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A b s t r a c t  

We describe a novel technique and imple- 
mented system for constructing a subcate- 
gorization dictionary from textual corpora. 
Each dictionary entry encodes the relative 
frequency of occurrence of a comprehen- 
sive set of subcategorization classes for En- 
glish. An initial experiment, on a sample 
of 14 verbs which exhibit multiple comple- 
mentation patterns, demonstrates that the 
technique achieves accuracy comparable to 
previous approaches, which are all limited 
to a highly restricted set of subcategoriza- 
tion classes. We also demonstrate that a 
subcategorization dictionary built with the 
system improves the accuracy of a parser 
by an appreciable amount 1. 

1 M o t i v a t i o n  

Predicate subcategorization is a key component of 
a lexical entry, because most, if not all, recent syn- 
tactic theories 'project' syntactic structure from the 
lexicon. Therefore, a wide-coverage parser utilizing 
such a lexicalist grammar must have access to an 
accurate and comprehensive dictionary encoding (at 
a minimum) the number and category of a predi- 
cate's arguments and ideally also information about 
control with predicative arguments, semantic selec- 
tion preferences on arguments, and so forth, to allow 
the recovery of the correct predicate-argument struc- 
ture. If the parser uses statistical techniques to rank 
analyses, it is also critical that the dictionary encode 
the relative frequency of distinct subcategorization 
classes for each predicate. 

1This work was supported by UK DTI/SALT 
project 41/5808 'Integrated Language Database', CEC 
Telematics Applications Programme project LE1-211i 
'SPARKLE: Shallow PARsing and Knowledge extraction 
for Language Engineering', and by SERC/EPSRC Ad- 
vanced Fellowships to both authors. We would like to 
thank the COMLEX Syntax development team for al- 
lowing us access to pre-release data (for an early exper- 
iment), and for useful feedback. 

Several substantial machine-readable subcatego- 
rization dictionaries exist for English, either built 
largely automatically from machine-readable ver- 
sions of conventional learners' dictionaries, or manu- 
ally by (computational) linguists (e.g. the Alvey NL 
Tools (ANLT) dictionary, Boguraev et al. (1987); 
the COMLEX Syntax dictionary, Grishman et al. 
(1994)). Unfortunately, neither approach can yield a 
genuinely accurate or comprehensive computational 
lexicon, because both rest ultimately on the manual 
efforts of lexicographers / linguists and are, there- 
fore, prone to errors of omission and commission 
which are hard or impossible to detect automatically 
(e.g. Boguraev & Briscoe, 1989; see also section 3.1 
below for an example). Furthermore, manual encod- 
ing is labour intensive and, therefore, it is costly to 
extend it to neologisms, information not currently 
encoded (such as relative frequency of different sub- 
categorizations), or other (sub)languages. These 
problems are compounded by the fact that predi- 
cate subcategorization is closely associated to lexical 
sense and the senses of a word change between cor- 
pora, sublanguages and/or subject domains (Jensen, 
1991). 

In a recent experiment with a wide-coverage pars- 
ing system utilizing a lexicalist grammatical frame- 
work, Briscoe & Carroll (1993) observed that half 
of parse failures on unseen test data were caused 
by inaccurate subcategorization information in the 
ANLT dictionary. The close connection between 
sense and subcategorization and between subject do- 
main and sense makes it likely that a fully accurate 
'static' subcategorization dictionary of a language is 
unattainable in any case. Moreover, although Sch- 
abes (1992) and others have proposed 'lexicalized' 
probabilistic grammars to improve the accuracy of 
parse ranking, no wide-coverage parser has yet been 
constructed incorporating probabilities of different 
subcategorizations for individual predicates, because 
of the problems of accurately estimating them. 

These problems suggest that automatic construc- 
tion or updating of subcategorization dictionaries 
from textual corpora is a more promising avenue 
to pursue. Preliminary experiments acquiring a few 
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verbal subcategorization classes have been reported 
by Brent (1991, 1993), Manning (1993), and Ush- 
ioda et al. (1993). In these experiments the max- 
imum number of distinct subcategorization classes 
recognized is sixteen, and only Ushioda et al. at- 
tempt  to derive relative subcategorization frequency 
for individual predicates. 

