
Ambiguity Packing in Constraint-based Parsing
Practical Results

S t e p h a n O e p e n
C o m p u t a t i o n a l Linguis t ics

Saa r l and Univers i ty
66041 Saarbri icken, G e r m a n y

oe@coli, uni-sb, de

John Carroll
Cognitive and Computing Sciences

University of Sussex
Brighton BN1 9QH, UK

j o lmca©cogs, s u s x . ac . uk

Abstract

We describe a novel approach to 'packing' of local am-
biguity in parsing with a wide-coverage HPSG gram-
mar, and provide an empirical assessment of the in-
teraction between various packing and parsing strate-
gies. We present a linear-time, bidirectional subsump-
tion test for typed feature structures and demonstrate
that (a) subsumption- and equivalence-based packing is
applicable to large HPSG grammars and (b) average parse
complexity can be greatly reduced in bottom-up chart
parsing with comprehensive HPSG implementations.

1 B a c k g r o u n d

The ambiguity inherent in natural language means
that during parsing, some segments of the input
string may end up being analysed as the same type
of linguistic object in several different ways. Each
of these different ways must be recorded, but subse-
quent parsing steps must treat the set of analyses as
a single entity, otherwise the computation becomes
theoretically intractable. Earley's algorithm (Ear-
ley, 1970), for example, avoids duplication of parse
items by maintaining pointers to alternative deriva-
tions in association with the item. This process
has been termed 'local ambiguity packing' (Tomita,
1985), and the structure built up by the parser, a
'parse forest' (Billot &: Lang, 1989). Context free
(CF) grammars represent linguistic objects in terms
of atomic category symbols. The test for duplicate
parse items--and thus being able to pack the sub-
analyses associated with them--is equality of cate-
gory symbols. In the final parse forest every differ-
ent combination of packed nodes induces a distinct,
valid parse tree.

Most existing unification-based parsing systems
either implicitly or explicitly contain a context-free
core. For example, in the CLE (Alshawi, 1992)
the (manually-assigned) functors of the Prolog terms
forming the categories constitute a CF 'backbone'.
In the Alvey Tools system (Carroll, 1993) each dis-
tinct set of features is automatically given a unique
identifier and this is associated with every category
containing those features. The packing technique
has been shown to work well in practice in these

and similar unification-augmented CF systems: the
parser first tests for CF category equality, and then
either (a) checks that the existing feature structure
subsumes the newly derived one (Moore & Alshawi,
1992), or (b) forms an efficiently processable disjunc-
tion of the feature structures (Maxwell and Kaplan,
1995). Extracting parses from the parse forest is
similar to the CF case, except that a global check for
consistency of feature values between packed nodes
or between feature structure disjuncts is required
(this global validation is not required if the sub-
sumption test is strengthened to feature structure
equivalence).

In contrast, there is essentially no CF compo-
nent in systems which directly interpret HPSG gram-
mars. Although HPSG feature structures are typed,
an initial CF category equality test cannot be im-
plemented straightforwardly in terms of the top-
level types of feature structures since two compat-
ible types need not be equal, but could stand in
a subtype-supertype relationship. In addition, the
feature structure subsumption test is potentially ex-
pensive since feature structures are large, typically
containing hundreds of nodes. It is therefore an open
question whether parsing systems using grammars of
this type can gain any advantage from local ambi-
guity packing.

The question is becoming increasingly impor-
tant, though, as wide-coverage HPSG grammars are
starting to be deployed in practical applications--
for example for 'deep' analysis in the VerbMo-
bil speech-to-speech translation system (Wahlster,
1997; Kiefer, Krieger, Carroll, & Malouf, 1999). 1 In
this paper we answer the question by demonstrating
that (a) subsumption- and equivalence-based feature
structure packing is applicable to large HPSG gram-
mars, and (b) average complexity and time taken
for the parsing task can be greatly reduced. In
Section 2 we present a new, linear-time, bidirec-

1A significant body of work on efficient processing with
such grammars has been building up recently, with investi-
gations into efficient feature structure operations, abstract-
machine-based compilation, CF backbone computation, and
finite-state approximation of HPSG derivations, amongst oth-
ers (Flickinger, Oepen, Uszkoreit, & Tsujii, 2000).

