansen et al 1990). 

In this paper, an ensemble of kNN probability 
estimators is proposed to estimate the conditional 
state probability distribution P  instead of 
the classification. This is done through a bagging 
technique (Breiman 1996) to aggregate several 
kNN probability estimators. In bagging, the M 
kNN probability estimators in the ensemble 

)|( iE•

}M,...,2,1|{ mkNNENS m == are trained 
independently via a bootstrap technique and then 
they are aggregated via an appropriate aggregation 
method. Usually, we have a single training set and 
need M training sample sets to construct a kNN 
ensemble with M independent kNN probability 
estimators. From the statistical viewpoint, we need 
to make the training sample sets different as much 
as possible in order to obtain a higher aggregation 
performance. For doing this, we often use the 
bootstrap technique which builds M replicate data 
sets by randomly re-sampling with replacement 
from the given training set repeatedly. Each 
example in the given training set may appear 
repeatedly or not at all in any particular replicate 
training sample set. Each training sample set is 
used to train a certain kNN probability estimator. 
Finally, the conditional state probability 
distribution of the pattern entry E  is averaged 
over those of the M kNN probability estimators in 
the ensemble:  

i

M

kNNEP
EP

M

m
mi

i

∑
=

•
=• 1

),|(
)|(               (6) 

5. Shallow Parsing 
In order to evaluate the LSD-DHMM and the 
proposed variable-length mutual information 
modeling approach for the long state dependence 
in the state transition model and the kNN ensemble 
for the observation dependence in the output model, 
we have applied it in the application of shallow 
parsing. 

For shallow parsing, we have o , where 

 is the word sequence and 

 is the part-of-speech (POS) 
sequence, while the “hidden” states are represented 
as structural tags to bracket and differentiate 
various categories of phrases. The basic idea of 
using the structural tags to represent the “hidden” 
states is similar to Skut et al (1998) and Zhou et al 
(2000).  Here, a structural tag consists of three 
parts: 

ii wp=1
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• Boundary Category (BOUNDARY): it is a set 
of four values: “O”/“B”/“M”/“E”, where “O” 
means that current word is a whOle phrase and 
“B”/“M”/“E” means that current word is at the 
Beginning/in the Middle/at the End of a phrase. 

• Phrase Category (PHRASE): it is used to 
denote the category of the phrase. 

• Part-of-Speech (POS): Because of the limited 
number of boundary and phrase categories, the 
POS is added into the structural tag to represent 
more accurate state transition and output 
models. 

For example, given the following POS tagged 
sentence as the observation sequence: 

He/PRP  reckons/VBZ  the/DT  current/JJ  
account/NN  deficit/NN  will/MD  narrow/VB  
to/TO  only/RB $/$  1.8/CD  billion/CD  in/IN  
September/NNP  ./. 

We can have a corresponding sequence of  
structural tags as the “hidden” state sequence: 

O_NP_PRP(He/PRP)  O_VP _VBZ 
(reckons/VBZ)  B_NP _DT (the/DT)  M_NP _JJ 
(current/JJ)  M_NP _NN (account/NN)  E_NP 
_NN (deficit/NN)  B_VP _MD (will/MD)  E_VP 
_VB (narrow/VB)  O_PP _TO (to/TO)  B_QP _RB 
(only/RB)  M_QP _$ ($/$)  M_QP _CD (1.8/CD)  
E_QP _CD (billion/CD)  O_PP _IN (in/IN)  O_NP 
_NNP(September/NNP)  O_O _. (./.) 

and an equivalent phrase chunked sentence as the 
shallow parsing result: 
[NP He/PRP] [VP reckons/VBZ] [ NP the/DT 
current/JJ account/NN deficit/NN] [VP will/MD 
narrow/VB] [PP to/TO] [QP only/RB $/$ 1.8/CD 
billion/CD] [PP in/IN] [NP September/NNP] [O ./.] 

6. Experimentation 
The corpus used in shallow parsing is extracted 
from the PENN TreeBank (Marcus et al. 1993) of 
1 million words (25 sections) by a program 
provided by Sabine Buchholz from Tilburg 
University. All the evaluations are 5-fold cross-
validated. For shallow parsing, we use the F-
measure to measure the performance. Here, the F-
measure is the weighted harmonic mean of the 

precision (P) and the recall (R): 
PR
RP

+
+

= 2

2 )1(
β
βF  

with =1 (Rijsbergen 1979), where the precision 
(P) is the percentage of predicted phrase chunks 
that are actually correct and the recall (R) is the 
percentage of correct phrase chunks that are 
actually found.  