We describe a new system capable of distinguish- 
ing 160 verbal subcategorization classes--a superset 
of those found in the ANLT and COMLEX Syn- 
tax dictionaries. The classes also incorporate infor- 
mation about control of predicative arguments and 
alternations such as particle movement and extra- 
position. We report  an initial experiment which 
demonstrates that  this system is capable of acquir- 
ing the subcategorization classes of verbs and the 
relative frequencies of these classes with compara- 
ble accuracy to the less ambitious extant systems. 
We achieve this performance by exploiting a more 
sophisticated robust statistical parser which yields 
complete though 'shallow' parses, a more compre- 
hensive subcategorization class classifier, and a pri- 
or/ estimates of the probability of membership of 
these classes. We also describe a small-scale ex- 
periment which demonstrates tha t  subcategorization 
class frequency information for individual verbs can 
be used to improve parsing accuracy. 

2 D e s c r i p t i o n  o f  t h e  S y s t e m  

2.1 O v e r v i e w  

The system consists of the following six components 
which are applied in sequence to sentences contain- 
ing a specific predicate in order to retrieve a set of 
subcategorization classes for that  predicate: 

1. A t a g g e r ,  a first-order HMM part-of-speech 
(PoS) and punctuation tag disambiguator, is 
used to assign and rank tags for each word and 
punctuation token in sequences of sentences (El- 
worthy, 1994). 

2. A l e m m a t i z e r  is used to replace word-tag 
pairs with lemma-tag pairs, where a lemma is 
the morphological base or dictionary headword 
form appropriate for the word, given the PoS 
assignment made by the tagger. We use an en- 
hanced version of the G A T E  project stemmer 
(Cunningham et al., 1995). 

3. A p r o b a b i l i s t i c  L R  pa r se r ,  trained on a tree- 
bank, returns ranked analyses (Briscoe &: Car- 
roll, 1993; Carroll, 1993, 1994), using a gram- 
mar written in a feature-based unification gram- 
mar formalism which assigns 'shallow' phrase 
structure analyses to tag networks (or 'lattices') 
returned by the tagger (Briscoe & Carroll, 1994, 
1995; Carroll & Briscoe, 1996). 

4. A p a t t e r n s e t  e x t r a c t o r  which extracts sub- 
categorization patterns, including the syntac- 
tic categories and head lemmas of constituents, 

from sentence subanalyses which begin/end at 
the boundaries of (specified) predicates. 

5. A p a t t e r n  classi f ier  which assigns patterns in 
patternsets to subcategorization classes or re- 
jects patterns as unclassifiable on the basis of 
the feature values of syntactic categories and 
the head lemmas in each pattern.  

6. A p a t t e r n s e t s  e v a l u a t o r  which evaluates sets 
of patternsets gathered for a (single) predicate, 
constructing putative subcategorization entries 
and filtering the latter on the basis of their re- 
liability and likelihood. 

For example, building entries for attribute, and 
given that  one of the sentences in our data  was (la),  
the tagger and lemmatizer return (lb).  

(1) a He attributed his failure, he said, to 
no< blank> one buying his books. 

b he_PPHS1 attribute_VVD his_APP$ fail- 
ure_NN1 ,_, he_PPHS1 say_VVD ,_, to_II 
no<blank>one_PN buy_ VVG his_APP$ 
book_NN2 

(lb) is parsed successfully by the probabilistic LR 
parser, and the ranked analyses are returned. Then 
the patternset extractor locates the subanalyses con- 
taining attribute and constructs a patternset.  The  
highest ranked analysis and pat tern for this example 
are shown in Figure 12 . Patterns encode the value 
of the VSUBCAT feature from the VP rule and the 
head lemma(s) of each argument. In the case of PP  
(I)2) arguments, the pat tern also encodes the value of 
PSUBCAT from the PP  rule and the head lemma(s) 
of its complement(s). In the next stage of process- 
ing, patterns are classified, in this case giving the 
subcategorization class corresponding to transitive 
plus PP with non-finite clausal complement. 