162

tional subsumption test for typed feature structures,
which we use in a bottom-up, chart-based parsing
algorithm incorporating novel, efficient accounting
mechanisms to guarantee minimal chart size (Sec-
tion 3). We present a full-scale evaluation of the
techniques on a large corpus (Section 4), and com-
plete the picture with an empirically-based discus-
sion of grammar restrictors and parsing strategies
(Section 5).

2 E f f i c i e n t S u b s u m p t i o n a n d
E q u i v a l e n c e A l g o r i t h m s

Our feature structure subsumption algorithm 2 as-
sumes totally well-typed structures (Carpenter,
1992) and employs similar machinery to the
quasi-destructive unification algorithm described by
Tomabechi (1991). In particular, it uses temporary
pointers in dag nodes, each pointer tagged with a
generation counter, to keep track of intermediate
results in processing; incrementing the generation
counter invalidates all temporary pointers in a sin-
gle operation. But whereas quasi-destructive unifi-
cation makes two passes (determining whether the
unification will be successful and then copying out
the intermediate representation) the subsumption
algorithm makes only one pass, checking reentran-
cies and type-supertype relationships at the same
time. 3 The algorithm, shown in Figure 1, also si-
multaneously tests if both feature structures sub-
sume each other (i.e. they are equivalent), if either
subsumes the other, or if there is no subsumption
relation between them in either direction.

The top-level entry point dag-subsumes-pO and
subsidiary function dag-subsumes-pO 0 each return
two values, held in variables]orwardp and back-
wardp, both initially true, recording whether it is
possible that the first dag subsumes the second
and/or vice-versa, respectively. When one of these
possibilities has been ruled out the appropriate vari-
able is set to false; in the statement of the algorithm
the two returned values are notated as a pair, i.e.
(/orwardp, backwardp). If at any stage both vari-
ables have become set to false the possibility of sub-
sumption in both directions has been ruled out so
the algorithm exits.

The (recursive) subsidiary function dag-subsumes-
pO 0 does most of the work, traversing the two input

2Although independently-developed implementations of
essentially the same algorithm can be found in the source code
of The Attribute Logic Engine (ALE) version 3.2 (Carpenter
& Penn, 1999) and the SICStus Prolog term utilities library
(Penn, personal communication), we believe that there is no
previous published description of the algorithm.

3Feature structure F subsumes feature structure G iff:
(1) if path p is defined in F then p is also defined in G and
the type of the value of p in F is a supertype or equal to the
value in G, and (2) all paths that are reentrant in F are also
reentrant in G.

dags in step. First, it checks whether the current
node in either dag is involved in a reentrancy that
is not present in the other: for each node visited
in one dag it adds a temporary pointer (held in the
'copy' slot) to the corresponding node in the other
dag. If a node is reached that already has a pointer
then this is a point of reentrancy in the dag, and
if the pointer is not identical to the other dag node
then this reentrancy is not present in the other dag.
In this case the possibility that the former dag sub-
sumes the latter is ruled out. After the reentrancy
check the type-supertype relationship between the
types at the current nodes in the two dags is deter-
mined, and if one type is not equal to or a supertype
of the other then subsumption cannot hold in that
direction. Finally, after successfully checking the
type-supertype relationships, the function recurses
into the arcs outgoing from each node that have the
same label. Since we are assuming totally well-typed
feature structures, it must be the case that either the
sets of arc labels in the two dags are the same, or
one is a strict superset of the other. Only arcs with
the same labels need be processed; extra arcs need
not since the type-supertype check at the two nodes
will already have determined that the feature struc-
ture containing the extra arcs must be subsumed by
the other, and they merely serve to further specify
it and cannot affect the final result.

