
Parsing Schemata for Grammars with
Variable Number and Order of Constituents

Karl-Michael Schneider
Department of General Linguistics

University of Passau
Innstr. 40, 94032 Passau, Germany

schneide@phil.uni-passau.de

Abstract

We de�ne state transition grammars (STG) as
an intermediate formalism between grammars
and parsing algorithms which is intended to
separate the description of a parsing strategy
from the grammar formalism. This allows to de-
�ne more general parsing algorithms for larger
classes of grammars, including grammars where
the number and order of subconstituents de-
�ned by a production may not be �xed. Various
grammar formalisms are characterized in terms
of properties of STG's. We de�ne an Earley
parsing schema for STG's and characterize the
valid parse items. We also discuss the usabil-
ity of STG's for head-corner parsing and direct
parsing of sets of tree constraints.

1 Introduction

This paper addresses the question of how to de-
�ne (tabular) parsing algorithms on a greater
level of abstraction, in order to apply them
to larger classes of grammars (as compared
to parsing algorithms for context-free gram-
mars). Such an abstraction is useful because
it allows to study properties of parsing algo-
rithms, and to compare di�erent parsing algo-
rithms, independently of the properties of an
underlying grammar formalism. While previ-
ous attempts to de�ne more general parsers
have only aimed at expanding the domain of
the nonterminal symbols of a grammar (Pereira
and Warren, 1983), this paper aims at a gen-
eralization of parsing in a di�erent dimension,
namely to include grammars with a exible con-
stituent structure, i.e., where the sequence of
subconstituents speci�ed by a grammar produc-
tion is not �xed. We consider two grammar
formalisms: Extended context-free grammars
(ECFG) and ID/LP grammars.
ECFG's (sometimes called regular right part

grammars) are a generalization of context-free
grammars (CFG) in which a grammar produc-
tion speci�es a regular set of sequences of sub-
constituents of its left-hand side instead of a
�xed sequence of subconstituents. The right-
hand side of a production can be represented
as a regular set, or a regular expression, or a
�nite automaton, which are all equivalent con-
cepts (Hopcroft and Ullman, 1979). ECFG's
are often used by linguistic and programming
language grammar writers to represent a (pos-
sibly in�nite) set of context-free productions as
a single production rule (Kaplan and Bresnan,
1982; Woods, 1973). Parsing of ECFG's has
been studied for example in Purdom, Jr. and
Brown (1981) and Leermakers (1989). Tabular
parsing techniques for CFG's can be generalized
to ECFG's in a natural way by using the com-
putations of the �nite automata in the grammar
productions to guide the recognition of new sub-
constituents.

ID/LP grammars are a variant of CFG's that
were introduced into linguistic formalisms to en-
code word order generalizations (Gazdar et al.,
1985). Here, the number of subconstituents of
the left-hand side of a production is �xed, but
their order can vary. ID rules (immediate dom-
inance rules) specify the subconstituents of a
constituent but leave their order unspeci�ed.
The admissible orderings of subconstituents are
speci�ed separately by a set of LP constraints
(linear precedence constraints).

A simple approach to ID/LP parsing (called
indirect parsing) is to fully expand a gram-
mar into a CFG, but this increases the number
of productions signi�cantly. Therefore, direct
parsing algorithms for ID/LP grammars were
proposed (Shieber, 1984). It is also possible to
encode an ID/LP grammar as an ECFG by in-
terleaving the ID rules with LP checking with-

out increasing the number of productions. How-
ever, for uni�cation ID/LP grammars, expan-
sion into a CFG or encoding as an ECFG is
ruled out because the information contained in
the ID rules is only partial and has to be instan-
tiated, which can result in an in�nite number
of productions. Moreover, Sei�ert (1991) has
observed that, during the recognition of sub-
constituents, a subconstituent recognized in one
step can instantiate features on another subcon-
stituent recognized in a previous step. There-
fore, all recognized subconstituents must remain
accessible for LP checking (Morawietz, 1995).
We de�ne an intermediate formalism be-

tween grammars and parsers (called state tran-
sition grammars, STG) in which di�erent gram-
mar formalisms, including CFG's, ECFG's, and
ID/LP grammars can be represented. More-
over, admissible sequences of subconstituents
are de�ned in a way that allows a parser to
access subconstituents that were recognized in
previous parsing steps. Next, we describe an
Earley algorithm for STG's, using the parsing
schemata formalism of Sikkel (1993). This gives
us a very high level description of Earley's algo-
rithm, in which the de�nition of parsing steps
is separated from the properties of the grammar
formalism. An Earley algorithm for a grammar
may be obtained from this description by rep-
resenting the grammar as an STG.
The paper is organized as follows. In Sec-