The system could be applied to corpus data  by 
first sorting sentences into groups containing in- 
stances of a specified predicate, but  we use a different 
strategy since it is more efficient to tag, lemmatize 
and parse a corpus just once, extracting patternsets 
for all predicates in each sentence; then to classify 
the patterns in all patternsets; and finally, to sort 
and recombine patternsets into sets of patternsets, 
one set for each distinct predicate containing pat- 
ternsets of just the patterns relevant to tha t  predi- 
cate. The tagger, lemmatizer, grammar and parser 
have been described elsewhere (see previous refer- 
ences), so we provide only brief relevant details here, 
concentrating on the description of the components 

2The analysis shows only category aliases rather than 
sets of feature-value pairs. Ta represents a text adjunct 
delimited by commas (Nunberg 1990; Briscoe ~ Carroll, 
1994). Tokens in the patternset are indexed by sequen- 
tial position in the sentence so that two or more tokens 
of the same type can be kept distinct in patterns. 
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(Tp 
(V2 (N2 he_PPHSI) 

(Vl (V0 attribute_VVD) 
(N2 (DT his_APP$) 

(NI 
(NO (NO failure_NNl) 

(Ta (Pu ,_,) 
(V2 (N2 he_PPHSi) 

(Vl (VO say_VVD))) (Pu , _ , ) ) ) ) )  
(P2 

(PI (P0 to_II) 
(N2 no<blank>one_PN) 

(1 ( ( ( ( h e : l  PPHS1)) 
(VSUBCAT NP_PP) 
( ( a t t r i b u t e : 6  VVD)) 
( ( f a i l u r e : 8  NN1)) 
((PSUBCAT SING) 
((to:9 II)) 
((no<blank>one:lO PN)) 
((buy:ll VVG)))) 

i)) 

(Vl (V0 buy_WG) (N2 (DT his_APP$) (N1 (NO book_NN2))))))))) 

Figure 1: Highest-ranked analysis and patternset for (lb) 

of the system that are new: the extractor, classifier 
and evaluator. 

The grammar consists of 455 phrase structure 
rule schemata in the format accepted by the parser 
(a syntactic variant of a Definite Clause Grammar 
with iterative (Kleene) operators). It is 'shallow' in 
that no atof which thetempt is made to fully anal- 
yse unbounded dependencies. However, the distinc- 
tion between arguments and adjuncts is expressed, 
following X-bar theory (e.g. Jackendoff, 1977), by 
Chomsky-adjunction to maximal projections of ad- 
juncts (XP --* XP Adjunct) as opposed to 'govern- 
ment' of arguments (i.e. arguments are sisters within 
X1 projections; X1 ~ X0 Argl... ArgN). Further- 
more, all analyses are rooted (in S) so the grammar 
assigns global, shallow and often 'spurious' analy- 
ses to many sentences. There are 29 distinct val- 
ues for VSUBCAT and 10 for PSUBCAT; these are 
analysed in patterns along with specific closed-class 
head lemmas of arguments, such as it (dummy sub- 
jects), whether (wh-complements), and so forth, to 
classify patterns as evidence for one of the 160 sub- 
categorization classes. Each of these classes can be 
parameterized for specific predicates by, for exam- 
ple, different prepositions or particles. Currently, 
the coverage of this grammar--the proportion of sen- 
tences for which at least one analysis is found--is 
79% when applied to the Susanne corpus (Sampson, 
1995), a 138K word treebanked and balanced subset 
of the Brown corpus. Wide coverage is important 
since information is acquired only from successful 
parses. The combined throughput of the parsing 
components on a Sun UltraSparc 1/140 is around 
50 words per CPU second. 

