
Removing Left Recurs ion from Context-Free Grammars

R o b e r t C. M o o r e
M i c r o s o f t R e s e a r c h
O n e M i c r o s o f t W a y

R e d m o n d , W a s h i n g t o n 98052
bobmoore @microsof t . corn

A b s t r a c t

A long-standing issue regarding algorithms that ma-
nipulate context-free grammars (CFGs) in a "top-
down" left-to-right fashion is that left recursion can
lead to nontermination. An algorithm is known
that transforms any CFG into an equivalent non-
left-recursive CFG, but the resulting grammars are
often too large for practical use. We present a new
method for removing left recursion from CFGs that
is both theoretically superior to the standard algo-
rithm, and produces very compact non-left-recursive
CFGs in practice.

1 I n t r o d u c t i o n

A long-standing issue regarding algorithms that ma-
nipulate context-free grammars (CFGs) in a "top-
down" left-to-right fashion is that left recursion can
lead to nontermination. This is most familiar in the
case of top-down recursive-descent parsing (Aho et
al., 1986, pp. 181-182). A more recent motivation
is that off-the-shelf speech recognition systems are
now available (e.g., from Nuance Communications
and Microsoft) that accept CFGs as language models
for constraining recognition; but as these recogniz-
ers process CFGs top-down, they also require that
the CFGs used be non-left-recursive.

The source of the problem can be seen by consid-
ering a directly left-recursive grammar production
such as A -4 As. Suppose we are trying to parse,
or recognize using a speech recognizer, an A at a
given position in the input. If we apply this pro-
duction top-down and left-to-right, our first subgoal
will be to parse or recognize an A at the same input
position. This immediately puts us into an infinite
recursion. The same thing will happen with an indi-
rectly left-recursive grammar, via a chain of subgoals
that will lead us from the goal of parsing or recogniz-
ing an A at a given position to a descendant subgoal
of parsing or recognizing an A at that position.

In theory, the restriction to non-left-recursive
CFGs puts no additional constraints on the lan-
guages that can be described, because any CFG
can in principle be transformed into an equivalent
non-left-recursive CFG. However, the s tandard algo-

ri thm for carrying out this transformation (Aho et
al., 1986, pp. 176-178) (Hopcroft and Ullman, 1979,
p. 96)--a t t r ibuted to M. C. Panll by Hopcroft and
Ullman (1979, p. 106)--can produce transformed
grammars that are orders of magnitude larger than
the original grammars. In this paper we develop a
number of improvements to Panll's algorithm, which
help somewhat but do not completely solve the prob-
lem. We then go on to develop an alternative ap-
proach based on the left-corner grammar transform,
which makes it possible to remove left recursion with
no significant increase in size for several grammars
for which Paull's original algorithm is impractical.

2 N o t a t i o n a n d T e r m i n o l o g y

Grammar nonterminals will be designated by "low
order" upper-case letters (A, B, etc.); and termi-
nals will be designated by lower-case letters. We
will use "high order" upper-case letters (X, Y, Z)
to denote single symbols that could be either ter-
minals or nonterminals, and Greek letters to denote
(possibly empty) sequences of terminals and/or non-
terminals. Any production of the form A --4 a will
be said to be an A-production, and a will be said to
be an expansion of A.

We will say that a symbol X is a direct left corner
of a nonterminal A, if there is an A-production with
X as the left-most symbol on the right-hand side.
We define the left-corner relation to be the reflexive
transitive closure of the direct-left-corner relation,
and we define the proper-left-corner relation to be
the transitive closure of the direct-left-corner rela-
tion. A nonterminal is left recursive if it is a proper
left corner of itself; a nonterminal is directly left re-
cursive if it is a direct left corner of itself; and a
nonterminal is indirectly left recursive if it is left re-
cursive, but not directly left recursive.

