
USING NATURAL LANGUAGE DESCRIPTIONS TO IMPROVE THE USABILITY OF DATABASES

Carole D. Hafner
John D. Joyce

Computer Science Department
General Motors Research Laboratories

Warren, MI ~8090

ABSTRACT

This paper describes the REGIS extended co~nd
language, a relational data fan&c/age that
allows users to name and describe database
objects using natural language phrases. REGIS
accepts multlple-word phrases as the names of
tables and columns (unlike most systems, which
restrict these names to a few characters). An
extended command parser uses a network-
structured dictionary to recognize multl-word
names, even if some of the words are missing or
out of order, and to prompt the user if an
ambiguous name is entered. REGIS also provides
facilities for attaching descriptive text to
database objects, which can be displayed on-
line or included in printed reports. Initial
data from a few databases indicate that users
choose to take advantage of the naturalness of
multl-word descriptions when this option is
available.

I INTRODUCTION

The REGIS extended command language is a
relational data language that allows users to
name and describe database objects using na-
tural language phrases. REGIS [4] is an inter-
active data management system that has been in
use at General Motors since 1975. The system
is designed to be easy for non-progrs~nmers to
understand, and it has given many people their
first hands-on experience with computers.

A REGIS database consists of a hierarchical
structure of named objects: one or more files,
each containing zero or more tables, each com-
posed of zero or more columns of data. REGIS
users can create, query, or modify database
objects interactively, using simple keyword-
based relational conLmands, such as the
following:

BLUES = SUBSET TABLE1 WHERE COLOR = BLUE
(creates a new table from selected rows
of an existing one)

RESULTS = PROJECTION BLUES TYPE ITEM COST
(creates a new table from specified
columns of an existing one)

LIST RESULTS
(lists a table at the terminal)

Future research directions for REGIS are aimed

at developing natural language capabilities
that will make computer databases easier to
understand and access.

The usability of database query languages
has been recognized as an important problem
(Codd [i], Greenblatt and Wax~nan [2], Welty and
Stemple [5]); however, a closely related issue
that has not been addressed is the usability of
the data itself. In order to interact with a
database effectively, users must be able to
understand and refer to the objects in the
database. Current database systems restrict
the names of database objects to a few char-
acters, which can lead to cryptic abbreviations
that are difficult to understand and remember.
Documentation facilities (if they exist at all)
are not designed to be accessed interactively.
The need to refer to external sources for des-
criptive information, and the need to remember
cryptic abbreviations, are obstacles to usabi-
lity that are especially disruptive to the new
or occasional user of a database.

To provide a more supportive environment for
data management, a new commana interface has
been added to REGIS, which accepts multiple-
word phrases as the names of tables and
columns, and which also provides on-line
documentation capabilities. Multiple-wore
names can be up to 40 characters long, instead
of the previous REGIS limit of 8 characters.
"Comment" data consisting of descriptive text
can be attached to files, tables, or columns.
Users can display the co~ents for parLs of the
database: e.g., for all the tables in a file,
for a particular table, for a table and all zf
its columns, or for a particular column. Taoie
names, column names, and comments can De
created, queriea, and changed interactively.

II A FLEXIBLE PROCEDURE FOR NAME RECOGNITION

A straightforward implementation of multi-
word names for database objects woulc not be
practical, since it would significantly in-
crease the amount of typing required during
contmand input. Commands would become much
longer, leading to slow and tedious inter-
action, and increasing the number of typing
errors. To solve this problem, a flexible
recognition procedure is used in REGIS, which
recognizes multi-word names even if some of the

132

Data from Original Version of REGIS

DESIRE SIXMONTH TZMEKEEP MAKESERS SZPURCH PLNTOVST

5 15 128 18 5
3 17 59 13 5

Data from E x t e n d e d Version of REGIS

PROBABILITY HOW LONG MAKE AND SIZE OF PLAN VISIT
OF BUYING DO YOU SERIES YOU CAR YOU TO DEALER

DESIRE A WITHIN SIX KEEP A NEW PLAN TO PLAN TO IN NEXT
CAR? MONTHS CAR? PURCHASE PURCHASE TWO WEEKS?

