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Abstract 

This paper describes a hybrid approach to
spontaneous speech parsing. The implemented
parser uses an extended probabilistic LR parsing
model with rich context and its output is post-
processed by a symbolic tree transformation routine
that tries to eliminate systematic errors of the
parser. The parser has been trained for three
different languages and was successfully integrated
in the Verbmobil speech-to-speech translation
system. The parser achieves more than 90%/90%
labeled precision/recall on parsed Verbmobil
utterances while 3% of German and 5% of all
English input cannot be parsed.

1 Introduction
Verbmobil (Wahlster, 1993) is a spontaneous
speech-to-speech translation system and translates
spoken German to English/Japanese and vice versa.
The main domains are "appointment scheduling"
and "travel planning". There are several parallel
analysis and translation modules in Verbmobil as
described in (Ruland et al., 1998) and one of those
analysis modules is the probabilistic parser
described in this paper. A schematic diagram of the
Verbmobil system architecture is shown in figure 1.

The input for the Verbmobil speaker independent
speech recognizers is spontaneously spoken
German (vocabulary 10,254 word forms), English
(7,534 word forms) and Japanese (2,848 word
forms). The output of the speech recognizers and
the prosody module is a prosodically annotated
word graph. This word graph is sent to the
Integrated Processing module which controls the
three parsers (HPSG parser (Kiefer et al., 1999),
chunk parser (Abney, 1991) and our probabilistic
parser) of the "deep" (semantics based) translation
branch of Verbmobil. Our probabilistic parser is a
shift-reduce parser and uses an A*-search to find
the best scored path in the lattice that can be parsed
by its context free grammar. The output of the
parser is the best scored context free analysis for
this path. This syntax tree is passed to a
transformation unit that corrects known systematic
errors of the probabilistic parser to correct trees.
The result of this process is passed to a semantics

construction module and processed by the other
modules of the deep translation branch as shown in
figure 1.

2 Spontaneous Speech Parsing
The Integrated Processing unit uses the acoustic
scores of the word hypotheses in the word graph
and a statistical trigram model to guide all
connected parsers through the lattice using an A*-
search algorithm. This is similar to the work
presented by (Schmid, 1994) and (Kompe et al.,
1997). This A*-search algorithm is used by the
probabilistic shift-reduce parser (see section 3) to
find the best scored path through the word graph
according to acoustic and language model
information. If the parser runs into a syntactic "dead
end" in the word graph (that is a path that cannot be
analyzed by the context-free grammar of the shift-
reduce parser), the parser searches the best scored
alternative path in the word graph, that can be
parsed using the context-free grammar.

We extracted context free grammars for German,
English and Japanese from the Verbmobil treebank
(German: 25,881 trees; English: 23,140 trees;
Japanese: 4,534 trees) to be able to parse
spontaneous utterances. The treebanks consist of
annotated transliterations of face-to-face dialogs in
the Verbmobil domains and contain utterances like

ù and then well you you you have hotel
information

ù no I am not how about what about
Tuesday the sixteenth

ù actually it yeah so seven hour flight

The grammar of the parser covers only
spontaneous speech phenomenas that are contained
in the treebanks.

During the development of the parser we
encountered severe problems with the size of the
context-free grammar extracted from the treebanks.
The German grammar extracted from a treebank
containing 20,000 trees resulted in a LALR parsing
table with more than 3,000,000 entries, which
cannot be trained on only 20,000 utterances. The
reason was that there are many rules in the
treebank, which occur only once or twice but inflate
the context-free grammar and thus the size of the



size of the parsing table. For this reason we
eliminate trees from our training material
containing rules that occur unfrequently in the
treebank and use only rules achieving a minimal
rule count. This threshold is determined
experimentally in our training process.

3 A new context sensitive approach to
probabilistic shift-reduce parsing
The work of Siemens in Verbmobil phase 1 showed
that a combination of shift-reduce and unification-
based parsing of word graphs works well on
spontaneous speech but is not very robust on low-
word-accuracy input (the word error rate of the
Verbmobil speech recognizers is about 25% today).
One way to gain a higher degree of robustness is to
use a context-free grammar instead of an
unification-based grammar, hence we decided to
implement and test a context-free probabilistic
LALR parser in Verbmobil phase 2.

