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Abstract

This paper introduces a new type of grammar
learning algorithm, inspired by string edit dis-
tance (Wagner and Fischer, 1974). The algo-
rithm takes a corpus of at sentences as input
and returns a corpus of labelled, bracketed sen-
tences. The method works on pairs of unstruc-
tured sentences that have one or more words in
common. When two sentences are divided into
parts that are the same in both sentences and
parts that are di�erent, this information is used
to �nd parts that are interchangeable. These
parts are taken as possible constituents of the
same type. After this alignment learning step,
the selection learning step selects the most prob-
able constituents from all possible constituents.
This method was used to bootstrap structure

on the ATIS corpus (Marcus et al., 1993) and
on the OVIS1 corpus (Bonnema et al., 1997).
While the results are encouraging (we obtained
up to 89.25 % non-crossing brackets precision),
this paper will point out some of the shortcom-
ings of our approach and will suggest possible
solutions.

1 Introduction

Unsupervised learning of syntactic structure is
one of the hardest problems in NLP. Although
people are adept at learning grammatical struc-
ture, it is di�cult to model this process and
therefore it is hard to make a computer learn
structure.
We do not claim that the algorithm described

here models the human process of language
learning. Instead, the algorithm should, given
unstructured sentences, �nd the best structure.
This means that the algorithm should assign

1Openbaar Vervoer Informatie Systeem (OVIS)
stands for Public Transport Information System.

structure to sentences which are similar to the
structure people would give to sentences, but
not necessarily in the same time or space re-
strictions.
The algorithm consists of two phases. The

�rst phase is a constituent generator, which gen-
erates a motivated set of possible constituents
by aligning sentences. The second phase re-
stricts this set by selecting the best constituents
from the set.
The rest of this paper is organized as fol-

lows. Firstly, we will start by describing previ-
ous work in machine learning of language struc-
ture and then we will give a description of the
ABL algorithm. Next, some results of applying
the ABL algorithm to di�erent corpora will be
given, followed by a discussion of the algorithm
and future research.

2 Previous Work

Learning methods can be grouped into super-
vised and unsupervised methods. Supervised
methods are initialised with structured input
(i.e. structured sentences for grammar learning
methods), while unsupervised methods learn by
using unstructured data only.
In practice, supervised methods outperform

unsupervised methods, since they can adapt
their output based on the structured examples
in the initialisation phase whereas unsupervised
methods cannot. However, it is worthwhile
to investigate unsupervised grammar learning
methods, since \the costs of annotation are pro-
hibitively time and expertise intensive, and the
resulting corpora may be too susceptible to re-
striction to a particular domain, application, or
genre". (Kehler and Stolcke, 1999)
There have been several approaches to the un-

supervised learning of syntactic structures. We
will give a short overview here.



Memory based learning (MBL) keeps track of
possible contexts and assigns word types based
on that information (Daelemans, 1995). Red-
ington et al. (1998) present a method that
bootstraps syntactic categories using distribu-
tional information and Magerman and Marcus
(1990) describe a method that �nds constituent
boundaries using mutual information values of
the part of speech n-grams within a sentence.

Algorithms that use the minimum description
length (MDL) principle build grammars that
describe the input sentences using the minimal
number of bits. This idea stems from informa-
tion theory. Examples of these systems can be
found in (Gr�unwald, 1994) and (de Marcken,
1996).

The system by Wol� (1982) performs a
heuristic search while creating and merging
symbols directed by an evaluation function.
Chen (1995) presents a Bayesian grammar in-
duction method, which is followed by a post-
pass using the inside-outside algorithm (Baker,
1979; Lari and Young, 1990).

Most work described here cannot learn com-
plex structures such as recursion, while other
systems only use limited context to �nd con-
stituents. However, the two phases in ABL
are closely related to some previous work.
The alignment learning phase is e�ectively a
compression technique comparable to MDL or
Bayesian grammar induction methods. ABL
remembers all possible constituents, building
a search space. The selection learning phase
searches this space, directed by a probabilistic
evaluation function.