Our implementation of the algorithm contains ex-
t ra redundant but cheap optimizations which for rea-
sons of clarity are not shown in figure 1; these in-
clude tests that forwardp is true immediately before
the first supertype check and that backwardp is true
before the second. 4

The use of temporary pointers means that the
space complexity of the algorithm is linear in the
sum of the sizes of the feature structures. However,
in our implementation the 'copy' slot that the point-
ers occupy is already present in each dag node (it is
required for the final phase of unification to store
new nodes representing equivalence classes), so in
practice the subsumption test does not allocate any
new storage. All pointer references take constant
time since there are no chains of 'forwarded' point-
ers (forwarding takes place only during the course of
unification and no forwarded pointers are left after-
wards). Assuming the supertype tests can be carried

4There is scope for further optimisation of the algorithm in
the case where dagl and dag2 are identical: full processing in-
side the structure is not required (since all nodes inside it will
be identical between the two dags and any strictly internal
reentrancies will necessarily be the same), but we would still
need to assign temporary pointers inside it so that any exter-
nal reentrancies into the structure would be treated correctly.
In our tests we have found that as far as constituents that are
candidates for local ambiguity packing are concerned there is
in fact little equality of structures between them, so special
equality processing does not justify the extra complication.

163

1 procedure dag-subsumes-p(dagl,dag2) --_
2 (forwardp, backwardp) <-- { establish context for non-local exit}
3 catch wi th tag 'fail' dag-subsumes-pO(dagl, dag2, true, true);
4 invalidate-temporary-pointers(); {reset temporary 'copy' pointers}
5 r e tu rn (forwardp, backwardp);
6 e n d

7 procedure dag-subsumes-pO(dagl,dag2,forwardp, backwardp) -
8 if (dagl.copy is empty) t hen dagl.copy <--- dag2; {check reentraneies}
9 else if~dagl.copy ~ dag2) then forwardp <-- false; f i

10 i f (dag2.copy is empty) then dag2.copy ~- dagl;
11 else i f (dag2.copy p dagl) then backwardp ~- false; f i
12 i f (forwardp = false and backwardp = false) then
13 throw (false, false) with tag 'fail'; {reentrancy check failed}
14 fi
15 if (not supertype-or-equal-p(dagl.type, dag2.type)) t hen forwardp +- false; fi {check types}
16 if (not supertype-or-equal-p(dag2.type, dagl.type)) t hen backwardp <-- false; fl
17 i f (forwardp = false and backwardp = false) then
18 throw (false, false) with tag 'fail'; {no subtype relations}
19 fi
20 for each arc in intersect(dagl.arcs, dag2.arcs) do {check shared arcs recursively}
21 (forwardp, backwardp) <-
22 dag-subsumes-pO(destination of arc for dagl, destination of arc for dag2, forwardp, backwardp);
23 o d
24 r e tu rn (forwardp, backwardp); {signal result to caller}
25 e n d

Figure 1: Bidirectional, linear-time feature structure subsumption (and equivalence) algorithm.

out in constant time (e.g. by table lookup), and that
the grammar allows us to put a small constant upper
bound on the intersection of outgoing arcs from each
node, the processing in the body of dag-subsumes-
pO 0 takes unit time. The body may be executed up
to N times where N is the number of nodes in the
smaller of the two feature structures. So overall the
algorithm has linear time complexity. In practice,
our implementation (in the environment described in
Section 4) performs of the order of 34,000 top-level
feature structure subsumption tests per second.