tion 2, we de�ne STG's and give a characteri-
zation of various grammar formalisms in terms
of properties of STG's. In Section 3 we present
an Earley parsing schema for STG's and give a
characterization of the valid parse items. In Sec-
tion 4, we introduce a variant of STG's for head-
corner parsing. In Section 5, we discuss the us-
ability of STG's to de�ne parsers for grammars
that de�ne constituent structures by means of
local tree constraints, i.e., formulae of a (re-
stricted) logical language. Section 6 presents
�nal conclusions.

2 State Transition Grammars

We denote nonterminal symbols with A;B, ter-
minal symbols with a, terminal and nonterminal
symbols with X, states with �, strings of sym-
bols with �; , and the empty string with ". An
STG is de�ned as follows:

De�nition 1 (STG). An STG G is a tuple

(N;�;M;MF ;`G; P; S) where

� N is a �nite set of nonterminal symbols,

� � is a �nite set of terminal symbols,

� M is a �nite set of states,

� MF �M is a set of �nal states,

� `G � (M� V)2 is a binary relation of the
form (�; �) `G (�0; �X), where V = N [�,

� P � N �M nMF is a set of productions
written as A! �, and

� S 2 N is a start symbol.

Note that we do not allow �nal states in the
right-hand side of a production. A pair (�; �) is
called a con�guration. If � is a �nal state then
(�; �) is called a �nal con�guration. The reex-
ive and transitive closure of `G is denoted with
`�G. The state projection of `G is the binary
relation

�(`G) = f(�;�0) j 9�X : (�; �) `G (�0; �X)g:

`G is called context-free i� a transition from
(�; �) does not depend on �, formally: for all
�; �0;�;�0;X: (�; �) `G (�0; �X) i� (�; �0) `G
(�0; �0X). The set of terminal states of G is the
set

>(G) = f� j 8�0 : (�;�0) =2 �(`G)g:

The language de�ned by a state � is the set
of strings in the �nal con�gurations reachable
from (�; "):

L(�) = f� j 9�0 2MF : (�; ") `�G (�0; �)g:

Note that if A ! � is a production then " =2
L(�) (i.e., there are no "-productions). The
derivation relation is de�ned by AÆ =) �Æ
i� for some production A ! �: � 2 L(�). The
language de�ned by G is the set of strings in ��

that are derivable from the start symbol.
We denote a CFG as a tuple (N;�; P; S)

where N;�; S are as before and P � N �V + is
a �nite set of productions A ! �. We assume
that there are no "-productions.
An ECFG can be represented as an extension

of a CFG with productions of the form A! A,
whereA = (V;Q; q0; Æ;Qf) is a nondeterministic
�nite automaton (NFA) without "-transitions,

M MF (�; �) `G (�0; �X)
CFG f�0 j 9A! ��0 2 Pg f"g � = X�0

ECFG Q Qf (�;X;�0) 2 Æ
ID/LP fM j 9A!M 0 2 P : M �M 0g f;g � = �0 [fXg, �X 2 LP

Table 1: Encoding of grammars in STG's.

with input alphabet V , state set Q, initial state
q0, �nal (or accepting) states Qf , and transi-
tion relation Æ � Q� V �Q (Hopcroft and Ull-
man, 1979). A accepts a string � i� for some
�nal state q 2 Qf , (q0; �; q) 2 Æ�. Furthermore,
we assume that q0 =2 Qf , i.e., A does not ac-
cept the empty word. We can assume without
loss of generalization that the automata in the
right-hand sides of a grammar are all disjoint.
Then we can represent an ECFG as a tuple
(N;�; Q;Qf ; Æ; P; S) where N;�; Q;Qf ; Æ; S are
as before and P � N�Q is a �nite set of produc-
tionsA! q0 (q0 is an initial state). For any pro-
duction p = A ! q0 let Ap = (V;Q; q0; Æ;Qf)
be the NFA with initial state q0. The derivation
relation is de�ned by AÆ =) �Æ i� for some
production p = A! q0, A

p accepts �.
An ID/LP grammar is represented as a tu-

ple (N;�; P;LP; S) where N;�; S are as before
and P is a �nite set of productions (ID rules)
A ! M , where A 2 N and M is a multiset
over V , and LP is a set of linear precedence
constraints. We are not concerned with details
of the LP constraints here. We write � 2 LP
to denote that the string � satis�es all the con-
straints in LP. The derivation relation is de-
�ned by AÆ =) �Æ i� � = X1 : : : Xk and
A! fX1; : : : ;Xkg 2 P and � 2 LP.
CFG's, ECFG's and ID/LP grammars can

be characterized by appropriate restrictions on
the transition relation and the �nal states of an
STG:1