3 T e s t G r a m m a r s

We will test the algorithms considered here on three
large, independently-motivated, natural-language
grammars. The CT grammar 1 was compiled into
a CFG from a task-specific unification grammar

1Courtesy of John Dowding, SRI International

249

Grammar size
Terminals
Nonterminals
Productions
LR nonterminals
Productions for LR nonterminals

Toy CT ATIS P T
Grammar Grammar Grammar Grammar

88
40
16
55

4
27

55,830
1,032
3,946

24,456
535

2,211

16,872
357
192

4,592
9

1,109

67,904
47
38

15,039
33

14,993

Table 1: Grammars used for evaluation.

written for CommandTalk (Moore et al., 1997), a
spoken-language interface to a military simulation
system. The ATIS grammar was extracted from an
internally generated treebank of the DARPA ATIS3
training sentences (Dahl et al., 1994). The P T gram-
mar 2 was extracted from the Penn Treebank (Mar-
cus et al., 1993). To these grammars we add a small
"toy" grammar, simply because some of the algo-
rithms cannot be run to completion on any of the
"real" grammars within reasonable t ime and space
bounds.

Some statistics on the test grammars are con-
tained in Table 1. The criterion we use to judge
effectiveness of the algorithms under test is the size
of the' resulting grammar, measured in terms of the
total number of terminal and nonterminal symbols
needed to express the productions of the grammar.
We use a slightly nonstandard metric, counting the
symbols as if, for each nonterminal, there were a
single production of the form A --+ a l I . .- [a,~.
This reflects the size of files and da ta structures typ-
ically used to store grammars for top-down process-
ing more accurately than counting a separate occur-
rence of the left-hand side for each distinct right-
hand side.

It should be noted that the CT grammar has a
very special property: none of the 535 left recursive
nonterminals is indirectly left recursive. The gram-
mar was designed to have this property specifically
because Paull's algorithm does not handle indirect
left recursion well.

It should also be noted that none of these gram-
mars contains empty productions or cycles, which
can cause problems for algorithms for removing left
recursion. It is relatively easy to trasform an arbi-
t rary CFG into an equivalent grammar which does
not contain any of the probelmatical cases. In its
initial form the P T grammar contained cycles, but
these were removed at a cost of increasing the size
of the grammar by 78 productions and 89 total sym-
bols. No empty productions or cycles existed any-
where else in the original grammars.

2Courtesy of Eugene Charniak, Brown University

4 Paull's Algorithm

Panll's algorithm for eliminating left recursion from
CFGs attacks the problem by an iterative procedure
for transforming indirect left recursion into direct
left recursion, with a subprocedure for eliminating
direct left recursion, This algorithm is perhaps more
familiar to some as the first phase of the textbook
algorithm for transfomrming CFGs to Greibach nor-
real form (Greibach, 1965). 3 The subprocedure to
eliminate direct left recursion performs the following
transformation (Hopcroft and UUman, 1979, p. 96):

Let

A Aa11... IAa

be the set of all directly left recursive A-
productions, and let

I/?s
be the remaining A-productions. Replace
all these productions with

A --+/71 [/ ? IA ' [. . . [/?8 [/?sA' ,

and

A' --+ az [a l A ' [. . . I as [a s A ' ,

where A ~ is a new nonterminal not used
elsewhere in the grammar.

This transformation is embedded in the full algo-
ri thm (Aho et al., 1986, p. 177), displayed in Fig-
ure 1.

The idea of the algorithm is to eliminate left re-
cursion by transforming the grammar so that all the
direct left corners of each nonterminal strictly follow
that nonterminal in a fixed total ordering, in which
case, no nonterminal can be left recursive. This is
accomplished by iteratively replacing direct left cor-
ners that precede a given nonterminal with all their
expansions in terms of other nonterminals tha t are
greater in the ordering, until the nonterminal has
only itself and greater nonterminals as direct left

3This has led some readers to a t t r ibute the algorithm to
Greibach, but Greibach's original method was quite different
and much more complicated.

250

Assign an ordering A 1 , . . . , A,~ to the nonterminals of the grammar.

for i := 1 to n do begin
for j :-- 1 to i - 1 do begin

for each production of the form Ai ~ Aja do begin
remove Ai -+ Aja from the g rammar
for each production of the form Aj -~/~ do begin

add Ai --~/~a to the g rammar
end

end
end
transform the Ai-productions to eliminate direct left recursion

end

Figure 1: Paull 's algorithm.