3 Ambiguity Packing in t h e P a r s e r
Moore and Alshawi (1992) and Carroll (1993) have
investigated local ambiguity packing for unification
grammars with CF backbones, using CF category
equality and feature structure subsumption to test
if a newly derived constituent can be packed. If a
new constituent is equivalent to or subsumed by an
existing constituent, then it can be packed into the
existing one and will take no further part in pro-
cessing. However, if the new constituent subsumes
an existing one, the situation is not so straightfor-
ward: either (a) no packing takes place and the new
constituent forms a separate edge (Carroll, 1993), or
(b) previous processing involving the old constituent
is undone or invalidated, and it is packed into the
new one (Moore & Alshawi, 1992; however, it is un-

clear whether they achieve maximal compactness in
practice: see Table 1). In the former case the parse
forest produced will not be optimally compact; in
the latter it will be, but maintaining chart consis-
tency and parser correctness becomes a non-trivial
problem. Packing of a new edge into an existing one
we call proactive (or forward) packing; for the more
complex situation involving a new edge subsuming
an existing one we introduce the term retroactive (or
backward) packing.

Several issues arise when packing an old edge (old)
into one that was newly derived (new) retroactively:
(i) everything derived from old (called derivatives of
old in the following) must be invalidated and ex-
cluded from further processing (as new is known
to generate more general derivatives); and (ii) all
pending computation involving old and its deriva-
tives has to be blocked efficiently. Derivatives of
old that are invalidated because of retroactive pack-
ing may already contain packed analyses, however,
which still represent valid ambiguity. These need to
be repacked into corresponding derivatives of new
when those become available. In turn, derivatives of
old may have been packed already, such that they
need not be available in the chart for subsequent sub-
sumption tests. Therefore, the parser cannot simply
delete everything derived from old when it is packed;
instead, derivatives must be preserved (but blocked)

1 6 4

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

p r o c e d u r e block(edge, mark) -
i f (edge.frozen = false or mark = freeze) t h e n edge.frozen +- mark; fi
for each parent in edge.parents do block(parent, freeze); od

end

p r o c e d u r e packed-edge-p(new) -
for each old in chart[new.start][new.end] do

(forwardp, backwardp) ~- dag-subsumes-p(old.dag, new.dag);
i f (forwardp = true and old.frozen = fa/se) t h e n

old.packed ~-- (new I old.packed);
r e t u r n true;

fi
i f (backwardp) t h e n

new.packed ~-- (new.packed @ old.packed);
old.packed +-- 0;

{mark current edge}
{ recursively freeze derivatives}

{passive edges with same span}
{ test category subsumption}

{ equivalent or proactive packing}
{pack 'new' into 'old'}

{return to caller; signal success}

{retroactive packing}
{raise all packings into new host}

if (old.frozen = false) t h e n new.packed e- (old I new.packed); fi {pack 'old' into 'new'}
block(old, frost); {frost 'old' and freeze derivatives}
delete(old, chart); {remove 'old' from the chart}

fl
od
r e t u r n false; {signal failure to pack 'new' to caller}

end

Figure 2: Algorithm called on each newly derived edge to achieve maximal packing.

until the derivations have been recomputed on the
basis of new. 5 As new is equivalent to or more gen-
eral than old it is guaranteed to derive at least the
same set of edges; furthermore, the derivatives of
new will again be equivalent to or more general than
the corresponding edges derived from old.

The procedure packed-edge-p(), sketched in Fig-
ure 2, achieves pro- and retroactive packing with-
out significant overhead in the parser; the algorithm
can be integrated with arbitrary bottom-up (chart-
based) parsing strategies. The interface assumes
that the parser calls packed-edge-pO on each new
edge new as it is derived; a return value of true indi-
cates that new was packed proactively and requires
no further processing. Conversely, a false return
value from packed-edge-p 0 signals that new should
subsequently undergo regular processing. The sec-
ond part of the interface builds on notions we call
frosting and freezing, meaning temporary and per-
mament invalidation of edges, respectively. As a
side-effect of calls to packed-edge-p(), a new edge
can cause retroactive packing, resulting in the dele-