3 Algorithm

We will describe an algorithm that learns struc-
ture using a corpus of plain (unstructured) sen-
tences. It does not need a structured train-
ing set to initialize, all structural information
is gathered from the unstructured sentences.

The output of the algorithm is a labelled,
bracketed version of the input corpus. Although
the algorithm does not generate a (context-free)
grammar, it is trivial to deduce one from the
structured corpus.

The algorithm builds on Harris's idea (1951)
that states that constituents of the same type
can be replaced by each other. Consider the sen-

What is a family fare
What is the payload of an African Swallow

What is (a family fare)X
What is (the payload of an African Swallow)X

Figure 1: Example bootstrapping structure

For each sentence s1 in the corpus:
For every other sentence s2 in the corpus:

Align s1 to s2
Find the identical and distinct parts

between s1 and s2
Assign non-terminals to the constituents

(i.e. distinct parts of s1 and s2)

Figure 2: Alignment learning algorithm

tences as shown in �gure 1.2 The constituents a
family fare and the payload of an African Swal-
low both have the same syntactic type (they
are both NPs), so they can be replaced by each
other. This means that when the constituent in
the �rst sentence is replaced by the constituent
in the second sentence, the result is a valid sen-
tence in the language; it is the second sentence.
The main goal of the algorithm is to estab-

lish that a family fare and the payload of an
African Swallow are constituents and have the
same type. This is done by reversing Harris's
idea: if (a group of) words can be replaced by
each other, they are constituents and have the
same type. So the algorithm now has to �nd
groups of words that can be replaced by each
other and after replacement still generate valid
sentences.
The algorithm consists of two steps:

1. Alignment Learning

2. Selection Learning

3.1 Alignment Learning

The model learns by comparing all sentences
in the input corpus to each other in pairs. An
overview of the algorithm can be found in �g-
ure 2.
Aligning sentences results in \linking" iden-

tical words in the sentences. Adjacent linked
words are then grouped. This process reveals

2All sentences in the examples can be found in the
ATIS corpus.



from ()1 San Francisco (to Dallas)2
from (Dallas to)1 San Francisco ()2

from (San Francisco to)1 Dallas ()2
from ()1 Dallas (to San Francisco)2

from (San Francisco)1 to (Dallas)2
from (Dallas)1 to (San Francisco)2

Figure 3: Ambiguous alignments

the groups of identical words, but it also uncov-
ers the groups of distinct words in the sentences.
In �gure 1 What is is the identical part of the
sentences and a family fare and the payload of
an African Swallow are the distinct parts. The
distinct parts are interchangeable, so they are
determined to be constituents of the same type.
We will now explain the steps in the align-

ment learning phase in more detail.

3.1.1 Edit Distance

To �nd the identical word groups in the sen-
tences, we use the edit distance algorithm by
Wagner and Fischer (1974), which �nds the
minimum number of edit operations (insertion,
deletion and substitution) to change one sen-
tence into the other. Identical words in the sen-
tences can be found at places where no edit op-
eration was applied.
The instantiation of the algorithm that �nds

the longest common subsequence in two sen-
tences sometimes \links" words that are too
far apart. In �gure 3 when, besides the occur-
rences of from, the occurrences of San Francisco
or Dallas are linked, this results in unintended
constituents. We would rather have the model
linking to, resulting in a structure with the noun
phrases grouped with the same type correctly.
Linking San Francisco or Dallas results in

constituents that vary widely in size. This stems
from the large distance between the linked
words in the �rst sentence and in the second
sentence. This type of alignment can be ruled
out by biasing the cost function using distances
between words.

3.1.2 Grouping

An edit distance algorithm links identical words
in two sentences. When adjacent words are
linked in both sentences, they can be grouped.
A group like this is a part of a sentence that can

also be found in the other sentence. (In �gure 1,
What is is a group like this.)

The rest of the sentences can also be grouped.
The words in these groups are words that are
distinct in the two sentences. When all of these
groups from sentence one would be replaced by
the respective groups of sentence two, sentence
two is generated. (a family fare and the pay-
load of an African Swallow are of this type of
group in �gure 1.) Each pair of these distinct
groups consists of possible constituents of the
same type.3

As can be seen in �gure 3, it is possible that
empty groups can be learned.