Grammar Description Grammar Size
original toy g rammar 88
PA, "best" ordering 156
PA, lexicographical ordering 970
PA, "worst" ordering 5696

Table 2: Effect of nonterminal ordering on Paull 's algorithm.

corners. Any direct left recursion for that nonter-
minal is then eliminated by the first t ransformation
discussed.

The difficulty with this approach is that the it-
erated substitutions can lead to an exponential in-
crease in the size of the grammar . Consider the
g rammar consisting of the productions Az -+ 0 I 1,
plus Ai+z -+ AiO I Ail for I < i < n. I t is easy to see
that Paull 's algorithm will t ransform the g rammar
so that it consists of all possible Ai-productions with
a binary sequence of length i on the right-hand side,
for 1 < i < n, which is exponentially larger than
the original grammar. Notice tha t the efficiency of
PauU's algorithm crucially depends on the ordering
of the nonterminals. If the ordering is reversed in
the g rammar of this example, Paull 's algorithm will
make no changes, since the g rammar will already
satisfy the condition that all the direct left corners
of each nonterminal strictly follow that nonterminal
in the revised ordering. The textbook discussions of
Paull 's algorithm, however, are silent on this issue.

In the inner loop of Panll 's algorithm, for nonter-
minals Ai and Aj, such tha t i > j and Aj is a direct
left corner of Ai, we replace all occurrences of Aj as a
direct left corner of Ai with all possible expansions
of Aj. This only contributes to elimination of left
recursion from the g rammar if Ai is a left-recursive
nonterminal, and Aj]ies on a pa th that makes Ai
left recursive; that is, if Ai is a left corner of A3 (in

addition to Aj being a left corner of Ai). We could
eliminate replacements that are useless in removing
left recursion if we could order the nonterminals of
the g rammar so that, if i > j and Aj is a direct left
corner of Ai, then Ai is also a left corner of Aj. We
can achieve this by ordering the nonterminals in de-
creasing order of the number of distinct left corners
they have. Since the left-corner relation is transitive,
if C is a direct left corner of B, every left corner of
C is also a left corner o f /3 . In addition, since we
defined the left-corner relation to be reflexive, B is a
left corner of itself. Hence, if C is a direct left corner
of B, it must follow B in decreasing order of number
of distinct left corners, unless B is a left corner of
C.

Table 2 shows the effect on Paull 's algorithm of
ordering the nonterminals according to decreasing
number of distinct left corners, with respect to the
toy grammar. 4 In the table, "best" means an or-
dering consistent with this constraint. Note that
if a g rammar has indirect left recursion, there will
be multiple orderings consistent with our constraint,
since indirect left recursion creates cycles in the the
left-corner relation, so every nonterminal in one of
these cycles will have the same set of left corners.
Our "best" ordering is simply an arbitrari ly chosen

4As mentioned previously, grammar sizes are given in
terms of total terminal and nonterminal symbols needed to
express the grammar.

251

original grammar
PA
LF
LF+PA
L F + N L R G + P A

CT Grammar ATIS Grammar
55,830
62,499
54,991
59,797
57,924

16,872
> 5,000,000

11,582
2,004,473

72,035

P T Grammar
67,904

> 5,000,000
37,811

> 5,000,000
> 5,000,000

Table 3: Grammar size comparisons with Panll 's algorithm variants

ordering respecting the constraint; we are unaware
of any method for finding a unique best ordering,
other than trying all the orderings respecting the
constraint.

As a neutral comparison, we also ran the algo-
ri thm with the nonterminals ordered lexicographi-
cally. Finally, to test how bad the algorithm could
be with a really poor choice of nonterminal ordering,
we defined a "worst" ordering to be one with increas-
ing numbers of distinct left corners. It should be
noted that with either the lexicographical or worst
ordering, on all of our three large grammars Panll 's
algorithm exceeded a cut-off of 5,000,000 grammar
symbols, which we chose as being well beyond what
might be considered a tolerable increase in the size
of the grammar.

