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Abstract

Statistical methods for PP attachment fall into
two classes according to the training material
used: first, unsupervised methods trained on
raw text corpora and second, supervised meth-
ods trained on manually disambiguated exam-
ples. Usually supervised methods win over un-
supervised methods with regard to attachment
accuracy. But what if only small sets of manu-
ally disambiguated material are available? We
show that in this case it is advantageous to in-
tertwine unsupervised and supervised methods
into one disambiguation algorithm that outper-
forms both methods used alone.1

1 Introduction

Recently, numerous statistical methods for
prepositional phrase (PP) attachment disam-
biguation have been proposed. They can
broadly be divided into unsupervised and su-
pervised methods. In the unsupervised methods
the attachment decision is based on information
derived from large corpora of raw text. The text
may be automatically processed (e.g. by shallow
parsing) but not manually disambiguated. The
most prominent unsupervised methods are the
Lexical Association score by Hindle and Rooth
(1993) and the cooccurrence values by Ratna-
parkhi (1998). They resulted in up to 82% cor-
rect attachments for a set of around 3000 test
cases from the Penn treebank. Pantel and Lin
(2000) increased the training corpus, added a
collocation database and a thesaurus which im-
proved the accuracy to 84%.

In contrast, the supervised methods are based
on information that the program learns from
manually disambiguated cases. These cases
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are usually extracted from a treebank. Su-
pervised methods are as varied as the Back-
off approach by Collins and Brooks (1995)
and the Transformation-based approach by
Brill and Resnik (1994). Back-off scored
84% correct attachments and outperformed the
Transformation-based approach (80%). Even
better results were reported by Stetina and Na-
gao (1997) who used the WordNet thesaurus
with a supervised learner and achieved 88% ac-
curacy.

All these accuracy figures were reported for
English. We have evaluated both unsupervised
and supervised methods for PP attachment dis-
ambiguation in German. This work was con-
strained by the availability of only a small Ger-
man treebank (10,000 sentences). Under this
constraint we found that an intertwined combi-
nation of using information from unsupervised
and supervised learning leads to the best re-
sults. We believe that our results are relevant to
many languages for which only small treebanks
are available.

2 Our training resources

We used the NEGRA treebank (Skut et al.,
1998) with 10,000 sentences from German news-
papers and extracted 4-tuples (V, N1, P,N2)
whenever a PP with the preposition P and the
core noun N2 immediately followed a noun N1

in a clause headed by the verb V . For example,
the sentence

In Deutschland ist das Gerät über die Bad
Homburger Ergos zu beziehen.
[In Germany the appliance may be ordered from Er-
gos based in Bad Homburg.]

leads to the 4-tuple (beziehen, Gerät, über,
Ergos). In this way we obtained 5803 4-tuples
with the human judgements about the attach-
ment of the PP (42% verb attachments and 58%



noun attachments). We call this the NEGRA
test set.

As raw corpus for unsupervised training we
used four annual volumes (around 5.5 mil-
lion words) of the “Computer-Zeitung” (CZ), a
weekly computer science magazine. This corpus
was subjected to a number of processing steps:
sentence recognition, proper name recognition
for persons, companies and geographical loca-
tions (cities and countries), part-of-speech tag-
ging, lemmatization, NP/PP chunking, recog-
nition of local and temporal PPs, and finally
clause boundary recognition.

3000 sentences of the CZ corpus each contain-
ing at least one PP in an ambiguous position
were set aside for manual disambiguation. An-
notation was done according to the same guide-
lines as for the NEGRA treebank. From these
manually annotated sentences we obtained a
second test set (which we call the CZ test set)
of 4469 4-tuples from the same domain as our
raw training corpus.

3 Results for the unsupervised
methods

We explored various possibilities to extract PP
disambiguation information from the automat-
ically annotated CZ corpus. We first used it to
gather frequency data on the cooccurrence of
pairs: nouns + prepositions and verbs + prepo-
sitions.

