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Abstract
This paper describes a hybrid parsing method for
Japanese which uses both a hand-crafted gram-
mar and a statistical technique. The key feature
of our system is that in order to estimate likeli-
hood for a parse tree, the system uses informa-
tion taken from alternative partial parse trees gen-
erated by the grammar. This utilization of alter-
native trees enables us to construct a new statis-
tical model called Triplet/Quadruplet Model. We
show that this model can capture a certain ten-
dency in Japanese syntactic structures and this point
contributes to improvement of parsing accuracy on
a shallow level. We report that, with an under-
specified HPSG-based grammar and a maximum en-
tropy estimation, our parser achieved high accuracy:
88.6% accuracy in dependency analysis of the EDR
annotated corpus, and that it outperformed other
purely statistical parsing methods on the same cor-
pus. This result suggests that proper treatment of
hand-crafted grammars can contribute to parsing ac-
curacy on a shallow level.

1 Introduction
There have been many attempts to combine hand-
crafted high-level grammars, such as FB-LTAG,
HPSG and LFG, and statistical disambiguation
techniques to obtain precise linguistic structures
(Schabes, 1992; Abney, 1996; Carroll et al., 1998).
One evident advantage of this approach over purely
statistical parsing techniques is that grammars can
provide precise semantic representations. However,
considering that remarkable parsing accuracy in a
shallow level has been achieved by purely statisti-
cal techniques (e.g. Ratnaparkhi (1997)), it may be
thought more reasonable to use high-level grammars
just for postprocessing which maps results of shallow
syntactical analyses onto deep analyses.

This work was conducted while the first author was a
graduate student at Univ. of Tokyo.
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Figure 1: A tree M with a non-head daughter NH and
a head daughter H.

In this work we propose that hand-crafted high-
level grammars can be useful in shallow-level analy-
ses and statistical models. In our framework, gram-
mars are used to obtain precise features for probabil-
ity estimation, which are difficult to obtain without a
grammar, and we show that such features contribute
to high parsing accuracy on a shallow level.

In this paper, the most preferable parse trees are
chosen with a statistical model. In our method, the
likelihood value L(M) of a (partial) tree M in Fig-
ure 1 is defined as in (1):

L(M) def= L(NH) × L(H) × P (n → h) (1)

where NH is M’s non-head daughter (whose lexical
head is n), H is the head-daughter (whose lexical
head is h), and P (n → h) is the probability of n
being related to h. For a single lexical item W, L(W)
is defined as 1.0.

In most models already proposed, the probability
P (n → h) is calculated with the conditional proba-
bility (2):

P (n → h) def= P (T | Φn, Ψh, ∆n,h) (2)

where T indicates that the dependency is true; Φn

and Ψh are attributes of n and h, respectively. And
∆n,h, the distance between the two words, is widely
used, because this attribute is believed to strongly
affect whether those two words are going to be re-
lated.

In contrast, in the statistical model proposed in
this paper, P (n → h) depends not only on the at-
tributes of the tree M, but also on alternative trees
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Figure 2: Partial trees whose non-head daughter’s lexi-
cal head is n.

in the parse forest generated by the grammar. More
precisely, when P (n → h) is calculated, we consider
partial trees whose non-head daughter’s lexical head
is n, as displayed in Figure 2. Here alternative pos-
sible hk (k = 1, · · · , l) are taken into consideration,
and ordered according to their distance to n. We
call such set of hk modification candidates, and all
modification candidates are placed together in the
conditional part of the probability as in (3). Now
assume h = hi.

P (n → hi)
def= P (i | Φn, Ψh1 , Ψh2 , · · · , Ψhi , · · · , Ψhl

)
(3)

where “i” indicates the ith candidate among the
modification candidates. Equation (3) shows two
important properties of our model. One point lies in
the new distance metric. (3) is the probability that n
chooses the ith candidate as the modifiee among the
modification candidates which are ordered according
to their distance to n. Thus, we no longer require
the distance metric ∆n,h, instead we use the relative
position among the modification candidates, which
works as an attribute of the modification. The other
point is the use of the attributes of the alternative
parse trees, that is, attributes of the modifier and all
its modification candidates are considered simulta-
neously. We show that these techniques sophisticate
our model, by providing linguistic examples in Sec-
tion 3.2.