3.1.3 Existing Constituents

At some point it may be possible that the model
learns a constituent that was already stored.
This may happen when a new sentence is com-
pared to a sentence in the partially structured
corpus. In this case, no new type is introduced,
but the constituent in the new sentence gets the
same type of the constituent in the sentence in
the partially structured corpus.

It may even be the case that a partially struc-
tured sentence is compared to another partially
structured sentence. This occurs when a sen-
tence that contains some structure, which was
learned by comparing to a sentence in the par-
tially structured corpus, is compared to an-
other (partially structured) sentence. When
the comparison of these two sentences yields
a constituent that was already present in both
sentences, the types of these constituents are
merged. All constituents of these types are up-
dated, so they have the same type.

By merging types of constituents we make the
assumption that constituents in a certain con-
text can only have one type. In section 5.2 we
discuss the implications of this assumption and
propose an alternative approach.

3.2 Selection Learning

The �rst step in the algorithm may at some
point generate constituents that overlap with
other constituents. In �gure 4 Give me all
ights from Dallas to Boston receives two over-
lapping structures. One constituent is learned

3Since the algorithm does not know any (linguistic)
names for the types, the algorithm chooses natural num-
bers to denote di�erent types.



( Book Delta 128 ) from Dallas to Boston
z }| {
(Give me | {z }( all ights ) from Dallas to Boston)

Give me ( help on classes )

Figure 4: Overlapping constituents

by comparing against Book Delta 128 from Dal-
las to Boston and the other (overlapping) con-
stituent is found by aligning with Give me help
on classes.
The solution to this problem has to do with

selecting the correct constituents (or at least
the better constituents) out of the possible con-
stituents. Selecting constituents can be done in
several di�erent ways.

ABL:incr Assume that the �rst constituent
learned is the correct one. This means that
when a new constituent overlaps with older
constituents, it can be ignored (i.e. they are
not stored in the corpus).

ABL:leaf The model computes the probabil-
ity of a constituent counting the number of
times the particular words of the constituent
have occurred in the learned text as a con-
stituent, normalized by the total number of
constituents.

Pleaf (c) =
jc0 2 C : yield(c0) = yield(c)j

jCj

where C is the entire set of constituents.

ABL:branch In addition to the words of the
sentence delimited by the constituent, the
model computes the probability based on the
part of the sentence delimited by the words
of the constituent and its non-terminal (i.e.
a normalised probability of ABL:leaf).

Pbranch(cjroot(c) = r) =

jc0 2 C : yield(c0) = yield(c) ^ root(c0) = rj

jc00 2 C : root(c00) = rj

The �rst method is non-probabilistic and may
be applied every time a constituent is found that
overlaps with a known constituent (i.e. while
learning).
The two other methods are probabilistic. The

model computes the probability of the con-
stituents and then uses that probability to select
constituents with the highest probability. These

methods are applied after the alignment learn-
ing phase, since more speci�c information (in
the form of better counts) can be found at that
time.
In section 4 we will evaluate all three methods

on the ATIS and OVIS corpus.

3.2.1 Viterbi

Since more than just two constituents can over-
lap, all possible combinations of overlapping
constituents should be considered when com-
puting the best combination of constituents,
which is the product of the probabilities of the
separate constituents as in SCFGs (cf. (Booth,
1969)). A Viterbi style algorithm optimization
(1967) is used to e�ciently select the best com-
bination of constituents.
When computing the probability of a com-

bination of constituents, multiplying the sepa-
rate probabilities of the constituents biases to-
wards a low number of constituents. Therefore,
we compute the probability of a set of con-
stituents using a normalized version, the geo-
metric mean4, rather than its product. (Cara-
ballo and Charniak, 1998)

4 Results

The three di�erent ABL algorithms and two
baseline systems have been tested on the ATIS
and OVIS corpora.
The ATIS corpus from the Penn Treebank

consists of 716 sentences containing 11,777 con-
stituents. The larger OVIS corpus is a Dutch
corpus containing sentences on travel informa-
tion. It consists of exactly 10,000 sentences. We
have removed all sentences containing only one
word, resulting in a corpus of 6,797 sentences
and 48,562 constituents.
The sentences of the corpora are stripped

of their structures. These plain sentences are
used in the learning algorithms and the result-
ing structure is compared to the structure of the
original corpus.
All ABL methods are tested ten times. The