5The situation is simpler in the CLE parser (Moore & Al-
shawl, 1992) because constituents and dominance relations
are separated in the chart. The CLE encoding, in fact, does not
record the actual daughters used in building a phrase (e.g. as
unique references or pointers, as we do), but instead preserves
the category information (i.e. a description) of those daugh-
ters. Hence, in extracting complete parses from the chart,
the CLE has to perform (a limited) search with re-unification
of categories; in this respect, the CLE parse forest still is an
underspecified representation of the set of analyses, whereas
our encoding (see below) facilitates unpacking without extra
search.

tion of one or more existing edges from the chart
and blocking of derivatives. Whenever the parser
accesses the chart (i.e. in trying to combine edges)
or retrieves a task from the agenda, it is expected
to ignore all edges and parser tasks involving such
edges that have a non-null 'frozen' value. When an
existing edge old is packed retroactively, it is frosted
and ignored by the parser; as old now represents lo-
cal ambiguity, it still has to be taken into account
when the parse forest is unpacked. Derivatives of
old, on the other hand, need to be invalidated in
both further parsing and later unpacking, since they
would otherwise give rise to spurious analyses; ac-
cordingly, such derivatives are frozen permanently.
Frosting and freezing is done in the subsidiary pro-
cedure block () that walks up the parent link recur-
sively, storing a mark into the 'frozen' slot of edges
that distinguishes between temporary frosting (in
the top-level call) and permanent freezing (in recur-
sire calls).

For a newly derived edge new, packed-edge-pO
tests mutual subsumption against all passive edges
that span the same portion of the input string.
When forward subsumption (or equivalence) is de-
tected and the existing edge old is not blocked, reg-
ular proactive packing is performed (adding new to
the packing list for old) and the procedure returns
immediately. 6 In the case of backward subsump-

6packing an edge el into another edge e2 logically means
that e2 will henceforth serve as a representative for el and
the derivation(s) that it encodes. In practice, el is removed
from the chart and ignored in subsequent parser action and
subsumption tests. Only in unpacking the parse forest will

165

20000
17500
15000
12500
10000

7500
5000
2500 -

0 "

No Chart Packing I

e passive edges]

• * . o |
"'. •

, , i , , , = , i i = , ,

3 5 7 9 11 13 15 17 19 21 23 25
String Length (in words)

Figure 3: Effects of maximal ambiguity packing

tion, analyses packed into old are raised into new
(using the append operator '~ ' because new can at-
tract multiple existing edges in the loop); old itself is
only packed into new when it is not blocked already.
Finally, old is frosted, its derivatives are recursively
frozen, and old is deleted from the chart. In contrast
to proactive packing, the top-level loop in the pro-
cedure continues so that new can pick up additional
edges retroactively. However, once a backward sub-
sumption is detected, it follows that no proactive
packing can be achieved for new, as the chart can-
not contain an edge that is more general than old.

4 E m p i r i c a l R e s u l t s

We have carried out an evaluation of the algo-
rithms presented above using the LinGO grammar
(Flickinger & Sag, 1998), a publicly-available, multi-
purpose, broad-coverage HPSG of English developed
at CSLI Stanford. With roughly 8,000 types, an av-
erage feature structure size of around 300 nodes, and
64 lexical and grammar rules (fleshing out the inter-
action of HPSG ID schemata, wellformedness prin-
ciples, and LP constraints), LinGO is among the
largest HPSG grammars available. We used the LKB
system (Copestake, 1992, 1999) as an experimen-
tation platform since it provides a parameterisable
bottom-up chart parser and precise, fine-grained
profiling facilities (Oepen & Flickinger, 1998). 7 All
of our results were obtained in this environment,
running on a 300 Mhz UltraSparc, and using a bal-
anced test set of 2,100 sentences extracted from
VerbMobil corpora of transcribed speech: input
lengths from 1 to 20 words are represented with 100
test items each; although sentences in the corpus
range up to 36 words in length there are relatively
few longer than 20 words.

the category of el and its decomposition(s) in daughter edges
(and corresponding subtrees) be used again, to multiply out
and project local ambiguity.