In practice, however, treating all candidates is not
feasible because of data-sparseness. We therefore
apply a strategy of restricting the modification can-
didates to at most three. The strategy and its justi-
fication are discussed in Section 3.1.

Applying the strategy to the equation (3), we ob-
tain equations (4) and (5):

P (n → hi)
def= P (i | Φn, Ψh1 , Ψh2) (i = 1, 2) (4)

P (n → hi)
def= P (i | Φn, Ψh1, Ψh2 , Ψhl

) (i = 1, 2, l)(5)

When there are only two candidates, equation (4)
is used; otherwise, equation (5) is used. Our statis-
tical model is called the Triplet/Quadruplet Model,
which was named after the number of constituents
in the conditional parts of the equations.

We report that our parsing framework achieved
high accuracy (88.6%) in dependency analysis of
Japanese with a combination of an underspecified
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Figure 3: Transformation from a tree to a dependency.
l′ and r′ denote the bunsetsus l and r belong to, respec-
tively.

HPSG-based Japanese grammar, SLUNG (Mitsu-
ishi et al., 1998) and the maximum entropy method
(Berger et al., 1996). Moreover, the resulting parse
trees generated by our hybrid parser are legitimate
trees in terms of given hand-crafted grammars, and
we are expecting that we can enjoy advantages pro-
vided by high-level grammar formalisms, such as
construction of semantic structures.

In the above explanation, we used the notion of
lexical heads for the estimation of probabilities of
trees for the sake of simplicity. But, in the present
implementation, we use bunsetsus instead of lexical
heads, and a relation on a tree is converted to a
bunsetsu-dependency as shown in Figure 3. A bun-
setsu is a basic syntactic unit in Japanese. It consists
of a content word and some functional morphemes
such as a particle.

In Section 2, we describe some existing statisti-
cal parsers, and the Japanese grammar which we
adopted. Section 3 describes our statistical method
and its advantages in detail. We report experimental
results in Section 4.

2 Background

In this section, we describe several models for
Japanese dependency analysis and works on statisti-
cal approaches with grammars. Next, we introduce
SLUNG, the HPSG-based Japanese grammar which
is used in our hybrid parser.

2.1 Previous Dependency Analysis Models
of Japanese

Several statistical models for Japanese dependency
analysis which do not utilize a hand-crafted gram-
mar have been proposed. We evaluate the accuracy
of bunsetsu-dependencies as they do, thus here we
introduce them for comparison. All models intro-
duced below are based on the likelihood value of the
dependency between two bunsetsus. But they differ
from each other in the attributes or outputs which
are considered when a likelihood value is calculated.

There are some models which calculate the likeli-
hood values of a dependency between bunsetsu i and
j as in (6), such as a decision tree model (Haruno et
al., 1998), a maximum entropy model (Uchimoto et
al., 1999), a model based on distance and lexical in-
formation (Fujio and Matsumoto, 1998). Attributes
Φi and Ψj consist of a part-of-speech (POS), a lexi-
cal item, presence of a comma, and so on. And ∆i,j



is the number of intervening bunsetsus between i and
j.

P (i → j) def= P (T | Φi, Ψj, ∆i,j) (6)
However, these models fail to reflect contextual

information because attributes of the surrounding
bunsetsus are not considered.