ABL:incr method is applied to random orders of
the input corpus. The probabilistic ABL meth-
ods select constituents at random when di�er-
ent combinations of constituents have the same
probability. The results in table 1 show the

4The geometric mean of a set of constituents

c1; : : : ; cn is P (c1 ^ : : : ^ cn) = n

pQ
n

i=1
P (ci)



ATIS OVIS
NCBP NCBR ZCS NCBP NCBR ZCS

left 32.60 76.82 1.12 51.23 73.17 25.22
right 82.70 92.91 38.83 75.85 86.66 48.08
ABL:incr 83.24 (1.17) 87.21 (0.67) 18.56 (2.32) 88.71 (0.79) 84.36 (1.10) 45.11 (3.22)
ABL:leaf 81.42 (0.11) 86.27 (0.06) 21.63 (0.50) 85.32 (0.02) 79.96 (0.03) 30.87 (0.09)
ABL:branch 85.31 (0.01) 89.31 (0.01) 29.75 (0.00) 89.25 (0.00) 85.04 (0.00) 42.20 (0.01)

Table 1: Results of the ATIS and OVIS corpora

mean and standard deviations (between brack-
ets).

The two baseline systems, left and right, only
build left and right branching trees respectively.

Three metrics have been computed. NCBP
stands for Non-Crossing Brackets Precision,
which denotes the percentage of learned con-
stituents that do not overlap with any con-
stituents in the original corpus. NCBR is the
Non-Crossing Brackets Recall and shows the
percentage of constituents in the original cor-
pus that do not overlap with any constituents
in the learned corpus. Finally, ZCS stands for
Zero-Crossing Sentences and represents the per-
centage of sentences that do not have any over-
lapping constituents.

4.1 Evaluation

The incr model performs quite well considering
the fact that it cannot recover from incorrect
constituents, with a precision and recall of over
80 %. The order of the sentences however is
quite important, since the standard deviation
of the incr model is quite high (especially with
the ZCS, reaching 3.22 % on the OVIS corpus).

We expected the probabilistic methods to
perform better, but the leaf model performs
slightly worse. The ZCS, however, is somewhat
better, resulting in 21.63 % on the ATIS cor-
pus. Furthermore, the standard deviations of
the leaf model (and of the branch model) are
close to 0 %. The statistical methods generate
more precise results.

The branch model clearly outperform all
other models. Using more speci�c statistics gen-
erate better results.

Although the results of the ATIS corpus and
OVIS corpus di�er, the conclusions that can be
reached are similar.

4.2 ABL Compared to Other Methods

It is di�cult to compare the results of the ABL
model against other methods, since often dif-
ferent corpora or metrics are used. The meth-
ods described by Pereira and Schabes (1992)
comes reasonably close to ours. The unsuper-
vised method learns structure on plain sentences
from the ATIS corpus resulting in 37.35 % pre-
cision, while the unsupervised ABL signi�cantly
outperforms this method, reaching 85.31 % pre-
cision. Only their supervised version results in
a slightly higher precision of 90.36 %.
The system that simply builds right branch-

ing structures results in 82.70 % precision and
92.91 % recall on the ATIS corpus, where ABL
got 85.31 % and 89.31 %. This was expected,
since English is a right branching language; a
left branching system performed much worse
(32.60 % precision and 76.82 % recall). Con-
versely, right branching would not do very well
on a Japanese corpus (a left branching lan-
guage). Since ABL does not have a preference
for direction built in, we expect ABL to perform
similarly on a Japanese corpus.