2.2 The  Extractor~ Classifier and  Evalua tor  

The extractor takes as input the ranked analyses 
from the probabilistic parser. It locates the subanal- 
yses around the predicate, finding the constituents 
identified as complements inside each subanalysis, 
and the subject clause preceding it. Instances of 

passive constructions are recognized and treated spe- 
cially. The extractor returns the predicate, the 
VSUBCAT value, and just the heads of the comple- 
ments (except in the case of PPs, where it returns 
the PSUBCAT value, the preposition head, and the 
heads of the PP's complements). 

The subcategorization classes recognized by the 
classifier were obtained by manually merging the 
classes exemplified in the COMLEX Syntax and 
ANLT dictionaries and adding around 30 classes 
found by manual inspection of unclassifiable pat- 
terns for corpus examples during development of the 
system. These consisted of some extra patterns for 
phrasM verbs with complex complementation and 
with flexible ordering "of the preposition/particle, 
some for non-passivizable patterns with a surface 
direct object, and some for rarer combinations of 
governed preposition and complementizer combina- 
tions. The classifier filters out as unclassifiable 
around 15% of patterns found by the extractor when 
run on all the patternsets extracted from the Su- 
sanne corpus. This demonstrates the value of the 
classifier as a filter of spurious analyses, as well as 
providing both translation between extracted pat- 
terns and two existing subcategorization dictionar- 
ies and a definition of the target subcategorization 
dictionary. 

The evaluator builds entries by taking the pat- 
terns for a given predicate built from successful 
parses and records the number of observations of 
each subcategorization class. Patterns provide sev- 
eral types of information which can be used to rank 
or select between patterns in the patternset for a 
given sentence exemplifying an instance of a pred- 
icate, such as the ranking of the parse from which 
it was extracted or the proportion of subanalyses 
supporting a specific pattern. Currently, we simply 
select the pattern supported by the highest ranked 
parse. However, we are experimenting with alterna- 
tive approaches. The resulting set of putative classes 
for a predicate are filtered, following Brent (1993), 
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by hypothesis testing on binomial frequency data. 
Evaluating putative entries on binomial frequency 

data  requires tha t  we record the total number of 
patternsets n for a given predicate, and the number 
of these patternsets containing a pattern support- 
ing an entry for given class m. These figures are 
straightforwardly computed from the output  of the 
classifier; however, we also require an estimate of the 
probability that  a pat tern for class i will occur with 
a verb which is not a member of subcategorization 
class i. Brent proposes estimating these probabili- 
ties experimentally on the basis of the behaviour of 
the extractor. We estimate this probability more di- 
rectly by first extracting the number of verbs which 
are members of each class in the ANLT dictionary 
(with intuitive estimates for the membership of the 
novel classes) and converting this to a probability of 
class membership by dividing by the total  number of 
verbs in the dictionary; and secondly, by multiplying 
the complement of these probabilities by the proba- 
bility of a pat tern for class i, defined as the number 
of patterns for i extracted from the Susanne corpus 
divided by the total  number of patterns. So, p(v -i), 
the probability of verb v not of class i occurring with 
a pat tern for class i is: 

p(v -i) = (1- lanl t -verbs- in-e lass- i l  Ipatterns-f °r-il 
lanlt_verbsl ) Ipatternsl 

The binomial distribution gives the probability of an 
event with probability p happening exactly m times 
out of n attempts: 

n! 
P(m, n,p) - m!(n - rn)! pro(1 - p)n-m 

The probability of the event happening m or more 
times is: 

P(m+,n ,p )  = ~ P(i ,n ,p)  
i ~ m  

Thus P(m,n,p(v -i)) is the probability that  m or 
more occurrences of patterns for i will occur with 
a verb which is not a member of i, given n occur- 
rences of tha t  verb. Setting a threshold of less than 
or equal to 0.05 yields a 95% or better  confidence 
that  a high enough proportion of patterns for i have 
been observed for the verb to be in class i 3. 

2.3 D i s c u s s i o n  

Our approach to acquiring subcategorization classes 
is predicated on the following assumptions: 

• most sentences will not allow the application of 
all possible rules of English complementation; 

• some sentences will be unambiguous even given 
the indeterminacy of the grammar4; 

3Brent (1993:249-253) provides a detailed explana- 
tion and justification for the use of this measure. 