Uchimoto et al. (2000) proposed a model us-
ing posterior context. The model utilizes not only
attributes about bunsetsus i, j but also attributes
about all bunsetsus (including j) which follow bun-
setsu i. That is, instead of learning two output val-
ues “T(true)” or “F(false)” for the dependency be-
tween two bunsetsus, three output values are used
for learning: the bunsetsu i is “bynd (dependent on
a bunsetsu beyond j)”, “dpnd (dependent on the
bunsetsu j)” or “btwn (dependent on a bunsetsu be-
tween i and j)”. The probability is calculated by
multiplying probabilities for all bunsetsus which fol-
low bunsetsu i as in (7). They report that this kind
of contextual information improves accuracy. How-
ever, the model has to assume the independency of
all the random variables, which may cause some er-
rors.

P (i → j)
def
=

∏

i<k<j

P (bynd | Φi, Ψk, ∆i,k)

×P (dpnd | Φi, Ψj , ∆i,j) ×
∏

k>j

P (btwn | Φi, Ψk, ∆i,k)(7)

The difference between our model and these pre-
vious models are discussed in Section 3.

2.2 Statistical Approaches with a grammar
There have been many proposals for statistical
frameworks particularly designed for parsers with
hand-crafted grammars (Schabes, 1992; Briscoe and
Carroll, 1993; Abney, 1996; Inui et al., 1997). The
main issue in this type of research is how to assign
likelihoods to a single linguistic structure generated
by a grammar. Some of them (Briscoe and Carroll,
1993; Inui et al., 1997) treat information on contexts,
but the contextual information is derived only from
a structure to which the parser is trying to assign
a likelihood value. Then, the major difference be-
tween their method and ours is that we consider the
attributes of alternative linguistic structures gener-
ated by the grammar in order to determine the like-
lihood for linguistic structures.

2.3 SLUNG : Japanese Grammar
The Japanese grammar which we adopted, SLUNG
(Mitsuishi et al., 1998), is an HPSG-based under-
specified grammar. It consists of 8 rule schemata,
48 lexical templates for POSs and 105 lexical entries
for functional words. As can be seen from these fig-
ures, the grammar does not contain detailed lexical
information that needs intensive labor for develop-
ment. However, it is precise in the sense that it
achieves 83.7% dependency accuracy with a simple

heuristics2 for the EDR annotated corpus, and it
can produce at least one parse tree for 98.4% sen-
tences in the EDR annotated corpus. We use the
grammar for generating parse tree forests, and our
Triplet/Quadruplet Model is used for picking up a
single tree from a forest.

3 The Hybrid Parsing Method

This section describes the procedure of parsing with
the Triplet/Quadruplet Model. Our hybrid parsing
method proceeds as follows:

• At the beginning, dependency structures are
obtained from trees generated by SLUNG. For
each bunsetsu, modification candidates are enu-
merated, and if there are four or more candi-
dates, they are restricted to three. The heuristic
used in this process is described in Section 3.1.

• Then, with the Triplet/Quadruplet Model and
maximum entropy estimation, probabilities of
the dependencies are calculated. Section 3.2
discusses the characteristics and advantages of
the model.

• Finally, the most preferable trees for the whole
sentence are selected.

3.1 Restriction of Modification Candidates

Kanayama et al. (1999) report that when mod-
ification candidates are enumerated according to
SLUNG, 98.6% of the correct modifiees are in one of
the following three positions among the candidates:
the nearest one from the modifier, the second nearest
one, and the farthest one.

As a consequence, we can simplify the problem
by considering only these three candidates and dis-
carding the other candidates, with only 1.4% poten-
tial errors. We therefore assume that the number of
modification candidates is always three or less.

This idea is similar to that of Sekine (2000)’s
study, which restricts the candidates to five, but in
his case, without a grammar.

3.2 The Triplet/Quadruplet Model

The Triplet/Quadruplet Model calculates the like-
lihood of the dependency between bunsetsu i and
bunsetsu cn; P (i → cn) with the formulas (8) and
(9), where cn denotes the nth candidate among bun-
setsu i’s candidates; Φi denotes some attributes of
i; and Ψcn denotes attributes of cn (including at-
tributes between i and cn).