The cooccurrence value is the ratio of the bi-
gram frequency count freq(word, preposition)
divided by the unigram frequency freq(word).
For our purposes word can be the verb V or
the reference noun N1. The ratio describes
the percentage of the cooccurrence of word +
preposition against all occurrences of word. It
is thus a straightforward association measure for
a word pair. The cooccurrence value can be seen
as the attachment probability of the preposition
based on maximum likelihood estimates. We
write:

cooc(W,P ) = freq(W,P )/freq(W )

with W ∈ {V, N1}. The cooccurrence values
for verb V and noun N1 correspond to the prob-
ability estimates in (Ratnaparkhi, 1998) except
that Ratnaparkhi includes a back-off to the uni-
form distribution for the zero denominator case.
We will add special precautions for this case

in our disambiguation algorithm. The cooccur-
rence values are also very similar to the proba-
bility estimates in (Hindle and Rooth, 1993).

We started by computing the cooccurrence
values over word forms for nouns, preposi-
tions, and verbs based on their part-of-speech
tags. In order to compute the pair frequen-
cies freq(N1, P ), we search the training corpus
for all token pairs in which a noun is immedi-
ately followed by a preposition. The treatment
of verb + preposition cooccurrences is different
from the treatment of N+P pairs since verb and
preposition are seldom adjacent to each other in
a German sentence. On the contrary, they can
be far apart from each other, the only restric-
tion being that they cooccur within the same
clause. We use the clause boundary information
in our training corpus to enforce this restriction.
For computing the cooccurrence values we ac-
cept only verbs and nouns with a occurrence
frequency of more than 10.

With the N+P and V+P cooccurrence values
for word forms we did a first evaluation over
the CZ test set with the following simple dis-
ambiguation algorithm.

if ( cooc(N1,P) && cooc(V,P) ) then
if ( cooc(N1,P) >= cooc(V,P) ) then

noun attachment
else

verb attachment

We found that we can only decide 57% of the
test cases with an accuracy of 71.4% (93.9% cor-
rect noun attachments and 55.0% correct verb
attachments). This shows a striking imbalance
between the noun attachment accuracy and the
verb attachment accuracy. Obviously, the cooc-
currence values favor verb attachment. The
comparison of the verb cooccurrence value and
the noun cooccurrence value too often leads to
verb attachment, and only the clear cases of
noun attachment remain. This points to an in-
herent imbalance between the cooccurrence val-
ues for verbs and nouns. We will flatten out this
imbalance with a noun factor.

The noun factor is supposed to strengthen
the N+P cooccurrence values and thus to at-
tract more noun attachment decisions. What
is the rationale behind the imbalance between
noun cooccurrence value and verb cooccurrence
value? One influence is certainly the well-known



fact that verbs bind their complements stronger
than nouns.

The imbalance between noun cooccurrence
values and verb cooccurrence values can be
quantified by comparing the overall tendency of
nouns to cooccur with a preposition to the over-
all tendency of verbs to cooccur with a prepo-
sition. We compute the overall tendency as the
cooccurrence value of all nouns with all prepo-
sitions.

cooc(all N, all P ) =
∑

(N1,P ) freq(N1, P )
∑

N1
freq(N1)

The computation for the overall verb cooc-
currence tendency is analogous. For example,
in our training corpus we have found 314,028
N+P pairs (tokens) and 1.72 million noun to-
kens. This leads to an overall noun cooccur-
rence value of 0.182. The noun factor (nf) is
then the ratio of the overall verb cooccurrence
tendency divided by the overall noun cooccur-
rence tendency:

nf =
cooc(all V, all P )
cooc(all N, all P )

In our training corpus this leads to a noun fac-
tor of 0.774/0.182 = 4.25. In the disambigua-
tion algorithm we multiply the noun cooccur-
rence value with this noun factor before compar-
ing the product to the verb cooccurrence value.
This move leads to an improvement of the over-
all attachment accuracy to 81.3% (83.1% cor-
rect noun attachments and 76.9% correct verb
attachments).

We then went on to increase the attachment
coverage, the number of decidable cases, by
using lemmas, decompounding (i.e. using only
the last component of a noun compound), and
proper name classes. These measures increased
the coverage from 57% to 86% of the test cases.
For the remaining test cases we used a thresh-
old comparison if either of the needed cooc-
currence values (cooc(N1, P ) or cooc(V, P )) has
been computed from our training corpus. This
raises the coverage to 90%. While coverage in-
creased, accuracy suffered slightly and at this
stage was at 78.3%.

This is a surprising result given the fact that
we counted all PPs during the training phases.
No disambiguation was attempted so far, we

counted ambiguous and non-ambiguous PPs in
the same manner. We then added this distinc-
tion in the training, counting one point for a
PP in a non-ambiguous position and only half a
point for an ambiguous PP, in this way splitting
the PP’s contribution to verb and noun attach-
ment. This move increased the accuracy rate by
2% (to 80.5%).