� CFG: `G is context-free and deterministic,
�(`G) is acyclic, MF = >(G).

� ECFG: `G is context-free.

� ID/LP: �(`G) is acyclic, MF = >(G), for
all �: if �; 2 L(�) then is a permutation

1These conditions de�ne normal-forms of STG's; that
is, for STG's that do not satisfy the conditions for some
type there can nevertheless be strongly equivalent gram-
mars of that type. These STG's are regarded as degen-
erate and are not further considered.

of �.

For instance, if G is an STG that satis�es the
conditions for CFG's, then a CFG G0 can be
constructed as follows: For every production
A ! q0 in G, let A ! � be a production in
G0 where L(q0) = f�g. Then the derivation re-
lations of G and G0 coincide. Similarly for the
other grammar types. Conversely, if a grammar
is of a given type, then it can be represented as
an STG satisfying the conditions for that type,
by specifying the states and transition relation,
as shown in Table 1 ([denotes multiset union).

3 Earley Parsing

Parsing schemata were proposed by Sikkel
(1993) as a framework for the speci�cation
(and comparison) of tabular parsing algorithms.
Parsing schemata provide a well-de�ned level of
abstraction by abstracting from control struc-
tures (i.e., ordering of operations) and data
structures. A parsing schema can be imple-
mented as a tabular parsing algorithm in a
canonical way (Sikkel, 1998).
A parsing schema for a grammar class is a

function that assigns each grammar and each
input string a deduction system, called a parsing
system. A parsing schema is usually de�ned by
presenting a parsing system. A parsing system
consists of a �nite set I of parse items, a �nite
set H of hypotheses, which encode the input
string, and a �nite set D of deduction steps of
the form x1; : : : ; xn ` x where xi 2 I [H and
x 2 I. The hypotheses can be represented as
deduction steps with empty premises, so we can
assume that all xi are items, and represent a
parsing system as a pair (I;D).
Correctness of a parsing system is de�ned

with respect to some item semantics. Every
item denotes a particular derivation of some
substring of the input string. A parsing sys-
tem is correct if an item is deducible precisely if
it denotes an admissible derivation. Items that
denote admissible derivations are called correct.

I = f[A! ���; i; j] jA 2 N; � 2 V �; � 2M; j�j � n; 0 � i � j � ng

DInit =
[S ! ��; 0; 0]

S ! � 2 P

DPredict =
[A! ���; i; j]

[B ! ��0; j; j]
9�0 : (�; �) `G (�0; �B); B ! �0 2 P

DScan =
[A! ���; i; j]

[A! �aj+1��0; i; j + 1]
(�; �) `G (�0; �aj+1)

DCompl =

[A! ���; i; j]

[B ! ��f ; j; k]

[A! �B��0; i; k]
�f 2MF ; (�; �) `G (�0; �B)

Figure 1: The Earley parsing schema for an STG G and input string w = a1 : : : an.

STG's constitute a level of abstraction be-
tween grammars and parsing schemata because
they can be used to encode various classes of
grammars, whereas the mechanism for recog-
nizing admissible sequences of subconstituents
by a parsing algorithm is built into the gram-
mar. Therefore, STG's allow to de�ne the pars-
ing steps separately from the mechanism in a
grammar that speci�es admissible sequences of
subconstituents.
A generalization of Earley's algorithm for

CFG's (Earley, 1970) to STG's is described by
the parsing schema shown in Fig. 1. An item
[A! ���; i; j] denotes an A-constituent that is
partially recognized from position i through j
in the input string, where � is the sequence of
recognized subconstituents of A, and a sequence
of transitions that recognizes � can lead to state
�. Note that the length of � can be restricted
to the length of the input string because there
are no "-productions.
In order to give a precise de�nition of the se-

mantics of the items, we de�ne a derivation re-
lation which is capable of describing the partial
recognition of constituents. This relation is de-
�ned on pairs (;�) where 2 V � and � is a
�nite sequence of states (a pair (;�) could be
called a super con�guration). represents the
front (or yield) of a partial derivation, while �
contains one state for every partially recognized
constituent.