P (i → cn) def= P (n | Φi, Ψc1 , Ψc2) (n = 1, 2) (8)

P (i → cn) def= P (n | Φi, Ψc1, Ψc2 , Ψcl
) (n = 1, 2, l)(9)

2This heuristics is a Japanese version of a left-association
rule: see (Mitsuishi et al., 1998) for detail.



As (8) and (9) suggest, the model considers at-
tributes of the modifier bunsetsu and attributes of all
modification candidates simultaneously in the condi-
tional parts of the probabilities. Moreover, what is
calculated is not the probability of “whether the de-
pendency is correct (T, see Formula(6))”, but the
probability of “which of the given candidates is cho-
sen as the modifiee (n =1, 2, or l)”. These charac-
teristics imply the following two advantages.

Advantage 1 A new distance metric. The correct
modifiee can be chosen by considering relative
position among grammatically licensed candi-
dates, instead of the absolute distance between
bunsetsus.

Advantage 2 Treating alternative trees. The can-
didates are taken into consideration simultane-
ously. But because the modification candidates
are restricted to at most three, we considerably
avoid data-sparseness problems.

Below we discuss these advantages in order. These
advantages clarify the differences from previous
models described in Section 2.1, and are empirically
confirmed through the experiments in Section 4.

3.2.1 Advantage 1 : A new distance metric
As discussed in Section 2.1, the distance metric ∆i,j

used in previous statistical methods was obtained
simply by counting intervening words or bunsetsus
between i and j. On the other hand, we use the rel-
ative position among the modification candidates as
the distance metric. The following examples illus-
trate a difference between those two types of metric.
The correct modifiee of kare-ga is hashiru-no-wo in
both (10a) and (10b).

(10)a. kare-ga hashiru-no-wo mita koto
he-SUBJ run see fact
(the fact that I saw him run)

b. kare-ga yukkuri hashiru-no-wo mita koto
he-SUBJ slowly run see fact
(the fact that I saw him run slowly)

In previous models, (10a) and (10b) would yield,

Pa(kare-ga→hashiru-no-wo)=P (T|kare-ga, hashiru-no-wo,∆1)

Pb(kare-ga→ hashiru-no-wo)=P (T|kare-ga, hashiru-no-wo,∆2)

respectively, where ∆1 = 1 and ∆2 = 2. Then, the
two probabilities above do not have the same value
in general.

Our grammar does not allow the dependency
“kare-ga →yukkuri” for (10b). The modification
candidates of kare-ga are hashiru-no-wo and mita,
hence (8) gives the probabilities between kare-ga and
hashiru-no-wo as follows, in both examples.

Pa(kare-ga →hashiru-no-wo)

= Pb(kare-ga →hashiru-no-wo)

= P (1|kare-ga, hashiru-no-wo, mita)

Thus, P (kare-ga →hashiru-no-wo) has the same value
for both examples. Our interpretation of this differ-
ence is summarized as follows. The word yukkuri is
an adverb modifying the verb hashiru. Our linguis-
tic intuition tells us that the presence of such adverb
should not affect the strength for the dependency
between kare-ga and hashiru-no-wo. According to
this intuition, the existence of the adverb should be
considered as a noise. Our model allows us to ignore
such a noise in learning from annotated corpus, while
previous models are affected by such noisy elements.

3.2.2 Advantage 2 : Treating alternative
trees or contextual information

Consider the following examples.

(11)a. Taro-no kawaii musume
NP Adj NP
Taro-POSS pretty daughter
(Taro’s pretty daughter)

b. Taro-no yuujin-no musume
NP NP NP
Taro-POSS friend-POSS daughter
(Taro’s friend’s daughter)

Contrary to the previous examples, Taro-no in
(11) modifies different modification candidates. In
example (11a), “Taro-no →musume” is the correct
dependency while “Taro-no →musume” is not cor-
rect in (11b). This difference is caused by the bun-
setsu between Taro-no and musume, kawaii (Adj)
in (11a) and yuujin-no (NP) in (11b). Actually, the
grammar allows Taro-no to depend on either of these
types of words. Thus, in our model,

Pa(Taro-no→musume)
= P (2|Taro-no, kawaii, musume)

Pb(Taro-no→musume)
= P (2|Taro-no, yuujin-no, musume)

Then, P (Taro-no →musume) has different values
for the two examples. In the annotated corpus,
P (2|Taro-no, kawaii, musume) tends to have a high
value since kawaii is an adjective. However, since
yuujin-no is an NP, P (2|Taro-no, yuujin-no, musume)

tends to have a low value.
Now consider previous models.