5 5 15 128
3 3 17 59

18 5
13 5

Figure i. Comparison of Slr~le-word and Multi-Word Column Names.

words are missing or out of order. Users are
able to refer to database objects by speclfylr~
any part of the name: for example, if the name
of an object is "RESULTS OF FIRST TEST", the
user can enter "FIRST TEST", "TEST RESULTS",
"FIRST RESULTS", or just "RESULTS", and the
object will be located. If an ambiguous name
is entered, the user is prompted with a list of
choices and asked to select one.

Figure 1 shows part of a REGIS table, for an
application that was converted from the origi-
nal version of REGIS to the extended command
version. Each column in the table represents a
question that was asked in a survey of consumer
attitudes. The table illustrates both the
difficulty of finding descriptive abbreviations
for data in some applications, and the impor-
tance of the flexible recognition procedure to
the success of the system (users would be un-
likely to use long, descriptive names if they
were not able to refer to them more briefly
when typing commands).

Flexible recognition of names provides a
user-friendly environment for data management,
where a user is not required to know the exact
names of database objects. If a REGIS user
enters the command "LIST SURVEY" and there are
several surveys in the database, the system
will display the following:

"SURVEY" IS AMBIGUOUS. PLEASE SELECT ONE
ALTERNATIVE:

i - MARCH 1979 CONSUMER SURVEY
2 - SURVEY OF i00 CHEVROLET OWNERS
3 - JANUARY 1981 CONSUMER SURVEY
!I- CANCEL THIS COMMAND

The user may have forgotten the exact name of
the table he or she wanted to use, or may not
have realized that there were several surveys
in the database. If the llst of table names
does not provide enough1 information to select
the correct one, the user can cancel the
command and examlne the database further by
displaying "Comment" data. (See Section IV for
a dlsoussion of the comment feature.)

III PARSING COMMANDS WITH MULTI-WORD NAMES

The implementation of flexible name
recosnltlon in REGIS has required significant
extension Of both the relational database
schema and the command parser. The schema has
been extended to include a network-structured
application dictionary, containing all of the
words that occur in the user's table and column
names. Each word has "TABLE" links connecting
it tO the tables it describes, and "COLUMN"
links connecting it to the columns it descri-
bes. A name recognition algorithm (described
in Hafner [3]) traverses these links to deter-
mine what object the user is referring to.
When an ambiguous reference is entered, the
algorithm returns a list of potential choices
to be displayed.

There are two areas in which the REGIS com-
mand parser uses computational linguistic tech-
niques to help it behave more intelligently: in
segmenting command strings into distinct para-
meters; and in restricting the choices for an
ambiguous reference. Both of these capaoili-
ties depend on the use of a command language
grammar, which tells the parser what kind of
object it is l ook ing for at each point in the

133

LIST 1979 CONSUMER SURVEY, PERSONAL ECONOMY TODAY, COMMENT

COLUMN: PERSONAL ECONOMY TODAY
WHAT IS YOUR PERSONAL ECONOMIC SITUATION TODAY,
COMPARED WITH WHAT IT WAS ONE YEAR AGO?

i MUCH BETTER OFF
2 SOMEWHAT BETTER OFF
3 ABOUT THE S~24E

SOMEWHAT WORSE OFF
5 MUCH WORSE OFF
6 DO NOT KNOW

Figure 2. LAsting of Comment Data.

parsing process: a table name, a column name, a
command name, a keyword parameter from a fixed
set, or a numeric parameter. The command lan-
guage grammar is also used to generate more
explicit error feedback than was possible in
the previous version of REGIS.

Knowledge of both the command language
syntax and the extended database schema is
required to determine how the input should be
segmented. In ordinary database query lan-
guages, segmenting a command string into para-
meters is not a problem; each word or "token"
represents one object. Using multi-word names,
however, the system cannot use blanks as deli-
miters. (Requiring other delimiters, such as
commas or semi-colons, was rejected as being
too inconvenient for users.) When the command
parser is looking for a table or column name,
it invokes the name recognition algorithm; when
the parser is looking for a REGIS keyword or
other value, it reverts to the token processing
mode.

In selecting choices for an ambiguous
reference, REGIS uses knowledge about both the
syntax and the semantics of the command
language: in many REGIS commands, a table name
appears in one place in the command, and column
names from that table appear in other
positions. When this occurs, the co.and parser
knows that the column names should only be
compared with other columns in the given table;
it will not find ambiguities with columns from
other tables.