3.1. Previous approaches
There are several approaches (see for example
(Wright & Wrigley, 1991), (Briscoe & Carroll,
1993/1996), (Lavie, 1996) or (Inui et al., 1997)) to
probabilistic shift-reduce parsing but only Lavie’s
parser, whose probabilistic model is very similar to
(Briscoe & Carroll, 1993), has been tested on
spontaneously spoken utterances.

While the model presented by (Wright &
Wrigley, 1991) was equivalent to the standard
PCFG (probabilistic context-free grammar, see
(Charniak, 1993)) model, which is not context-
sensitive and thus has certain limitations in the
precision that it can achieve, later work tried to
implement slight context-sensitivity (as e.g. the

probability of a shift/reduce-action in Briscoe and
Carroll’s model depends on the current and
succeeding LR parser state and the look-ahead
symbol).

3.2. Bringing context to probabilistic shift-
reduce parsing
Like other work on probabilistic parsing our model
is based on the equation
              P �T sW �=P �T �EP �W sT � ,           (2)

where T is the analysis of a word sequence W and a
widely used approximation for P(W|T) is given by
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where li is the part-of-speech tag for word wi in
analysis T.

Finding a realistic approximation for P(T) is very
difficult but important to achieve high parsing
accuracy. Supposed we approximate P(W|T) by
equation (3). Then P(W|T) is nothing more than
P(W|L), where L is the part-of-speech tag sequence
for a given utterance W. If our goal is to select the
best analysis T for a given tag sequence L we do not
necessarily depend on a good approximation of
P(T), but simply select the best analysis for a given
L by finding a T that maximizes P(T|L) (and not
P(T)). Hence, in our model we use P(T|L) instead of
P(T) so that

                    å
k

P �T ksL�=1 ,                    (4)

where Tk is the set of possible analyses for L. Let D
be the set of all complete shift-reduce parser action
sequences for L, i.e. dk is the sequence of shift- and
reduce-actions that generates analysis Tk. Then we
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can define P(d|L) (=P(T|L)) as
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where |d| is the number of parser actions in d, ad,j is
the jth parser action in d and kd,j is the context of the
parser while executing ad,j.

3.3. Choosing a context
"Context" in equation (5) might be everything. It
can be the classical (CurrentParserState;
LookAheadSymbol)-tuple, it may also contain
information about the following (look-ahead)
word(s), elements on the parser stack or the most
probable dialogue act of the utterance, even
semantical information about roles of the
syntactical head of the phrase on the top of the
parser stack.

The training procedure of our probabilistic parser
is straightforward:

1. Construct complete parser action sequences
for each tree in the training set. Save all
information (on every action) about the whole
"context" we have chosen to use.

2. Count the occurences of all actions in
different subcontexts. A subcontext may be
the whole context or a (even empty) selection
of features of the whole context. Compute the
probability of a parser action regarding to the
subcontext as the relative frequency of the
action within this subcontext.

The reason why we build subcontexts is that
there is a relevant sparse-data-problem in
Verbmobil. A treebank containing between 20,000
and 30,000 trees is too small to give reliable values
for larger contexts in a parsing table containing
500,000 entries or more. Hence we use the
smoothing technique that is known as backing-off
in statistical language modelling (Charniak, 1993)
and approximate the probability of an action a with
context k using its subcontexts cj:

    P �ask�=¶0 P �asc0�A¶1 P �asc1�A...
¶n P �ascn �

    (6)

with ¶j summing up to 1. The values for ¶j are
determined experimentally. We have chosen three
contexts for evaluation (K1 and K2 also exist in our
model but are irrelevant for this evaluation):

ù K3: LR parser state and look-ahead
symbol,

ù K4: K3 plus phrase head of the top
element of the LR parsing stack,

ù K5: K4 plus look-ahead word.
Please see section 5.1. for the detailed results of this
evaluation. 

4 Transformation-based error correction
Parsing spontaneous speech - even in a limited
domain - is a quite ambitious task for a context free
grammar parser. We have a large set of non-
terminals in our grammar that also encode
functional information like Head or Modifier,
grammatical information like accusative-
complement or verb-prefix besides phrase structure
information. Our current grammars contain 240
non-terminals for German, 178 for English and 200
for Japanese and the lexicon is derived
automatically from the tree bank and external
resources (there were only minor efforts in
improving the lexicon manually).