Let PA refer to Paull 's algorithm with the non-
terminals ordered according to decreasing number
of distinct left corners. The second line of Table 3
shows the results of running PA on our three large
grammars. The CT grammar increases only mod-
estly in size, because as previously noted, it has no
indirect left recursion. Thus the combinatorial phase
of Paull's algorithm is never invoked, and the in-
crease is solely due to the transformation applied to
directly left-recursive productions. With the ATIS
grammar and P T grammar, which do not have this
special property, Panll 's algorithm exceeded our cut-
off, even with our best ordering of nonterminals.

Some additional optimizations of Panll's aglo-
rithm are possible. One way to reduce the num-
ber of substitutions made by the inner loop of the
algorithm is to "left factor" the grammar (Aho et
al., 1986, pp. 178-179). The left-factoring transfor-
mation (LF) applies the following grammar rewrite
schema repeatedly, until it is no longer applicable:

LF: For each nonterminal A, let a be the
longest nonempty sequence such that there
is more than one grammar production of
the form A --+ a~. Replace the set of all
productions

A - + a f t 1 , . . . , A - + a ~ n

with the productions

A -+ a A ' , A ' --~ i l l , . . . , A ' --~ fin,

where A' is a new nonterminal symbol.

With left factoring, for each nonterminal A there will
be only one A-production for each direct left corner
of A, which will in general reduce the number of
substitutions performed by the algorithm.

The effect of left factoring by itself is shown in
the third line of Table 3. Left factoring actually re-
duces the size of all three grammars, which may be
unintuitive, since left factoring necessarily increases
the number of productions in the grammar. How-
ever, the transformed productions axe shorter, and
the grammar size as measured by total number of
symbols can be smaller because common left factors
are represented only once.

The result of applying PA to the left-factored
grammars is shown in the fourth line of Table 3
(LF+PA). This produces a modest decrease in the
size of the non-left-recursive form of the CT gram-
mar, and brings the nomleft-recursive form of the
ATIS grammar under the cut-off size, but the non-
left-recursive form of the P T grammar still exceeds
the cut-off.

The final optimization we have developed for
Paull 's algorithm is to transform the grammar to
combine all the non-left-recursive possibilities for
each left-recursive nonterminal under a new nonter-
minal symbol. This transformation, which we might
call "non-left-recursion grouping" (NLRG), can be
defined as follows:

NLRG: For each left-recursive nontermi-
nal A, let a l , . . . , a n be all the expansions
of A that do not have a left recursive non-
terminal as the left most symbol. If n > 1,
replace the set of productions

A -~ a l , . . . , A --~ a,~

with the productions

A ~ A ~,A ~ a l , . . . , A ~ - ~ a n ,

where A t is a new nonterminal symbol.

Since all the new nonterminals introduced by this
transformation will be non-left-recursive, Paull's al-
gorithm with our best ordering will never substitute
the expansions of any of these new nonterminals into
the productions for any other nonterminal, which
in general reduces the number of substitutions the
algorithm makes. We did not empirically measure

252

original g rammar
LF
L F + N L R G + P A
LC
LCLR
L F ÷ L C L n
L F + N L R G + L C L R

CT Grammar ATIS Grammar P T Grammar
55,830
54,991
57,924

762,576
60,556
58,893
57,380

16,872
11,582
72,035

287,649
40,660
13,641
12,243

67,904
37,811

> 5,000,000
1,567,162
1,498,112

67,167
50,277

Table 4: Gram m ar size comparisons for LC transform variants

the effect on g rammar size of applying the NLRG
transformation by itself, but it is easy to see that
it increases the g rammar size by exactly two sym-
bols for each left-recursive nontermina] to which it
is applied. Thus an addition of twice the number of
left-recursive nontermina]s will be an upper bound
on the increase in the size of the grammar, but since
not every left-recursive nonterminal necessarily has
more than one non-left-recursive expansion, the in-
crease may be less than this.

The fifth line of Table 3 (L F + N L R G + P A) shows
the result of applying LF, followed by NLRG, fol-
lowed by PA. This produces another modest de-
crease in the size of the non-left-recursive form of
the CT g rammar and reduces the size of the non-
left-recursive form of the ATIS grammar by a factor
of 27.8, compared to LF÷PA. The non-left-recursive
form of the P T g rammar remains larger than the
cut-off size of 5,000,000 symbols, however.