De�nition 2. The Earley derivation relation
is de�ned by the clauses:

� (A;�) j� (�;��) i� 9A! �0 2 P :
(�0; ") `�G (�; �).

� (AÆ;�) j� (�Æ;�) i� AÆ =) �Æ.

The �rst clause describes the partial recog-
nition of an A-constituent, where � is the rec-
ognized part and the state � is reached when
� is recognized. The second clause describes
the complete recognition of an A-constituent;
in this case, the �nal state is discarded. Each
step in the derivation of a super con�guration
(;�) corresponds to a sequence of deduction
steps in the parsing schema. As a consequence
of the second clause we have that w 2 L(G) i�
(S; ") j�� (w; "). Note that j� is too weak to de-
scribe the recognition of the next subconstituent
of a partially recognized constituent, but it is
suÆcient to de�ne the semantics of the items in
Fig. 1. The following theorem is a generaliza-
tion of the de�nition of the semantics of Earley
items for CFG's (Sikkel, 1993) (a1 : : : an is the
input string):

Theorem 1 (Correctness).
`� [A! ���; i; j] i� the conditions are satis�ed:

� for some �, (S; ") j�� (a1 : : : aiA;�).

� (A; ") j� (�;�).

� � =)� ai+1 : : : aj.

The �rst and third condition are sometimes
called top-down and bottom-up condition, re-
spectively. The second condition refers to the
partial recognition of the A-constituent.

[E ! �q1; 0; 0] (E; ") j�� (E; "); (E; ") j� ("; q1)
[T ! �q3; 0; 0] (E; ") j� (T; q2); (T; ") j� ("; q3)

(E; ") j� (T; ")
[F ! �q5; 0; 0] (E; ") j� (T; q2) j� (F; q4q2); (F; ") j� ("; q5)

(E; ") j� (T; q2) j� (F; q2)
(E; ") j� (T; ") j� (F; q4)
(E; ") j� (T; ") j� (F; ")

[F ! a�q6; 0; 1] (E; ") j� (T; q2) j� (F; q4q2); (F; ") j� (a; q6)
(E; ") j� (T; q2) j� (F; q2)
(E; ") j� (T; ") j� (F; q4)
(E; ") j� (T; ") j� (F; ")

[T ! F �q4; 0; 1] (E; ") j� (T; q2); (T; ") j� (F; q4); F =)� a
(E; ") j� (T; ")

[F ! a�q6; 2; 3] (E; ") j� (T; q2) j� (F � F; q4q2) j� (a � F; q4q2); (F; ") j� (a; q6)
(E; ") j� (T; q2) j� (F � F; q2) j� (a � F; q2)
(E; ") j� (T; ") j� (F � F; q4) j� (a � F; q4)
(E; ") j� (T; ") j� (F � F; ") j� (a � F; ")

[E ! T � T �q2; 0; 3] (E; ") j�� (E; "); (E; ") j� (T � T; q2); T � T =)� a � a

Table 2: Valid parse items and derivable super con�gurations for a � a.

Example 1. Consider the following STG:

G = (fE; T; Fg; fa;+; �g; fq1 ; : : : ; q6g;

fq2; q4; q6g;`G; P;E);

P = fE ! q1; T ! q3; F ! q5g

with the following transitions (for all �):

(q1; �) `G (q2; �T); (q2; �) `G (q1; �+);

(q3; �) `G (q4; �F); (q4; �) `G (q3; ��);

(q5; �) `G (q6; �a):

Table 2 shows some valid parse items for the
recognition of the string a�a, together with the
conditions according to Theorem 1.

4 Bidirectional Parsing

STG's describe the recognition of admissi-
ble sequences of subconstituents in unidirec-
tional parsing algorithms, like Earley's algo-
rithm. Bidirectional parsing strategies, e.g.,
head-corner strategies, start the recognition of
a sequence of subconstituents at some position
in the middle of the sequence and proceed to
both sides. We can de�ne appropriate STG's
for bidirectional parsing strategies as follows.