IV CREATING AND DISPLAYING COMMENT DATA

The comment feature of REGIS allows
descriptive.text to be incorporated into a
database and displayed on request. Comments
are created and attached to a database object
by entering the command that is normally used

to create the object, followed by the keyword
COF~NT, followed by an unrestricted amount of
text. The commands shown below would cause the
text following the keyword COMMENT to De
attached to a file, a table, and a column,
respectively:

DEFINE FILE1 COMMENT
TABLE CHEVY OWNERS CO~MENT . . .
COLUMN CHEVY OWNERS, DATE OF LAST

PURCHASE, COMMENT • • •

To display the comments for a database
object, the LIST command is used. The commands:

LIST FILES
LIST CHEVY OWNERS COM~ENT
LIST CHEVY OWNERS, LAST PURCHASE

DATE, COMMENT

would display the comments created by the
previous com~k~nds. (File comments are listed
by default.) Figure 2 shows the comment for
one column of the survey database described An
Section II. The comment tells exactly what
question was asked of the respondents, and
shows how their answers were encoded in the
database.

V USE OF THE SYSTEM

Both the original version of REGIS and the
extended co~nd version are in production use
at General Motors. Initial data from a few
databases indicate that users choose to take
advantage of the naturalness of multi-word
descriptions when this option is available. In
a sample of applications running on the
original version of REGIS, we found that only
35% of the column names were English words, as
compared with 935 for the extended version.
The average number of words per column name in
the extended version was 2.4. (This result may

i)4

be biased in favor of English words, since the
users of the new version were aware that they
were part of an experiment.)

In/ormal contact with users indicates that
the ability to incorporate descriptive comments
i n t o a database is a useful feature which con-
tributes to the overall task of information
management. Several users of the original
version of REGIS have decided to change over to
the new version in order to take advantage of
the on-llne doc,--entatlon capability.

We expected that the potential for ambiguous
references would cause some difficulties (and
perhaps objections) on the part of users; how-
ever, these difficulties have not occurred.
Referring to a database object by a subset of
the words in its name is a concept that users
understand and are able to manipulate (some-
times rather inEeniously) to create applica-
tions that are responsive to their needs.

VI CONCLUSIONS

The REGIS extended command language Incor-
porates natural lansuage descriptions into a
user's database in a flexible and easy-to-use
manner. The recognltlon of partly-specified
names and the ability to recover from ambiguity
are features that are not found in other data
management systems.

REGIS does not have the power o f a n a t u r a l
language understanding system; syntactic var-
iants of object names will only be reco~ized
if they contain the same words as the original
name, and syntactic variants of commands are
not supported at all. However, on the positive
side, REGIS does not require a linguist or
database administrator to explicitly create an
application dictionary; the dictionary is
created automatically by the system, and is
updated dynamically when users add, delete, or
rename objects.

The REGIS extended command language required
approximately two work-years of effort to deve-
lop, much of it devoted to integrating the
extended capabilities into the REGIS production
environment. The project's goal, to deliver a
limited capability for English language des-
cription directly into the hands of users, has
been accomplished. Future studies of the use of
this facility in the production environment
will provide feedback on the linguistic habits
and priorities of database users.

VII ACKNOWLEDGEMENTS

The REGIS extended command language was
originally proposed by William S. Mark, and he
contributed substantially to the design of the
system.

VIII REFERENCES

1. Codd, E. F . , "Seven Steps to Rendezvous
w i th the Casual User . " Research Report RJ
1333, IBM Thomas J . Watson Research Center ,
Yorktown Heights, NY (1971).

2. Greenblatt, D. and Waxman, J., "A Study of
Three Database Query Languages." In
Databases: Improving Usability and Res
77-97. Edited by B. Schnelderman. Academic
Press, N¥ (1978).

3. Hafner, C., "Incorporating English
Descriptions into a Relational Database."
Information Systems, Vol. 7 No. 2. (1982).

4. Joyce, J. D. and Oliver, N. N., "REGIS - A
Relational Information System with Graphics
and Statistics." In Prooeedln~s of the
National Computer Conference, pp. 839-8,~.
AFIPS Press (1976).

5. Welty, C. and Stemple, D. W., "A Human
Factors Comparison of a Procedural and a
Nonprocedural Query Language." Res@arch
Report TR 78-2U, Computer and Information
Sciences Deparment, University of
Massachusetts, Amherst MA (1978).

135