5 L e f t - R e c u r s i o n E l i m i n a t i o n B a s e d
o n t h e L e f t - C o r n e r T r a n s f o r m

An alternate approach to eliminating left-recursion
is based on the left-corner (LC) g rammar transform
of Rosenkrantz and Lewis (1970) as presented and
modified by Johnson (1998). Johnson's second form
of the LC transform can be expressed as follows, with
expressions of the form A-a, A - X , and A - B being
new nonterminals in the transformed grammar:

1. If a terminal symbol a is a proper left corner of
A in the original grammar, add A -4 aA-a to
the transformed grammar.

2. If B is a proper left corner of A and B --+ X ~
is a production of the original grammar , add
A - X -+ ~ A - B to the t ransformed grammar .

3. If X is a proper left corner of A and A --+ X ~
is a production of the original grammar , add
A - X -+ ~ to the t ransformed grammar.

In Rosenkrantz and Lewis's original LC transform,
schema 2 applied whenever B is a left corner of A,
including all cases where B = A. In Johnson's ver-
sion schema 2 applies when B -- A only if A is a
proper left corner of itself. Johnson then introduces

schema 3 handle the residual cases, without intro-
ducing instances of nonterminals of the form A - A
that need to be allowed to derive the empty string.

The original purpose of the LC transform is to
allow simulation of left-corner parsing by top-down
parsing, but it also eliminates left recursion from any
noncyclic CFG. 5 Fhrthermore, in the worst case, the
total number of symbols in the transformed gram-
mar cannot exceed a fixed multiple of the square of
the number of symbols in the original grammar , in
contrast to Paull 's algorithm, which exponentiates
the size of the g rammar in the worst case.

Thus, we can use Johnson's version of the LC
transform directly to eliminate left-recursion. Be-
fore applying this idea, however, we have one gen-
era] improvement to make in the transform. Johnson
notes that in his version of the LC transform, a new
nontermina] of the form A - X is useless unless X is
a proper left corner of A. We further note that a
new nonterminal of the form A - X , as well as the
orginal nonterminal A, is useless in the transformed
grammar , unless A is either the top nonterminal of
the g rammar or appears on the right-hand side of
an original g r ammar production in other than the
left-most position. This can be shown by induction
on the length of top-down derivations using the pro-
ductions of the transformed grammar . Therefore,
we will call the original nonterminals meeting this
condition "retained nontermina]s" and restrict the
LC transform so that productions involving nonter-
minals of the form A - X are created only if A is a
retained nonterminal.

Let LC refer to Johnson's version of the LC trans-
form restricted to retained nonterminals. In Table 4
the first three lines repeat the previously shown sizes
for our three original grammars , their left-factored
form, and their non-left-recursive form using our
best variant of Panll 's algorithm (L F + N L R G + P A) .
The fourth line shows the results of applying LC to
the three original grammars . Note that this pro-
duces a non-left-recursive form of the P T gram-
mar smaller than the cut-off size, but the non-left-
recursive forms of the CT and ATIS grammars are

Sin the case of a cyclic CFG, the schema 2 fails to guar-
antee a non-lef t - recursive t r ans fo rmed g r a m m a r .

2 5 3

considerably larger than the most compact versions
created with Paull's algorithm.

We can improve on this result by noting that,
since we are interested in the LC transform only as
a means of eliminating left-recursion, we can greatly
reduce the size of the transformed grammars by ap-
plying the transform only to left-recursive nonter-
minals. More precisely, we can retain in the trans-
formed grammar all the productions expanding non-
left-recursive nonterminals of the original grammar,
and for the purposes of the LC transform, we can
treat nomleft-recursive nonterminals as if they were
terminals:

1. If a terminal symbol or non-left-recursive non-
terminal X is a proper left corner of a re-
tained left-recursive nonterminal A in the orig-
inal grammar, add A -+ X A - X to the trans-
formed grammar.

2. If B is a left-recursive proper left corner of a
retained left-recursive nonterminal A and B --~
X/~ is a production of the original grammar, add
A - X -~ ~A-B to the transformed grammar.

3. If X is a proper left corner of a retained left-
recursive nonterminal A and A --~ X/~ is a pro-
duction of the original grammar, add A - X --~
to the transformed grammar.