So far we have used bigram frequencies over
word pairs, (V, P ) and (N1, P ), to compute
the cooccurrence values. Some of the previous
research (e.g. (Collins and Brooks, 1995) and
(Pantel and Lin, 2000)) has shown that it is ad-
vantageous to include the noun from within the
PP (called N2) in the calculation. But mov-
ing from pair frequencies to triple frequencies
will increase the sparse data problem. Therefore
we computed the pair frequencies and triple fre-
quencies in parallel and used a cascaded disam-
biguation algorithm to exploit the triple cooc-
currence values and the pair cooccurrence val-
ues in sequence.

In analogy to the pair cooccurrence value, the
triple cooccurrence value is computed as:

cooc(W,P,N2) = freq(W )/freq(W,P, N2)

with W ∈ {V, N1}. With the triple informa-
tion (V, P, N2) we were able to identify support
verb units (such as in Angriff nehmen, unter
Beweis stellen) which are clear cases of verb
attachment. We integrated this and the triple
cooccurrence values into the disambiguation al-
gorithm in the following manner.

if ( support_verb_unit(V,P,N2) )
then verb attachment

elsif (cooc(N1,P,N2) && cooc(V,P,N2))
then if ((cooc(N1,P,N2) * nf)

>= cooc(V,P,N2))
then noun attachment
else verb attachment

elsif (cooc(N1,P) && cooc(V,P)) then
if ((cooc(N1,P) * nf) >= cooc(V,P))

then noun attachment
else verb attachment

elsif (cooc(N1,P) > threshold(N))
then noun attachment

elsif (cooc(V,P) > threshold(V))
then verb attachment

The noun factors for triple comparison and



factor correct incorrect accuracy threshold
noun attachment 5.47; 5.97 2213 424 83.92% 0.020
verb attachment 1077 314 77.43% 0.109
total 3290 738 81.67%
decidable test cases 4028 (of 4469) coverage: 90.13%

Table 1: Attachment accuracy for the CZ test set using cooccurrence values
from unsupervised learning.

decision level number coverage accuracy
support verb units 97 2.2% 100.00%
triple comparison 953 21.3% 84.36%
pair comparison 2813 62.9% 79.95%
cooc(N1, P ) > threshold 74 1.7% 85.13%
cooc(V, P ) > threshold 91 2.0% 84.61%
total 4028 90.1% 81.67%

Table 2: Attachment accuracy for the cooc. method split on decision levels.

pair comparison are computed separately. The
noun factor for pairs is 5.47 and for triples 5.97.

The attachment accuracy is improved to
81.67% by the integration of the triple cooc-
currence values (see table 1). A split on the
decision levels reveals that triple comparison is
4.41% better than pair comparison (see table 2).

The 84.36% for triple comparison demon-
strates what we can expect if we enlarge our cor-
pus and consequently increase the percentage of
test cases that can be disambiguated based on
triple cooccurrence values.

The accuracy of 81.67% reported in table 1 is
computed over the decidable cases. If we force
a default decision (noun attachment) on the re-
maining cases, the overall accuracy is at 79.14%.

4 Results for the supervised
methods

One of the most successful supervised methods
is the Back-off model as introduced by Collins
and Brooks (1995). This model is based on
the idea of using the best information available
and backing off to the next best level when-
ever an information level is missing. For the
PP attachment task this means using the at-
tachment tendency for the complete quadruple
(V, N1, P, N2) if the quadruple has been seen in
the training data. If not, the algorithm backs
off to the attachment tendency of triples. All
triples that contain the preposition are consid-

ered: (V,N1, P ); (V, P, N2); (N1, P, N2). The
triple information is used if any of the triples
has been seen in the training data. Else, the
algorithm backs off to pairs, then to the prepo-
sition alone, and finally to default attachment.

The attachment tendency on each level is
computed as the ratio of the relative frequency
to the absolute frequency. Lacking a large tree-
bank we had to use our test sets in turn as
training data for the supervised learning. In a
first experiment we used the NEGRA test set as
training material and evaluated against the CZ
test set. Both test sets were subjected to the
following restrictions to reduce the sparse data
problem.