4In fact, 5% of sentences in Susanne are assigned only 
a single analysis by the grammar. 

• many incorrect analyses will yield patterns 
which are unclassifiable, and are thus filtered 
out; 

• arguments of a specific verb will occur with 
greater frequency than adjuncts (in potential 
argument positions); 

• the patternset generator will incorrectly output  
patterns for certain classes more often than oth- 
ers; and 

• even a highest ranked pat tern for i is only a 
probabilistic cue for membership of i, so mem- 
bership should only be inferred if there are 
enough occurrences of patterns for i in the data  
to outweigh the error probability for i. 

This simple automated, hybrid linguis- 
tic/statistical approach contrasts with the manual 
linguistic analysis of the COMLEX Syntax lexicog- 
raphers (Meyers et al., 1994), who propose five cri- 
teria and five heuristics for argument-hood and six 
criteria and two heuristics for adjunct-hood, culled 
mostly from the linguistics literature. Many of these 
are not exploitable automatically because they rest 
on semantic judgements which cannot (yet) be made 
automatically: for example, optional arguments are 
often 'understood' or implied if missing. Others are 
syntactic tests involving diathesis alternation possi- 
bilities (e.g. passive, dative movement, Levin (1993)) 
which require recognition that  the 'same' argument, 
defined usually by semantic class / thematic role, is 
occurring across argument positions. We hope to ex- 
ploit this information where possible at a later stage 
in the development of our approach. However, recog- 
nizing same/similar arguments requires considerable 
quantities of lexical data  or the ability to back-off to 
lexical semantic classes. At the moment, we exploit 
linguistic information about  the syntactic type, obli- 
gatoriness and position of arguments, as well as the 
set of possible subcategorization classes, and com- 
bine this with statistical inference based on the prob- 
ability of class membership and the frequency and 
reliability of patterns for classes. 

3 E x p e r i m e n t a l  E v a l u a t i o n  

3.1 L e x i c o n  E v a l u a t i o n  - M e t h o d  

In order to test the accuracy of our system (as de- 
veloped so far) and to provide empirical feedback 
for further development, we took the Susanne, SEC 
(Taylor & Knowles, 1988) and LOB corpora (Gar- 
side et al., 1987)--a total of 1.2 million words--and 
extracted all sentences containing an occurrence of 
one of fourteen verbs, up to a maximum of 1000 
citations of each. These verbs, listed in Figure 2, 
were chosen at random, subject to the constraint 
that  they exhibited multiple complementation pat- 
terns. The sentences containing these verbs were 
tagged and parsed automatically, and the extractor, 
classifier and evaluator were applied to the resulting 
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successful analyses. The citations from which entries 
were derived totaled approximately 70K words. 

The results were evaluated against a merged entry 
for these verbs from the ANLT and COMLEX Syn- 
tax dictionaries, and also against a manual analysis 
of the corpus data for seven of the verbs. The process 
of evaluating the performance of the system relative 
to the dictionaries could, in principle, be reduced to 
an automated report of type precision (percentage of 
correct subcategorization classes to all classes found) 
and recall (perCentage of correct classes found in the 
dictionary entry). However, since there are disagree- 
ments between the dictionaries and there are classes 
found in the corpus data that are not contained in 
either dictionary, we report results relative both to a 
manually merged entry from ANLT and COMLEX, 
and also, for seven of the verbs, to a manual anal- 
ysis of the actual corpus data. The latter analysis 
is necessary because precision and recall measures 
against the merged entry will still tend to yield in- 
accurate results as the system cannot acquire classes 
not exemplified in the data, and may acquire classes 
incorrectly absent from the dictionaries. 