Pa(Taro-no → musume) = P (T|Taro-no, musume, 2)

Pb(Taro-no → musume) = P (T|Taro-no, musume, 2)

Then, contrary to our model, P (Taro-no →musume)
has exactly the same value for both examples. The
outcome is determined by

Pa(Taro-no → kawaii) = P (T|Taro-no, kawaii, 1)

In text corpora, P (T|Taro-no, yuujin-no, 1) tends
to be high, and consequently, P (T|Taro-no, musume,

2) is very small. These values will make the correct
prediction for (11b) as yuujin-no will be favored over
musume. However, for (11a), these models are likely
to incorrectly favor kawaii over musume. This is



because P (T|Taro-no, musume, 2), being very small, is
likely to be smaller than P (T|Taro-no, kawaii, 1).

4 Experiments and Discussion

This section reports a series of parsing experiments
with our model, and gives some discussion.

4.1 Environments
We used the EDR Japanese Corpus (EDR, 1996)
for training and evaluation of parsing accuracy. The
EDR Corpus is a Japanese treebank which consists
of 208,157 sentences from newspapers and maga-
zines. We used 192,778 sentences for training, 6,744
for pre-analysis (as reported in Section 3.1), and
3,372 for testing3.

With triplets constituted of a modifiee and two
modification candidates extracted from the learn-
ing corpus the Triplet Model is constructed. With
the quadruplets constituted of a modifiee and three
candidates, the Quadruplet Model is constructed.
These models are estimated by the ChoiceMaker
Maximum Entropy Estimator (Borthwick, 1999).

The features for the estimation are listed in Ta-
ble 1. The values partially follow other researches
e.g. Uchimoto et al. (1999), and JUMAN’s outputs
are used for POS classification. Mainly the head of
the bunsetsu (the rightmost morpheme in a bunsetsu
except for whose major POS is “peculiar”, “auxiliary
verb”, “particle”, “suffix” or “copula”) and type of
the bunsetsu (the rightmost morpheme in a bunsetsu
except for whose major POS is “peculiar”) are used
as the attributes. We show the meaning of some
features below.

POS JUMAN’s minor POS (for both “head” and
“type”).

particle, adverb Frequent words: 26 particles and
69 adverbs.

head lex 294 lexical forms regardless of their POS.

type lex 70 suffixes or auxiliary verbs.

inflection 6 types of inflection : “normal”, “adver-
bial”, “adnominal”, “te-form”, “ta-form”, and
“others”.

The column “variation” in Table 1 denotes the
number of possible values for the feature. “Valid
features” indicates the number of features which ap-
peared three times or more in the training corpus.

4.2 Results
With our model and the features described above,
the accuracy shown in Table 2 is achieved. We eval-
uate the following two types of accuracy:

35,263 sentences were removed because the order of the
words in the annotation differed from that in the original
sentences.

ID Feature type Variation
Valid features
Trip. Quad.