De�nition 3. A headed, bidirectional STG G
is like an STG except that P is a �nite set of

productions of the form A ! (�;X;�), where
A 2 N and X 2 V and �;� 2M.

The two states in a production account for the
bidirectional expansion of a constituent. The
derivation relation for a headed, bidirectional
STG is de�ned by AÆ =) �lX�rÆ i� for some
production A ! (�;X;�): (�l)�1 2 L(�) and
�r 2 L(�) ((�l)�1 denotes the inversion of �l).
Note that � de�nes the left part of an admissible
sequence from right to left.
A bottom-up head-corner parsing schema

uses items of the form [A! �����; i; j] (Schnei-
der, 2000). The semantics of these items is given
by the following clauses:

� for some production A ! (�0;X;�0),
some �l; �r: � = �lX�r and (�0; ") `G
(�; (�l)�1) and (�0; ") `G (�; �r).

� � =)� ai+1 : : : aj .

5 Local Tree Constraints

In this section we discuss the usability of STG's
for the design of direct parsing algorithms for
grammars that use a set of well-formedness
conditions, or constraints, expressed in a logi-
cal language, to de�ne the admissible syntac-
tic structures (i.e., trees), in contrast to gram-
mars that are based on a derivation mechanism

(i.e., production rules). Declarative characteri-
zations of syntactic structures provide a means
to formalize grammatical frameworks, and thus
to compare theories expressed in di�erent for-
malisms. There are also applications in the-
oretical explorations of the complexity of lin-
guistic theories, based on results which relate
language classes to de�nability of structures in
certain logical languages (Rogers, 2000).

From a model-theoretic point of view, such
a grammar is an axiomatization of a class of
structures, and a well-formed syntactic struc-
ture is a model of the grammar (Blackburn et
al., 1993). The connection between models and
strings is established via a yield function, which
assigns each syntactic structure a string of ter-
minal symbols. The parsing problem can then
be stated as the problem: Given a string w and
a grammar G, �nd the modelsM withM j= G
and yield(M) = w.

In many cases, there are e�ective methods to
translate logical formulae into equivalent tree
automata (Rogers, 2000) or rule-based gram-
mars (Palm, 1997). Thus, a possible way to
approach the parsing problem is to translate a
set of tree constraints into a grammar and use
standard parsing methods. However, depending
on the expressive power of the logical language,
the complexity of the translation often limits
this approach in practice.

In this section, we consider the possibility to
apply tabular parsing methods directly to gram-
mars that consist of sets of tree constraints. The
idea is to interleave the translation of formu-
lae into production rules with the recognition
of subconstituents. It should be noted that this
approach su�ers from the same complexity lim-
itations as the pure translation.

In Schneider (1999), we used a fragment of
a propositional bimodal language to express lo-
cal constraints on syntactic structures. The two
modal operators h#i and h!i refer to the left-
most child and the right sibling, respectively, of
a node in a tree. Furthermore, the nesting of
h#i is limited to depth one. A so-called modal
grammar consists of a formula that represents
the conjunction of a set of constraints that must
be satis�ed at every node of a tree. In addition,
a second formula represents a condition for the
root of a tree.

In Schneider (1999), we have also shown

how an extension of a standard method for
automatic proof search in modal logic (so-
called analytic labelled tableaux) in conjunc-
tion with dynamic programming techniques can
be employed to parse input strings according
to a modal grammar. Basically, a labelled
tableau procedure is used to construct a la-
belled tableau, i.e., a tree labelled with formu-
lae, by breaking formulae up into subformulae;
this tableau may then be used to construct a
model for the original formula. The extended
tableau procedure constructs an in�nite tableau
that allows to obtain all admissible trees (i.e.,
models of the grammar).
The approach can be described as follows: An

STG is de�ned by using certain formulae that
appear on the tableau as states, and by de�ning
the transition relation in terms of the tableau
rules (i.e., the operations that are used to con-
struct a tableau). The states are formulae of
the form

X ^
^
h#iQ ^

^
[#]Q0 ^

^
h!iR ^

^
[!]R0

where X is a propositional variable and [#]; [!]
are the dual operators to h#i; h!i. X is used
as a node label in a tree model. The transition
relation can be regarded as a simulation of the
application of tableau rules to formulae, and a
tabular parser for this STG can be viewed as a
tabulation of the (in�nite) tableau construction.
In particular, it should be noted that this con-
struction makes no reference to any particular
parsing strategy.