5 Discussion and Future Extensions

5.1 Recursion

All ABL methods described here can learn re-
cursive structures and have been found when
applying ABL to the ATIS and OVIS corpus.
As can be seen in �gure 5, the learned recur-
sive structure is similar to the original struc-
ture. Some structure has been removed to make
it easier to see where the recursion occurs.
Roughly, recursive structures are built in two

steps. First, the algorithm generates the struc-
ture with di�erent non-terminals. Then, the
two non-terminals are merged as described in
section 3.1.3. The merging of the non-terminals
may occur anywhere in the corpus, since all
merged non-terminals are updated.



learned Please explain the (�eld FLT DAY in the (table)13)13
original Please explain (the �eld FLT DAY in (the table)NP )NP

learned Explain classes QW and (QX and (Y)52)52
original Explain classes ((QW)NP and (QX)NP and (Y)NP )NP

Figure 5: Recursive structures learned in the ATIS corpus

Show me the ( morning )X ights
Show me the ( nonstop )X ights

Figure 6: Wrong syntactic type

5.2 Wrong Syntactic Type

In section 3.1.3 we made the assumption that a
constituent in a certain context can only have
one type. This assumption introduces some
problems.
The sentence John likes visiting relatives il-

lustrates such a problem. The constituent vis-
iting relatives can be a noun phrase or a verb
phrase.
Another problem is illustrated in �gure 6.

When applying the ABL learning algorithm to
these sentences, it will determine that morning
and nonstop are of the same type. Unfortu-
nately, morning is a noun, while nonstop is an
adverb.5

A future extension will not only look at the
type of the constituents, but also at the con-
text of the constituents. In the example, the
constituent morning may also take the place of
a subject position in other sentences, but the
constituent nonstop never will. This informa-
tion can be used to determine when to merge
constituent types, e�ectively loosening the as-
sumption.

5.3 Weakening Exact Match

When the ABL algorithms try to learn with two
completely distinct sentences, nothing can be
learned. If we weaken the exact match between
words in the alignment step of the algorithm, it
is possible to learn structure even with distinct
sentences.
Instead of linking exactly matching words,

the algorithm should match words that are
equivalent. An obvious way of implementing
this is by making use of equivalence classes. (See

5Harris's implication does hold in these sentences.
nonstop can also be replaced by for example cheap (an-
other adverb) and morning can be replaced by evening

(another noun).

for example (Redington et al., 1998).) The idea
behind equivalence classes is that words which
are closely related are grouped together.
A big advantage of equivalence classes is that

they can be learned in an unsupervised way, so
the resulting algorithm remains unsupervised.
Words that are in the same equivalence class

are said to be su�ciently equivalent, so the
alignment algorithm may assume they are sim-
ilar and may thus link them. Now sentences
that do not have words in common, but do have
words in the same equivalence class in common,
can be used to learn structure.
When using equivalence classes, more con-

stituents are learned and more terminals in con-
stituents may be seen as similar (according to
the equivalence classes). This results in a much
richer structured corpus.

5.4 Alternative Statistics

At the moment we have tested two di�erent
ways of computing the probability of a con-
stituent: ABL:leaf which computes the prob-
ability of the occurrence of the terminals in a
constituent, and ABL:branch which computes
the probability of the occurrence of the termi-
nals together with the root non-terminal in a
constituent, based on the learned corpus.
Of course, other models can be implemented.

One interesting possibility takes a DOP-like ap-
proach (Bod, 1998), which also takes into ac-
count the inner structure of the constituents.

6 Conclusion

We have introduced a new grammar learning al-
gorithm based on comparing and aligning plain
sentences; neither pre-labelled or bracketed sen-
tences, nor pre-tagged sentences are used. It
uses distinctions between sentences to �nd pos-
sible constituents and afterwards selects the
most probable ones. The output of the algo-
rithm is a structured version of the corpus.
By taking entire sentences into account, the

context used by the model is not limited by win-
dow size, instead arbitrarily large contexts are



used. Furthermore, the model has the ability to
learn recursion.
Three di�erent instances of the algorithm

have been applied to two corpora of di�er-
ent size, the ATIS corpus (716 sentences) and
the OVIS corpus (6,797 sentences), generating
promising results. Although the OVIS corpus
is almost ten times the size of the ATIS cor-
pus, these corpora describe a small conceptual
domain. We plan to apply the algorithms to
larger domain corpora in the near future.
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