2β

Tables 1, 2 and 3 show the detailed 
performance of LSD-DHMMs. In this paper, the 

valid set of pattern entry forms ValidEntry  
is defined to include those pattern entry forms 
within a windows of 7  observations(including 
current, left 3 and right 3 observations) where for 

 to be included in a pattern entry, all or one of 
the overlapping features in each of 

Form
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,p j )(...,1 ijpp ij ≤+  or )(...,, 1 jipp jipi ≤+

)(..., 11 jipp ji p−+

 
should be included in the same pattern entry while 
for  to be included in a pattern entry, all or one 
of the overlapping features in each of  

 or  
should be included in the same pattern entry. 

jp

(...,, 21 ijpp ij p+ )p j+ ,pi

Table 1 shows the effect of different number of 
nearest neighbors in the kNN probability estimator 
and considered previous states in the variable-
length mutual information modeling approach of 
the LSD-DHMM, using only one kNN probability 
estimator in the ensemble to estimate in 
the output model. It shows that finding 3 nearest 
neighbors in the kNN probability estimator 
performs best. It also shows that further increasing 
the number of nearest neighbors does not increase 
or even decrease the performance. This may be due 
to introduction of noisy neighbors when the 
number of nearest neighbors increases. Moreover, 
Table 1 shows that the LSD-DHMM performs best 
when six previous states is considered in the 
variable-length mutual information-based 
modeling approach and further considering more 
previous states only slightly increase the 
performance. This suggests that the state 
dependence exists well beyond traditional ngram 
modeling (e.g. bigram and trigram) to six previous 
states and the variable-length mutual information-
based modeling approach can capture the long 
state dependence. In the following experimentation, 
we will only use the LSD-DHMM with 3 nearest 
neighbors used in the kNN probability estimator 
and 6 previous states considered in the variable-
length mutual information modeling approach.  

)|( 1
n

i osp

Table 2 shows the effect of different number of 
kNN probability estimators in the ensemble. It 
shows that 15 bootstrap replicates are enough for 
the k-NN ensemble on shallow parsing and 
increase the F-measure by 0.71 compared with the 
ensemble of only one kNN probability estimator. 

Table 3 compares the LSD-DHMM with 
GHMMs and other DHMMs. It shows that all the 
DHMMs significantly outperform GHMMs due to 
the modeling of the observation dependence and 
allowing for non-independent, difficult to 
enumerate observation features. It also shows that 
our LSD-DHMM much outperforms other 
DHMMs due to the modeling of the long state 



dependence using the variable-length mutual 
information-based modeling approach in the LSD-
DHMM. Moverover, Table 3 shows that no-
projection-based DHMMs (i.e. CRF-DHMM, 
SNoW-DHMM, Backoff-DHMM and LSD-
DHMM) outperform projection-based DHMMs. It 
may be  due to alleviation of the label bias problem 
inherent in the projection-based DHMMs. Finally, 
Table 2 also compares the kNN ensemble with 

popular classifier-based approaches, such as 
SNoW and Maximum Entropy, in estimating the 
output model of the LSD-DHMM. It shows that 
the kNN ensemble outperforms these classifier-
based approaches. This suggests that the kNN 
ensemble captures the dependence between the 
features of the observation sequence more 
effectively by forcing the model to account for the 
distribution of those dependencies. 

Table 1: Effect of different numbers of nearest neighbors in the kNN probability estimator and previous 
states considered in the variable-length mutual information modeling approach of the LSD-DHMMs, using 
only a probability estimator in the ensemble 

Number of nearest neighbors Shallow Parsing 
1 2 3 4 5 

1 93.12 93.50 93.76 93.70 93.66 
2 93.65 93.82 94.23 94.19 94.12 
4 93.90 94.15 94.42 94.38 94.35 
6 94.12 94.28 94.53 94.54 94.51 N
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8 94.15 94.35 94.55  94.52 94.50 
 
Table 2: The Effect of different number of kNN 
probability estimators in the ensemble on shallow 
parsing 
Number of kNN probability 
estimators in the ensemble 

F-measure 

1 94.53 
2 94.77 
4 94.93 
8 95.06 
14 95.21 
15 95.24 
16 95.24 
20 95.25 
25 95.25 
28 95.36 

 
Table 3: Comparison of LSD-DHMMs with  
GHMMs and other DHMMs 
Models F 

First order 92.14 GHMMs 
Second order 92.41 
ME-PDMM 93.26  
CRF-DMM 94.04 
SNoW-PDMM 93.44 
SNoW-DMM 94.12 
Backoff-DMM 93.68 
LSD-DMM(Ensemble) 95.24 
LSD-DMM(ME) 94.25 

DHMMs 

LSD-DMM(SNoW) 94.41 

7. Conclusion 
Hidden Markov Models (HMMs) are a powerful 
probabilistic tool for modeling sequential data and 
have been applied with success to many text-
related tasks, such as shallow paring. In these cases, 

the observations are usually modified as 
multinomial distributions over a discrete dictionary 
and the HMM parameters are set to maximize the 
likelihood of the observations. This paper presents 
a discriminative HMM with long state dependence 
that allows observations to be represented as 
arbitrary overlapping features and defines the 
conditional probability of the state sequence given 
the observation sequence. It does so by assuming a 
novel mutual information independence to separate 
the dependence of a state given the observation 
sequence and the previous states. Finally, the long 
state dependence and the observation dependence 
can be effectively captured by a variable-length 
mutual information model and a kNN ensemble 
respectively. 

In future work, we will explore our model in 
other applications, such as full parsing. 
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