We illustrate these problems with reference to 
seem, where there is overlap, but not agreement 
between the COMLEX and ANLT entries. Thus, 
both predict that seem will occur with a sentential 
complement and dummy subject, but only ANLT 
predicts the possibility of a 'wh' complement and 
only COMLEX predicts the (optional) presence of 
a PP[to] argument with the sentential complement. 
One ANLT entry covers two COMLEX entries given 
the different treatment of the relevant complements 
but the classifier keeps them distinct. The corpus 
data for seem contains examples of further classes 
which we judge valid, in which seem can take a 
PP[to] and infinitive complement, as in he seems to 
me to be insane, and a passive participle, as in he 
seemed depressed. This comparison illustrates the 
problem of errors of omission common to computa- 
tional lexicons constructed manually and also from 
machine-readable dictionaries. All classes for seem 
are exemplified in the corpus data, but for ask, for 
example, eight classes (out of a possible 27 in the 
merged entry) are not present, so comparison only 
to the merged entry would give an unreasonably low 
estimate of recall. 

3 . 2  L e x i c o n  E v a l u a t i o n  - R e s u l t s  

Figure 2 gives the raw results for the merged en- 
tries and corpus analysis on each verb. It shows the 
number of true positives (TP), correct classes pro- 
posed by our system, false positives (FP), incorrect 
classes proposed by our system, and false negatives 
(FN), correct classes not proposed by our system, 
as judged against the merged entry, and, for seven 
of the verbs, against the corpus analysis. It also 
shows, in the final column, the number of sentences 
from which classes were extracted. 

3 6 0  

Precision 
Recall 

Dictionary Corpus 
(14 verbs) (7 verbs) 

65.7% 76.6% 
35.5% 43.4% 

Figure 3: Type precision and recall 

Ranking Accuracy 
ask 75 .O% 
begin 100.0% 
believe 66.7% 
cause 100.0% 
give 70.0% 
seem 75.0% 
swing 83.3% 
Mean 81.4% 

Figure 4: Ranking accuracy of classes 

Figure 3 gives the type precision and recall of 
our system's recognition of subcategorization classes 
as evaluated against the merged dictionary entries 
(14 verbs) and against the manually analysed cor- 
pus data (7 verbs). The frequency distribution of 
the classes is highly skewed: for example for believe, 
there are 107 instances of the most common class in 
the corpus data, but only 6 instances in total of the 
least common four classes. More generally, for the 
manually analysed verbs, almost 60% of the false 
negatives have only one or two exemplars each in 
the corpus citations. None of them are returned by 
the system because the binomial filter always rejects 
classes hypothesised on the basis of such little evi- 
dence. 

In Figure 4 we estimate the accuracy with which 
our system ranks true positive classes against the 
correct ranking for the seven verbs whose corpus in- 
put was manually analysed. We compute this mea- 
sure by calculating the percentage of pairs of classes 
at positions (n, m) s.t. n < m in the system rank- 
ing that are ordered the same in the correct ranking. 
This gives us an estimate of the accuracy of the rel- 
ative frequencies of classes output by the system. 

For each of the seven verbs for which we under- 
took a corpus analysis, we calculate the token recall 
of our system as the percentage (over all exemplars) 
of true positives in the corpus. This gives us an es- 
timate of the parsing performance that would result 
from providing a parser with entries built using the 
system, shown in Figure 5. 

Further evaluation of the results for these seven 
verbs reveals that the filtering phase is the weak 
link in the systerri. There are only 13 true negatives 
which the system failed to propose, each exemplified 
in the data by a mean of 4.5 examples. On the other 
hand, there are 67 false negatives supported by an 
estimated mean of 7.1 examples which should, ide- 



ask 
begin 
believe 
cause 
expect 
find 
give 
help 
like 
move 
produce 
provide 
seem 
swing 
Totals 

Merged Entry  
T P  FP [ FN 

9 0 18 
4 1 7 
4 4 11 
2 3 6 
6 5 3 
5 7 15 
5 2 11 
6 3 8 
3 2 7 
4 3 9 
2 1 3 
3 2 6 
8 1 4 
4 0 10 