6 Conclusion

We have de�ned state transition grammars
(STG) as an intermediate formalism between
grammars and parsing algorithms. They com-
plement the parsing schemata formalism of
Sikkel (1993). A parsing schema abstracts
from unimportant algorithmic details and thus,
like STG's, represents a well-de�ned level of
abstraction between grammars and parsers.
STG's add another abstraction to parsing
schemata, namely on the grammar side. There-
fore, we argued, a parsing schema de�ned over a
STG represents a very high level description of
a tabular parsing algorithm that can be applied
to various grammar formalisms. In this paper
we concentrated on grammar formalisms with
a exible constituent structure, i.e., where the

number and order of subconstituents speci�ed
by a grammar production may not be �xed. In
particular, we have discussed extended context-
free grammars (ECFG), ID/LP grammars, and
grammars in which admissible trees are de�ned
by means of local tree constraints expressed in
a simple logical language.

References

Patrick Blackburn, Claire Gardent, and Wil-
fried Meyer-Viol. 1993. Talking about trees.
In Proc. 5th Conference of the European
Chapter of the Association for Computational
Linguistics (EACL'93), pages 21{29.

Jay Earley. 1970. An eÆcient context-free pars-
ing algorithm. Communications of the ACM,
13:2:94{102.

Gerald Gazdar, Evan H. Klein, Geo�rey K. Pul-
lum, and Ivan A. Sag. 1985. Generalized
Phrase Structure Grammar. Blackwell, Ox-
ford.

John E. Hopcroft and Je�rey D. Ullman. 1979.
Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, Amster-
dam.

Ronald M. Kaplan and Joan Bresnan. 1982.
Lexical-functional grammar: A formal sys-
tem for grammatical representation. In Joan
Bresnan, editor, The Mental Representation
of Grammatical Relations, chapter 4, pages
173{281. MIT Press, Cambridge, MA.

Ren�e Leermakers. 1989. How to cover a gram-
mar. In Proc. 27th Annual Meeting of the
Association for Computational Linguistics
(ACL'89), pages 135{142.

Frank Morawietz. 1995. A uni�cation-
based ID/LP parsing schema. In Proc.
4th Int. Workshop on Parsing Technologies
(IWPT'95), Prague.

Adi Palm. 1997. Transforming Tree Con-
straints into Formal Grammar. In�x, Sankt
Augustin.

Fernando C. N. Pereira and David H. D. War-
ren. 1983. Parsing as deduction. In Proc.
21st Annual Meeting of the Association for
Computational Linguistics (ACL'83), pages
137{144.

Paul Walton Purdom, Jr. and Cynthia A.
Brown. 1981. Parsing extended LR(k) gram-
mars. Acta Informatica, 15:115{127.

James Rogers. 2000. wMSO theories as

grammar formalisms. In Proc. of 16th
Twente Workshop on Language Technology:
Algebraic Methods in Language Processing
(TWLT 16/AMiLP 2000), pages 201{222,
Iowa City, Iowa.

Karl-Michael Schneider. 1999. An application
of labelled tableaux to parsing. In Neil Mur-
ray, editor, Automatic Reasoning with An-
alytic Tableaux and Related Methods, pages
117{131. Tech. Report 99-1, SUNY, N.Y.

Karl-Michael Schneider. 2000. Algebraic con-
struction of parsing schemata. In Proc.
6th Int. Workshop on Parsing Technologies
(IWPT 2000), pages 242{253, Trento.

Roland Sei�ert. 1991. Uni�cation-ID/LP
grammars: Formalization and parsing. In Ot-
thein Herzog and Claus-Rainer Rollinger, ed-
itors, Text Understanding in LILOG, LNAI
546, pages 63{73. Springer, Berlin.

Stuart M. Shieber. 1984. Direct parsing of
ID/LP grammars. Linguistics and Philoso-
phy, 7(2):135{154.

Klaas Sikkel. 1993. Parsing Schemata. Proef-
schrift, Universiteit Twente, CIP-Gegevens
Koninklijke Bibliotheek, Den Haag.

Klaas Sikkel. 1998. Parsing schemata and cor-
rectness of parsing algorithms. Theoretical
Computer Science, 199(1{2):87{103.

William A. Woods. 1973. An experimental
parsing system for transition network gram-
mars. In Randall Rustin, editor, Natural Lan-
guage Processing, pages 111{154. Algorith-
mic Press, New York.