1 Head POS of modifier 24 42 64
2 Type POS of modifier 34 66 99
3 Particle of modifier 27 47 73
4 Adverb of modifier 70 131 193
5 Type lex of modifier 71 110 225
6 Inflection of modifier 6 12 18
7 Whether modifier has a comma 2 4 6

8 Head POS of modifiee 24 70 158
9 Type POS of modifiee 34 96 231

10 Head lex of modifiee 295 1164 2597
11 Particle of modifiee 27 92 204
12 Type lex of modifiee 71 216 454
13 Inflection of modifiee 6 24 53
14 Whether modifiee has a comma 2 8 18
15 Whether modifiee has “wa” 2 8 18
16 Whether modifiee has “to” 2 6 17
17 # of commas between two bunsetsus 4 16 36
18 # of “wa” between two bunsetsus 3 12 27

19 2 × 8 816 1187 2727
20 2 × 7 × 14 136 380 870
21 3 × 10 7965 6465 13463
22 2 × 9 1156 1213 3108
23 3 × 11 729 618 1637
24 2 × 11 918 1025 2494
25 2 × 12 2414 1483 3514
26 2 × 3 × 7 × 8 132192 1331 3058
27 1 × 2 × 6 × 8 × 13 705024 6605 14700

Total - 22433 50063

Table 1: Used features : Features from 8 to 27 are re-
lated to the modifiee, thus they are considered for each
candidate. Features from 19 to 27 are combination fea-
tures.

In-coverage
sentences

Bunsetsu accuracy 88.55%(23078/26062)
Sentence accuracy 46.90% (1560/3326)

All
sentences

Bunsetsu accuracy 88.33% (23350/26436)
Sentence accuracy 46.35% (1563/3372)

Table 2: Results of parsing with the Triplet/Quadruplet
Model.

Bunsetsu accuracy The percentage of bunsetsus
whose modifiee is correctly identified. The de-
nominator includes all bunsetsus except for the
last bunsetsu of a sentence.

Sentence accuracy The percentage of sentences
whose dependencies are perfectly correct.

“In-coverage sentences” is the accuracy for the
sentences for which SLUNG could generate parse
trees. We give the accuracy for “All sentences” too,
by partially parsing sentences which SLUNG fail to
parse. The coverage of SLUNG is about 99%, thus
high accuracy is achieved even for “All sentences”.

Moreover, we conducted a series of experiments
in order to evaluate the contribution of each charac-
teristic in our parsing model. The parsing schemes
used are the four in Figure 3. Major differences
among them are (I) whether a grammar is used,
(II) whether modification candidates are restricted
to three, and (III) whether a previous pair model
with Formula (6) or the Triplet/Quadruplet Model
with Formula (8),(9) was used.

W/O Grammar Model This model does not use
a grammar. Likelihood values for dependen-



G R F Bunsetsu accuracy

W/O Grammar − − P 86.70%(22594/26062)
W/O Restriction + − P 87.37%(22770/26062)
Pair + + P 87.67%(22849/26062)
Triplet/Quadruplet + + T 88.55%(23078/26062)

Table 3: Bunsetsu accuracies for four models. Column
“G” indicates whether the grammar is used, “R” indi-
cates whether the modification candidates are restricted
to three, and “F” denotes the formula; “P” is the pair
formula (6), and “T” is the Triplet/Quadruplet formula
(8), (9).

cies are calculated for all bunsetsus that follow
a modifier bunsetsu. Formula (6) is used, and
as a distance metric ∆i,j , the number of bun-
setsus between the modifier and the modifiee4

are combined with all features. In general lines,
this model corresponds to models such as (Fu-
jio and Matsumoto, 1998; Haruno et al., 1998;
Uchimoto et al., 1999).

W/O Restriction Model Modification candi-
dates are restricted by SLUNG. The remaining
is the same as the W/O Grammar Model.

Pair Model Modification candidates are restricted
to three, in the way described in Section 3.1.
The remaining is the same as W/O Grammar
Model.

Triplet/Quadruplet Model This is the model
proposed in the paper. Modification candidates
are restricted to three, and Formula (8) or (9)
are used.

From the result shown in Table 3, we can say
our method contributes to the improvement of our
parser, because of the following reasons:

• The Triplet/Quadruplet Model outperforms the
Pair Model by 0.9%. Both of them restricts
modification candidates to three, but the accu-
racy got higher when all candidates are consid-
ered simultaneously. It is because of the two
advantages described in Section 3.2.