1. Verbs, nouns and contracted prepositions
were substituted by their base forms. Com-
pound nouns were substituted by the base
form of their last component.

2. Proper names were substituted by their
name class tag (person, location, com-
pany).

3. Pronouns and numbers (in PP complement
position) were substituted by a pronoun
tag or number tag respectively.

This means we used 5803 NEGRA quadruples
with their given attachment decisions as train-
ing material for the Back-off model. We then



correct incorrect accuracy
noun attachment 2291 677 77.19%
verb attachment 1015 486 67.62%
total 3306 1163 73.98%
decidable test cases 4469 (of 4469) coverage: 100%

Table 3: Attachment accuracy for the CZ test set using supervised learning
over the NEGRA test set based on the Back-off method.

decision level number coverage accuracy
quadruples 8 0.2% 100.00%
triples 329 7.3% 88.75%
pairs 3040 68.0% 75.66%
preposition 1078 24.1% 64.66%
default 14 0.3% 64.29%
total 4469 100.0% 73.98%

Table 4: Attachment accuracy for the Back-off method split on decision levels.

applied the Back-off decision algorithm to de-
termine the attachments for the 4469 test cases
in the CZ test set. Table 3 shows the results.
Due to the default attachment step in the algo-
rithm, the coverage is 100%. The accuracy is
close to 74%, with noun attachment accuracy
being 10% better than verb attachment.

A closer look reveals that the attachment
accuracy for quadruples (100%) and triples
(88.7%) is highly reliable (cf. table 4) but only
7.5% of the test cases can be resolved in this
way. The overall accuracy is most influenced by
the accuracy of the pairs (that account for 68%
of all attachments with an accuracy of 75.66%)
and by the attachment tendency of the preposi-
tion alone which resolves 24.1% of the test cases
but results in a low accuracy of 64.66%.

We suspected that the size of the training cor-
pus has a strong impact on the disambiguation
quality. Since we did not have access to any
larger treebank for German, we used cross vali-
dation on the CZ test set in a third experiment.
We evenly divided this test corpus in 5 parts
of 894 test cases each. We added 4 of these
parts to the NEGRA test set as training ma-
terial. The training material thus consists of
5803 quadruples from the NEGRA test set plus
3576 quadruples from the CZ test set. We then
evaluated against the remaining part of 894 test
cases. We repeated this 5 times with the differ-
ent parts of the CZ test set and summed up the

correct and incorrect attachment decisions.
The result from cross validation is 5% better

than using the NEGRA corpus alone as train-
ing material. This could be due to the enlarged
training set or to the domain overlap of the test
set with part of the training set. We therefore
did another cross validation experiment taking
only the 4 parts of the CZ test set as training
material. If the improved accuracy were a result
of the increased corpus size, we would expect a
worse accuracy for this small training set. But
in fact, training with this small set resulted in
around 77% attachment accuracy. This is bet-
ter than training on the NEGRA test set alone.
This indicates that the domain overlap is the
most influential factor.

5 Intertwining unsupervised and
supervised methods

Now, that we have seen the advantages of the
supervised approaches, but lack a sufficiently
large treebank for training, we suggest combin-
ing the unsupervised and supervised informa-
tion. With the experiments on cooccurrence
values and the Back-off method we have worked
out the quality of the various decision levels
within these approaches, and we will now order
the decision levels according to the reliability of
the information sources.

We reuse the triple and pair cooccurrence val-
ues that we have computed for the experiments



with our unsupervised method. That means
that we will also reuse the respective noun fac-
tors and thresholds. In addition, we use the
NEGRA test set as supervised training corpus
for the Back-off method.

The disambiguation algorithm will now work
in the following manner. It starts off with the
support verb units as level 1, since they are
known to be very reliable. As long as no at-
tachment decision is taken, the algorithm pro-
ceeds to the next level. Next is the application
of supervised quadruples (level 2), followed by
supervised triples (level 3). In section 4 we had
seen that there is a wide gap between the accu-
racy of supervised triples and pairs. We fill this
gap by accessing unsupervised information, i.e.
triple cooccurrence values followed by pair cooc-
currence values (level 4 and 5). Even threshold
comparisons based on one cooccurrence value
are usually more reliable than supervised pairs
and therefore constitute levels 6 and 7. If still no
decision has been reached, the algorithm contin-
ues with supervised pair probabilities followed
by pure preposition probabilities. The left-over
cases are handled by default attachment. Be-
low is the complete disambiguation algorithm
in pseudo-code:

if ( support_verb_unit(V,P,N2) )
then verb attachment

### level 2 ###
elsif ( supervised(V,N1,P,N2) ) then
if ( prob(noun_att | V,N1,P,N2) >= 0.5)
then noun attachment

else verb attachment
### level 3 ###
elsif ( supervised(triple) ) then
if ( prob(noun_att | triple) >= 0.5 )
then noun attachment

else verb attachment
### level 4 ###
elsif ( cooc(N1,P,N2) && cooc(V,P,N2) )
then
if ((cooc(N1,P,N2)*nf) >= cooc(V,P,N2))
then noun attachment

else verb attachment
### level 5 ###
elsif ( cooc(N1,P) && cooc(V,P) ) then
if ((cooc(N1,P) * nf) >= cooc(V,P))
then noun attachment

else verb attachment
### levels 6 / 7 ###

elsif ( cooc(N1,P) > threshold(N) )
then noun attachment

elsif ( cooc(V,P) > threshold(V) )
then verb attachment

### level 8 ###
elsif ( supervised(pair) ) then
if ( prob(noun_attach | pair) >= 0.5)

then noun attachment
else verb attachment

### level 9 ###
elsif ( supervised(P) ) then
if ( prob(noun_attach | P) >= 0.5 )

then noun attachment
else verb attachment

### level 10 ###
else default verb attachment

And indeed, this combination of unsuper-
vised and supervised information leads to an
improved attachment accuracy. For complete
coverage we get an accuracy of 80.98% (cf. ta-
ble 5). This compares favorably to the accuracy
of the cooccurrence experiments plus default at-
tachment (79.14%) reported in section 3 and to
the Back-off results (73.98%) reported in table
3. We obviously succeeded in combining the
best of both worlds into an improved behavior
of the disambiguation algorithm.

The decision levels in table 6 reveal that the
bulk of the attachment decisions still rests with
the cooccurrence values, mostly pair value com-
parisons (59.9%) and triple value comparisons
(18.9%). But the high accuracy of the super-
vised triples and, equally important, the grace-
ful degradation in stepping from threshold com-
parison to supervised pairs (resolving 202 test
cases with 75.74% accuracy) help to improve the
overall attachment accuracy.

We also checked whether the combination of
unsupervised and supervised approaches leads
to an improvement for the NEGRA test set. We
exchanged the corpus for the supervised train-
ing (now the CZ test set) and evaluated over the
NEGRA test set. This results in an accuracy of
71.95% compared to 68.29% for pure applica-
tion of the supervised Back-off method. That
means, the combination leads to an improve-
ment of 3.66% in accuracy.

6 Conclusions

We have shown that unsupervised approaches
to PP attachment disambiguation are about as



factor correct incorrect accuracy threshold
noun attachment 5.47; 5.97 2400 469 83.65% 0.020
verb attachment 1219 381 76.19% 0.109
total 3619 850 80.98%
decidable test cases 4469 (of 4469) coverage: 100%

Table 5: Attachment accuracy for the combination of Back-off and cooccur-
rence values for the CZ test set (based on training over the NEGRA test set).

decision level number coverage accuracy
1 support verb units 97 2.2% 100.00%
2 supervised quadruples 6 0.1% 100.00%
3 supervised triples 269 6.0% 86.62%
4 cooccurrence triples 845 18.9% 84.97%
5 cooccurrence pairs 2677 59.9% 80.39%
6 cooc(N1, P ) > threshold 71 1.6% 85.51%
7 cooc(V, P ) > threshold 81 1.8% 82.72%
8 supervised pairs 202 4.5% 75.74%
9 supervised prepositions 210 4.7% 60.48%

10 default 11 0.3% 54.55%
total 4469 100.0% 80.98%

Table 6: Attachment accuracy split on decision levels for the combination of
Back-off and cooccurrence values.

good as supervised approaches over small man-
ually disambiguated training sets. If only small
manually disambiguated training sets are avail-
able, the intertwined combination of unsuper-
vised and supervised information sources leads
to the best results.

In another vein of this research we have
demonstrated that cooccurrence frequencies ob-
tained through WWW search engines are useful
for PP attachment disambiguation (Volk, 2001).
In the future we want to determine at which de-
cision level such frequencies could be integrated.
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