During the development of the parser we
observed a constantly declining Exact Match rate of
the parser from over 80% in the early stages (with
just a few hundred trees of training data) to under
50% today. The reason was that the first training
samples were simple utterances on "appointment
scheduling" only, while the treebank nowadays
contains spontaneous utterances from two domains
and that there was a growing number of
inconsistencies in the treebank due to annotation
errors and a growing number of annotators. Hence
we had to develop a technique to improve the exact
match rate particularly with regard to the following
semantics construction process that depends on
correct syntactic analyses to produce a correct
semantic representation of the utterance.

(Brill, 1993) applied transformation-based
learning methods to natural language processing,
especially to part-of-speech tagging. He showed
that it can be effective to let a system make a first
guess that may be improved or corrected by
following transformation-based steps. We observed
many systematical errors in the output of the
probabilistic parser, hence we adopted this idea and
took the probabilistic shift-reduce parser as the
guesser and tried to learn tree transformations from
our training data to improve this first guess. We
integrated the learned transformations into
Verbmobil as shown in figure 2.

The transformations map a tree to another tree,
changing parts that had be identified as incorrect in
the learning process. The output of the learning
process are simple Prolog clauses of the form



trans(+InputTree,-OutputTree):-!.,
that are sorted by the number of matches on the
training corpus.

4.1 The Problem
The task of learning transformations that are
suitable to post-process the output of a probabilistic
parser can be implemented as shown in figure 2:

1. train the probabilistic parser on a training set
O (containing utterances and their human-
annotated analyses).

2. parse all utterances of O and save the
corresponding parser outputs P.

3. find the set of as-general-as-possible
transformations T that map all incorrect trees
of P into corresponding correct trees in O and
select the "optimal" transformation from this
set.

The first point has been described in section 3.3.
and the second point is trivial. The as-general-as-
possible transformation is the mapping of a tree of
P into a tree for the same utterance in O that
achieves a high degree of generalization and fulfils
certain conditions, which are explained in section
4.2.

4.2. The Learning Algorithm
The learning algorithm to derive the most general
tree transformations for incorrect trees in O is
straightforward. To find the most general
transformation for a source tree 5gP to be mapped
into a destination tree 4gO do:

1. find the set , of all common subtrees of 5
and 4.

2. find the set 9 of all potential transformations.
A transformation t is formed by substitution
(½i) of one or more elements of , by logical
variables  in 5 und 4 (i.e. t: ½i(5) 1 ½i(4))

3. choose the "optimal" transformation from 9.

Syntactical trees are represented as Prolog terms in
our learning process. Since the transformation
should be able to map large correct structures in 5
to their (correct) counterparts in 4 the first point of
the algorithm is done by setting , equal to the set
of all (Prolog) subterms that are common in 5 and
4�(i.e. ,"subterms(5)Osubterms(4)).1

It is crucial here to attach a unique identifier to
each word (like "1-hi","2-Mr.","3-Smith") because
one word (like the article "the") could occur several
times in one sentence and it is important to keep
those occurences separated for the second step of
the learning algorithm.

The second step computes all potential tree
transformations by substituting one or more
elements of , in 5 and 4 by identical (Prolog)
variables. In this regard "substitution" is an
operation, that is inverse to the substitution known

1 subtrees(+Tree,-SubTrees) could simply
be defined (in Prolog) as
subtrees(+T,-S):- findall(X,subtree(X,T),S).

subtree(S,S).
subtree(S,_:L) :- member(M,L),subtree(S,M).

Trees are represented as terms like a:[b,c], for
example.
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from predicate logic.
Choosing the "optimal" transformation from the

space of all transformations in the third step is a
multi-dimensional problem. The dimensions are:

ù fault tolerance
ù coverage of the training corpus
ù degree of generalization

Fault tolerance is a parameter that indicates how
many correction errors on the training corpus the
human supervisor is willing to tolerate, i.e. how
many of the correct parser trees may be transformed
into incorrect ones. Accepting transformation errors
may improve the grade of generalization of the
transformation but for Verbmobil we decided not to
be fault tolerant. A correct analysis should be kept
correct in our point of view.

Coverage of the training corpus means that if
step 2 of the learning algorithm has found several
possible transformations for a 5-4-pair the
transformation tg9 that covers the most examples
in P/O should be preferred because this
transformation is likely to occur more often in the
running system or test situation.