4. If A is a non-left-recursive nonterminal and A -~
/3 is a production of the original grammar, add
A -~/~ to the transformed grammar.

Let LCLR refer to the LC transform restricted
by these modifications so as to apply only to left-
recursive nonterminals. The fifth line of Table 4
shows the results of applying LCLR to the three orig-
inal grammars. LCLR greatly reduces the size of the
non-left-recursive forms of the CT and ATIS gram-
mars, but the size of the non-left-recursive form of
the PT grammar is only slightly reduced. This is
not surprising if we note from Table 1 that almost
all the productions of the PT grammar are produc-
tions for left-recursive nonterminals. However, we
can apply the additional transformations that we
used with Paull's algorithm, to reduce the num-
ber of productions for left-recursive nonterminals
before applying our modified LC transform. The
effects of left factoring the grammar before apply-
ing LCLR (LF+LCLR), and additionally combining
non-left-recursive productions for left-recursive non-
terminals between left factoring and applying LCLR
(LF+NLRG+LCLR), are shown in the sixth and
seventh lines of Table 4.

With all optimizations applied, the non-left-
recursive forms of the ATIS and PT grammars are
smaller than the originals (although not smaller
than the left-factored forms of these grammars),
and the non-left-recursive form of the CT gram-
mar is only slightly larger than the original. In all

cases, LF+NLRG+LCLR produces more compact
grammars than LF+NLRG+PA, the best variant of
Paull's algorithm--slightly more compact in the case
of the CT grammar, more compact by a factor of 5.9
in the case of the ATIS grammar, and more compact
by at least two orders of magnitude in the case of the
PT grammar.

6 C o n c l u s i o n s

We have shown that, in its textbook form,
the standard algorithm for eliminating left recur-
sion from CFGs is impractical for three diverse,
independently-motivated, natural-language gram-
mars. We apply a number of optimizations to the
algorithm--most notably a novel strategy for order-
ing the nonterminals of the grammar--but one of
the three grammars remains essentially intractable.
We then explore an alternative approach based on
the LC grammar transform. With several optimiza-
tions of this approach, we are able to obtain quite
compact non-left-recursive forms of all three gram-
mars. Given the diverse nature of these grammars,
we conclude that our techniques based on the LC
transform are likely to be applicable to a wide range
of CFGs used for natural-language processing.

R e f e r e n c e s

A. V. Aho, R. Sethi, and J. D. Ullman. 1986.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley Publishing Company, Reading,
Massachusetts.

D. A. Da.hl et al. 1994. Expanding the scope of the
ATIS task: the ATIS-3 corpus. In Proceedings o/
the Spoken Language Technology Workshop, pages
3-8, Plainsboro, New Jersey. Advanced Research
Projects Agency.

S. A. Greibach. 1965. A new normal-form theorem
for context-free phrase structure grammars. Jour-
nal of the Association for Computing Machinery,
12(1):42-52, January.

J. E. Hopcroft and J. D. Ullman. 1979. Introduc-
tion to Automata Theory, Languages, and Com-
putation. Addison-Wesley Publishing Company,
Reading, Massachusetts.

M. Johnson. 1998. Finite-state approximation
of constraint-based grammars using left-corner
grammar transforms. In Proceedings, COLING-
ACL '98, pages 619-623, Montreal, Quebec,
Canada. Association for Computational Linguis-
tics.

M. P. Marcus, B. Santorini, and M. A.
Marcinkiewicz. 1993. Building a large anno-
tated corpus of English: The Penn Treebank.
Computational Linguistics, 19(2):313-330, June.

R. Moore, J. Dowding, H. Bratt, J. M. Gawron,
Y. Gorfu, and A. Cheyer. 1997. Commandtalk:

2 5 4

A spoken-language interface for battlefield simu-
lations. In Proceedings of the Fifth Conference on
Applied Natural Language Processing, pages 1-7,
Washington, DC. Association for Computational
Linguistics.

S. J. Rosenkrantz and P. M. Lewis. 1970. Deter-
ministic left corner parser. In IEEE Conference
Record of the 11th Annual Symposium on Switch-
ing and Automata Theory, pages 139-152.

2 5 5