• The Pair Model outperforms the W/O Restric-
tion Model by 0.3%. Thus the restriction of
modification candidates does not reduce the ac-
curacy.

• The W/O Restriction Model outperforms the
W/O Grammar Model by 0.7%. This means
that the use of a grammar as a preprocessor
works well to pick up possible modifiee.

We found that many structures similar to the
ones described in Section 3.2 appeared in the EDR

4Three values: “1”, “from 2 to 5”, “6 or more” are distin-
guished.

In-coverage
sentences

Bunsetsu accuracy 87.08% (8299/9530)
Sentence accuracy 44.70% (493/1103)

Table 4: Accuracy for Kyoto University Corpus

corpus. Our Triplet/Quadruplet model could treat
these structures precisely as we intended. This is the
main factor that contributed to the improvement of
the overall parsing accuracy.

Based on the above experiments, we can say that
our approach to use the grammar as a preprocessor
before the calculating of the probability is appropri-
ate for the improvement of parsing accuracy.

4.3 Comparison to other models
4.3.1 Models using the EDR corpus
There are several works which use the EDR corpus
for evaluation. The decision tree model (Haruno et
al., 1998) achieves around 85%, the integrated model
of lexical/syntactic information (Shirai et al., 1998)
achieves around 86%, and the lexicalized statistical
model (Fujio and Matsumoto, 1999) achieves 86.8%
in bunsetsu accuracy. Our model outperforms all of
them by 2 or 3%.
4.3.2 Models using the Kyoto corpus
Shirai et al. (1998) used the Kyoto University text
corpus (Kurohashi and Nagao, 1997) for evaluation
and achieved around 86%. Uchimoto et al. (2000)
also used the Kyoto corpus, and their accuracy was
87.9%. For comparison, we applied our method to
the same 1,246 sentences that Uchimoto et al. (2000)
used. The result is shown in Table 4.

Our result is worse than theirs. The reason is
thought to be as follows:

• We use the EDR corpus for training. Although
we used around 24 times the amount of train-
ing data that Uchimoto et al. used, our training
data lead to errors in the analysis of the Kyoto
Corpus, because of differences in the annotation
schemes adopted.

• Uchimoto et al. used the correct morphological
analyses, but we used JUMAN. Sometimes this
may cause errors.

• The grammar SLUNG was designed for the
EDR corpus, and some types of structures in
the Kyoto Corpus are not allowed.

Clearly, our parser should be improved to overcome
these problems and compared with other works di-
rectly.

4.4 Discussion and Future Work
The following are some observations about the speed
of our parser. Existing statistical parsers are quite
efficient compared to grammar-based systems. Par-
ticularly, our system used an HPSG-based grammar,



whose speed is said to be slow. However, recent ad-
vances in HPSG parsing (Torisawa et al., 2000) en-
abled us to obtain a unique parse tree with our sys-
tem in 0.5 sec. in average for sentences in the EDR
corpus.

Future work shall extend SLUNG so that semantic
representations are produced. Carroll et al. (1998)
discussed the precision of argument structures. We
believe that the focus of our study will shift from a
shallow level to such a deeper level for our final aim,
realization of intelligent natural language processing
systems.

5 Conclusion
We presented a hybrid parsing scheme that uses a
hand-crafted grammar and a statistical technique.
As other hybrid parsing methods, the statistical
technique is used for picking up the most preferable
parse tree from the parse forest generated by the
grammar. The difference from other works is that
the precise contextual information needed to esti-
mate the likelihood of a parse tree is obtained from
alternative parse trees generated by the grammar,
and that such contextual information from alterna-
tive trees enables us to construct our new statisti-
cal model called the Triplet/Quadruplet model. We
have shown that these points contributed to substan-
tial improvement of parsing accuracy in Japanese de-
pendency analysis, through a series of experiments
using an HPSG-based Japanese grammar SLUNG
and the maximum entropy method.
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