;'The LinGO grammar and LKB software are publicly avail-
able at ' h t t p : / / l i n g o . s t anford , edu/ ' .

20000
17500
15000
12500
10000
7500
5000
2500

O~

Pro- and Retroactive Packing I

] o passive edges]

A , , .k i t atAatmt'lLttvtd~l~lL
, m ~ w w w w w w w w l v l ; w w ~

"} A 1'3 1'5 1'7 2'1 2'3 25
String Length (in words)

on the total chart size (truncated above 25 words).

Figure 3 compares total chart size (in all-paths
mode) for the regular LKB parser and our variant
with pro- and retroactive packing enabled. Factor-
ing ambiguity reduces the number of passive edges
by a factor of more than three on average, while for
a number of cases the reduction is by a factor of 30
and more. Compared to regular parsing, the rate of
increase of passive chart items with respect to sen-
tence length is greatly diminished.

To quantify the degree of packing we achieve
in practice, we re-ran the experiment reported by
Moore and Alshawi (1992): counting the number of
nodes required to represent all readings for a simple
declarative sentence containing zero to six preposi-
tional phrase (PP) modifiers. The results reported
by Moore and Alshawi (1992) (using the CLE gram-
mar of English) and those obtained using pro- and
retroactive packing with the LinGO grammar are
presented in Table 1. 8 Although the comparison
involves different grammars we believe it to be in-
structive, since (i) both grammars have comprehen-
sive coverage, (ii) derive the same numbers of read-
ings for all test sentences in this experiment, (iii)
require (almost) the same number of nodes for the
basic cases (zero and one PP), (iv) exhibit a similar
size in nodes for one core PP (measured by the in-
crement from n = 0 to n = 1), and (v) the syntactic
simplicity of the test material hardly allows crosstalk

SMoore and Alshawi (1992) use the terms 'node' and
'record' interchangeably in their discussion of packing, where
the CLE chart is comprised of separate con(stituent) and
ana(lysis) entries for category and dominance information,
respectively. It is unclear whether the counting of 'packed
nodes' in Moore and Alshawi (1992) includes con records or
not, since only maa records are required in parse tree recovery.
In any case, both types of chart record need to be checked by
subsumption as new entries are added to the chart. Con-
versely, in our setup each edge represents not only the node
category, but also pointers to the daughter(s) that gave rise
to this edge, and moreover, where applicable, a list of packed
edges that are subsumed by the category (but not necessarily
by the daughters). For the LKB, the column 'result edges' in
Table 1 refers to the total number of edges in the chart that
contribute to at least one complete analysis.

166

K i m saw a cat (in the hotel) n

C P U Time
n readings parse unpack I plain

msec msec msec
0 1
1 2
2 5
3 14
4 42
5 132
6 429

Moore & Alshawi
packed nodes

10 1.0
21 2.1
38 3.8
62 6.2
94 9.4
135 13.5
186 18.6

Our Method
resul t edges

11 1.0
23 2.1
38 3.5
56 5.1
77 7.0
101 9.2
128 11.6

210
340
460
600
870

1,150
1,460

10
40
80
200
590

1,860
5,690

180
290
530

1,180
2,990
8,790
28,160

Table h Comparison of retroactive packing vs. the method used by Moore and Alshawi (1992); columns
labeled '+ ' show the relative increase of packed nodes (result edges) normalised to the n -- 0 baseline.

with other grammatical phenomena. Comparing rel-
ative packing efficiency with increasing ambiguity
(the columns labeled ' - ' in Table 1), our method ap-
pears to produce a more compact representation of
ambiguity than the CLE, and at the same time builds
a more specific representation of the parse forest that
can be unpacked without search. To give an impres-
sion of parser throughput, Table 1 includes timings
for our parsing and unpacking (validation) phases,
contrasted with the plain, non-packing LKB parser:
as would be expected, parse time increases linearly
in the number of edges, while unpacking costs re-
flect the exponential increase in total numbers of
analyses; the figures show that our packing scheme
achieves a very significant speedup, even when un-
packing time is included in the comparison.