Besides the heuristical generalization criterion of
coverage of the training corpus we also introduced
a formal one. If there are several transformations
that do not generate errors on the training corpus
and have exactly the same maximum coverage, we
select the transformation which has the smallest
mean distance of its logical variables to the root of
the tree, because we expect the most general
transformation to have its variable parts "near the
root" of the trees. Distance is measured in levels
from the root. For example, the transformation in
figure 3 has a mean root distance of the variables
of ( (1+2) + (1+3) ) / 4 = 1.75.

Figure 3

Using this learning algorithm we generate a set
of optimal transformations for many errors the
parser produced on the set of training utterances.
There are still some utterances for which no valid
transformation can be found because all potential
transformations would generate errors on the
training corpus, what we are not willing to accept.

5 Evaluation results
At the time this paper is written we have done
several experiments on different aspects of our
work, some of which are published here.

5.1. Experiments on context sensitivity
The question of this experiment was: "We have
developed a probabilistic parsing model using more
context information. Does it generate any benefit?"
To answer this question we trained the parser on
19,750 german trees and tested on 1,000 (unseen)
utterances with contexts of different sizes (the
contexts K3, K4 and K5 are explained in section
3.3). As shown in figure 4 (the x-axis is a weight
that controls the influence of the context in the
backing-off process) labeled precision of the K5-
parser performs always better than the parsers using
less context. Labeled recall of the K5-parser is
superior as long as the large context is not
overweighted. Higher weights increase some kind
of "memory effect" so that the trained model does
not generalize well on (unseen) test data. The
optimal K5 weight is around 0.1 and 0.2 as you can
see in figure 4.

5.2. Evaluation of the probabilistic parser
We evaluated the parser on German, English and
Japanese Verbmobil data. The results of this
evaluation are given in the following table:

German English Japan.

Training set [trees] 19.750 17.793 3.218

Test set [utterances] 1.000 1.000 300

Exact Match 46,3% 55,4% 67,7%

Incorrect parses 50,3% 39,3% 21,3%

Not parsed 3,4% 5,3% 11,0%

context-free rules 988 2.205 932

Labeled Precision 90,2% 90,6% 84,9%

Labeled Recall (all
utterances)

83,5% 78,5% 63,1%

Labeled Recall
(parsed utterances)

91,0% 90,9% 86,3%

It is quite interesting that despite of the low exact
match rate our parser achieves high precision/recall
values on parsed utterances. The reason is that we
have - for the semantics construction process - a
large number of non-terminal symbols in our
context-free grammars and the parser often chooses
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only one or two slightly incorrect symbols per
parse. The mean parsing time per utterance was
about 400ms for German and English and about
30ms for Japanese on a 166-Mhz Sun Ultra-1
workstation.

5.3. Influence of transformation-based error
correction
It is important to have a very high exact match rate
for the semantics construction process. As shown in
the table of section 5.2. the exact match rates are
quite low thus we have learned transformations
from the training data to improve the output of the
German and English parser (there was not enough
training data to do so for Japanese) and evaluated
the results shown in the following table (TT is an
abbreviation for Tree Transformations).

As shown in this table the tree transformations
improve the exact match rate relatively by 16% for
German and 10% for English.

German English

Exact Match (w/o TT) 46,3% 55,4%

Incorrect parses 50,3% 39,3%

Not parsed 3,4% 5,3%

Exact Match (after TT) 53,8% 61,2%

Incorrect parses (after TT) 42,8% 33,5%

Labeled Precision (w/o TT) 90,2% 90,6%

German English

Labeled Precision (after TT) 90,8% 91,4%

Labeled Recall (all
utterances, w/o TT)

83,5% 78,5%

Labeled Recall (all
utterances, after TT)

84,0% 79,2%

Labeled Recall (parsed
utterances, w/o TT)

91,0% 90,9%

Labeled Recall (parsed
utterances, after TT)

91,6% 91,7%

6 Conclusion
In this article we have extended probabilistic shift-
reduce parsing to be more context-sensitive than
previous works and have demonstrated that a bigger
context improves the performance of a probabilistic
shift-reduce parser. It was shown that our model is
suitable to parse utterances of the Verbmobil
domain in three different languages. It was also
shown that the exact match rate of a probabilistic
parser can be improved significantly using a
symbolic transformation-based post-processing
step.

Our method of learning tree transformations has
generated first promising results but it is based on
the mapping of whole trees to whole trees. It could
be a direction of further research to extend this
process of learning transformations on smaller

Figure 4



(sub-)structures like single phrases. That should
improve generalization and help improving the
exact match rate on the difficult domain of parsing
spontaneously spoken utterances.
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