65 34 118 

Corpus Data  
T P  FP FN 

9 0 10 
4 1 7 
4 4 8 
2 3 5 

5 2 5 

8 1 4 
4 0 8 

36 11 47 

No. of 
Sentences 

390 
311 
230 

95 
223 
645 
639 
223 
228 
217 
152 
217 
534 

45 
4149 

Figure 2: Raw results for test  of 14 verbs 

ask 
begin 
believe 
cause 
give 
seem 
swing 
Mean 

Token Recall 
78.5% 
73.8% 
34.5% 
92.1% 
92.2% 
84.7% 
39.2% 
80.9% 

Figure 5: Token recall 

ally, have been accepted by the filter, and 11 false 
positives which should have been rejected. The per- 
formance of the filter for classes with less than  10 
exemplars is around chance, and a simple heuris- 
tic of accepting all classes with more than  10 exem- 
plars would have produced broadly similar results 
for these verbs. The filter may well be performing 
poorly because the probabil i ty of generating a sub- 
categorization class for a given verb is often lower 
than  the error probabil i ty for tha t  class. 

3.3 Parsing Evaluation 

In addition to evaluating the acquired subcategoriza- 
tion information against existing lexical resources, 
we have also evaluated the information in the con- 
text  of an actual parsing system. In particular we 
wanted to establish whether the subcategorization 
frequency information for individual verbs could be 
used to improve the accuracy of a parser tha t  uses 
statistical techniques to rank analyses. 

The experiment used the same probabilistic parser 
and tag sequence g rammar  as are present in the 
acquisition system (see references above)- -a l though 
the experiment does not in any way rely on the 

'Baseline' 
Lexicalised 

Mean Recall Precision 
crossings 

1.00 70.7% 72.3% 
0.93 71.4% 72.9% 

Figure 6: GEIG evaluation metrics for parser against 
Susanne bracketings 

parsers or grammars  being the same. We ran- 
domly selected a test  set of 250 in-coverage sen- 
tences (of lengths 3-56 tokens, mean 18.2) from the 
Susanne treebank, retagged with possibly multiple 
tags per word, and measured the 'baseline'  accu- 
racy of the unlexicalized parser on the sentences us- 
ing the now standard PARSEVAL/GEIG evaluation 
metrics of mean crossing brackets per sentence and 
(unlabelled) bracket recall and precision (e.g. Gr- 
ishman et al., 1992); see figure 65. Next,  we col- 
lected all words in the test  corpus tagged as possi- 
bly being verbs (giving a total  of 356 distinct lem- 
mas) and retrieved all citations of them in the LOB 
corpus, plus Susanne with the 250 test  sentences 
excluded. We acquired subcategorization and as- 
sociated frequency information from the citations, 
in the process successfully parsing 380K words. We 
then parsed the test set, with each verb subcate- 
gorization possibility weighted by its raw frequency 
score, and using the naive add-one smoothing tech- 
nique to allow for omit ted possibilities. The  GEIG 
measures for the lexicalized parser show a 7% im- 
provement in the crossing bracket score (figure 6). 
Over the existing test  corpus this is not statisti- 

5Carroll & Briscoe (1996) use the same test set, al- 
though the baseline results reported here differ slightly 
due to differences in the mapping from parse trees to 
Susanne-compatible bracketings. 
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cally significant at the 95% level (paired t-test, 1.21, 
249 dr, p = 0.11)--although if the pattern of differ- 
ences were maintained over a larger test set of 470 
sentences it would be significant. We expect that 
a more sophisticated smoothing technique, a larger 
acquisition corpus, and extensions to the system to 
deal with nominal and adjectival predicates would 
improve accuracy still further. Nevertheless, this 
experiment demonstrates that lexicalizing a gram- 
mar/parser with subcategorization frequencies can 
appreciably improve the accuracy of parse ranking. 

4 R e l a t e d  W o r k  

Brent's (1993) approach to acquiring subcategoriza- 
tion is based on a philosophy of only exploiting un- 
ambiguous and determinate information in unanal- 
ysed corpora. He defines a number of lexical pat- 
terns (mostly involving closed class items, such as 
pronouns) which reliably cue one of five subcatego- 
rization classes. Brent does not report comprehen- 
sive results, but for one class, sentential complement 
verbs, he achieves 96% precision and 76% recall at 
classifying individual tokens of 63 distinct verbs as 
exemplars or non-exemplars of this class. He does 
not attempt to rank different classes for a given verb. 