5 C h o o s i n g t h e G r a m m a r R e s t r i c t o r
a n d P a r s i n g S t r a t e g y

In order for the subsumption relation to apply mean-
ingfully to HPSG signs, two conditions must be met.
Firstly, parse tree construction must not be dupli-
cated in the feature structures (by means of the
HPSG DTRS feature) but be left to the parser (i.e.
recorded in the chart); this is achieved in a stan-
dard way by feature structure restriction (Shieber,
1985) applied to all passive edges. Secondly, the pro-
cessing of constraints that do not restrict the search
space but build up new (often semantic) structure
should be postponed, since they are likely to inter-
fere with subsumption. For example, analyses that
differ only with respect to PP attachment would
have the same syntax, but differences in semantics
may prevent them being packed. This problem can
be overcome by using restriction to (temporarily) re-
move such (semantic) attributes from lexical entries
and also from the rule set, before they are input
to the parser in the initial parse forest construction
phase. The second, unpacking phase of the parser re-

verts to the unrestricted constraint set, so we can al-
low overgeneration in the first phase and filter glob-
ally inconsistent analyses during unpacking. Thus,
the right choice of grammar restrictor can be viewed
as an empirical rather than analytical problem.

Table 2 summarizes packing efficiency and parser
performance for three different restrictors (labeled
no, partial, and ful l semantics, respectively); to
gauge effects of input complexity, the table is fur-
ther subdivided by sentence length into two groups
(of around 1,000 sentences each). Compared to reg-
ular parsing, packing with the full semantics in place
is not effective: the chart size is reduced slightly, but
the extra cost for testing subsumption increases total
parse times by a factor of more than four. Eliminat-
ing all semantics (i.e. the entire HPSG C0NT value), on
the other hand, results in overgeneralisation: with
less information in the feature structures we achieve
the highest number of packings, but at the same
time rules apply much more freely, resulting in a
larger chart compared to parsing with a partial se-
mantics; moreover, unpacking takes longer because
the parse forest now contains inconsistent analyses.
Restricting compositional semantics but preserving
attributes that participate in selection and agree-
ment results in minimal chart size and parsing time
(shown in the partial semant ics figures) for both di-
visions of the test corpus.

The majority of packings involve equivalent fea-
ture structures which suggests that unpacking could
be greatly simplified if the grammar restrictor was
guaranteed to preserve the generative capacity of
the grammar (in the first parsing phase); then, only
packings involving actual subsumption would have
to be validated in the unpacking phase. 9 Finally,

9There is room for further investigation here: partly for
theory-internal reasons, current development of the LinGO
grammar is working towards a stricter separation of restrictive
(selectional) and constructive (compositional) constraints in

167

1 - 1 0

words

I Passive Packed
Parse r Edges T r e e s

no semantics
partial semantics

full semantics
no packing

116
111
149
160

0.9
0.8
2.8
5.6

n o semantics 622 1.2
> 10 partial semantics 575 1.0

words full semantics 1693 33-9
no packing 2075 99-9

I Packings CPU Time (sec)
= I -D± p se I unpack

15"5 4"1 2"6 1"8 0"37] 0"05
12"0 3"6 2"4 1"4 0"33 1 0"05
2"1 0"4 0"2 0"1 0"60 0"04
. . . . 0"44

179"0 4 2 " 1 23"8 26"0 2"37 0"70
134"9 3 5 " 0 20"6 18"9 1"97 0"63
38"3 3"4 2"9 3"2 29"40 0"56

. . . . 6"46

Table 2: Contrasting various grammar restrictors on short (top) and medium-length (bottom) inputs; all
numbers are averaged over 1,000 items per class; packings are, from left to right: equivalence (' - ') , pro-
('-~') and retroactive (' r ') packings, and the number of edges that were frozen ('±').

we note that the number of retroactive packings is
relatively small, and on average each such packing
leads to only one previously derived edge being in-
validated. This, of course, is a function of the order
in which edges are derived, i.e. the parsing strategy.