Ushioda et al. (1993) utilise a PoS tagged corpus 
and finite-state NP parser to recognize and calcu- 
late the relative frequency of six subcategorization 
classes. They report an accuracy rate of 83% (254 
errors) at classifying 1565 classifiable tokens of 33 
distinct verbs in running text and suggest that in- 
correct noun phrase boundary detection accounts for 
the majority of errors. They report that for 32 verbs 
their system correctly predicts the most frequent 
class, and for 30 verbs it correctly predicts the sec- 
ond most frequent class, if there was one. Our sys- 
tem rankings include all classes for each verb, from 
a total of 160 classes, and average 81.4% correct. 

Manning (1993) conducts a larger experiment, 
also using a PoS tagged corpus and a finite-state 
NP parser, attempting to recognize sixteen distinct 
complementation patterns. He reports that for a test 
sample of 200 tokens of 40 verbs in running text, the 
acquired subcategorization dictionary listed the ap- 
propriate entry for 163 cases, giving a token recall of 
82% (as compared with 80.9% in our experiment). 
He also reports a comparison of acquired entries for 
the verbs to the entries given in the Oxford Advanced 
Learner's Dictionary of Current English (Hornby, 
1989) on which his system achieves a precision of 
90% and a recall of 43%. His system averages 3.48 
subentries (maximum 10)--less then half the num- 
ber produced in our experiment. It is not clear what 
level of evidence the performance of Manning's sys- 
tem is based on, but the system was applied to 4.1 
million words of text (c.f. our 1.2 million words) and 
the verbs are all common, so it is likely that consid- 
erably more exemplars of each verb were available. 

5 C o n c l u s i o n s  a n d  F u r t h e r  W o r k  

The experiment and comparison reported above sug- 
gests that our more comprehensive subcategoriza- 
tion class extractor is able both to assign classes 
to individual verbal predicates and also to rank 
them according to relative frequency with compa- 
rable accuracy to extant systems. We have also 
demonstrated that a subcategorization dictionary 
built with the system can improve the accuracy of a 
probabilistic parser by an appreciable amount. 

The system we have developed is straightfor- 
wardly extensible to nominal and adjectival pred- 
icates; the existing grammar distinguishes nominal 
and adjectival arguments from adjuncts structurally, 
so all that is required is extension of the classi- 
fier. Developing an analogous system for another 
language would be harder but not infeasible; sim- 
ilar taggers and parsers have been developed for a 
number of languages, but no extant subcategoriza- 
tion dictionaries exist to our knowledge, therefore 
the lexical statistics we utilize for statistical filter- 
ing would need to be estimated, perhaps using the 
technique described by Brent (1993). However, the 
entire approach to filtering needs improvement, as 
evaluation of our results demonstrates that it is the 
weakest link in our current system. 

Our system needs further refinement to nar- 
row some subcategorization classes, for example, to 
choose between differing control options with pred- 
icative complements. It also needs supplementing 
with information about diathesis alternation pos- 
sibilities (e.g. Levin, 1993) and semantic selection 
preferences on argument heads. Grishman & Ster- 
ling (1992), Poznanski & Sanfilippo (1993), Resnik 
(1993), Ribas (1994) and others have shown that it 
is possible to acquire selection preferences from (par- 
tially) parsed data. Our system already gathers head 
lemmas in patterns, so any of these approaches could 
be applied, in principle. In future work, we intend to 
extend the system in this direction. The ability to 
recognize that argument slots of different subcatego- 
rization classes for the same predicate share seman- 
tic restrictions/preferences would assist recognition 
that the predicate undergoes specific alternations, 
this in turn assisting inferences about control, equi 
and raising (e.g. Boguraev & Briscoe, 1987). 
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