All the results in Table 2 were obtained with a
'right corner' strategy which aims to exhaust compu-
tation for any suffix of the input string before mov-
ing the input pointer to the left; this is achieved by

start (where start means of a scoring function end - -W-
and end are the vertices of the derivation that would
result from the computation, and n is the total input
length) that orders parser tasks in the agenda. How-
ever, we have observed (Oepen & Callmeier, 2000)
that HPSG-type, highly lexicalized grammars bene-
fit greatly from a bidirectional, 'key'-driven, active
parsing regime, since they often employ rules with
underspecified arguments that are only instantiated
by coreference with other daughters (where the 'key'
daughter is the linguistic head in many but not all
constructions). This requirement and the general
non-predictability of categories derived for any to-
ken substring (in particular with respect to unary
rule applications), means that a particular parsing
strategy may reduce retroactive packing but cannot
avoid it in general. With pro- and retroactive pack-
ing and the minimal accounting overhead, we find
overall parser throughput to be very robust against
variation in the parsing strategy. Lavie and Rosd
(2000) present heuristics for ordering parser actions
to achieve maximally compact parse forests--though
only with respect to a CF category backbone---in the
absence of retroactive packing; however, the tech-
niques we have presented here allow local ambigu-
ity packing and parser tuning--possibly including
priority-driven best-first search--to be carried out
mostly independently of each other.

the grammar and underlying semantic theory. We expect that
our approach to packing will benefit from these developments.

6 C o n c l u s i o n s

We have presented novel algorithms for efficient sub-
sumption checking and pro- and retroactive local
ambiguity packing with large feature structures, and
have provided strong empirical evidence that our
approach can be applied beneficially to chart pars-
ing with a large, broad-coverage HPSG of English.
By comparison to previous work in unification-based
parsing we have demonstrated that pro- and retroac-
tive packing are well-suited to achieve optimal pack-
ing; furthermore, experimental results obtained with
a publicly-available HPSG processing platform con-
firm that ambiguity packing can greatly reduce av-
erage parse complexity for this type of grammars.

In related work, Miyao (1999) describes an ap-
proach to packing in which alternative feature struc-
tures are represented as packed, distributed disjunc-
tions of feature structure fragments. Although the
approach may have potential, the shifting of com-
plex accounting into the unification algorithm is at
variance with the findings of Kiefer et al. (1999),
who report large speed-ups from the elimination of
disjunction processing during unification. Unfortu-
nately, the reported evaluation measures and lack of
discussion of parser control issues are insufficient to
allow a precise comparison.

We intend to develop the approach presented in
this paper in several directions. Firstly, we will en-
hance the unpacking phase to take advantage of the
large number of equivalence packings we observe.
This will significantly reduce the amount of work it
needs to do. Secondly, many application contexts
and subsequent layers of semantic processing will
not require unfolding the entire parse forest; here,
we need to define a selective, incremental unpack-
ing procedure. Finally, applications like VerbMo-
bil favour prioritized best-first rather than all-paths
parsing. Using slightly more sophisticated account-
ing in the agenda, we plan to investigate priority

168

propagation in a best-first variant of our parser.

A c k n o w l e d g e m e n t s
We are grateful to Ulrich Callmeier, Ann Copestake,
Dan Flickinger, and three anonymous reviewers for
comments on a draft of the paper, to Bob Moore for
a detailed explanation of the workings of the CLE
parser, and to Gerald Penn for information about
related implementations of the subsumption algo-
rithm. The research was supported by the Deutsche
Forschungsgemeinschaft as part of the Collaborative
Research Division Resource-Adaptive Cognitive Pro-
cesses, project B4 (PERFORM); and by a UK EPSRC
Advanced Fellowship to the second author.

R e f e r e n c e s
Alshawi, H. (Ed.). (1992). The Core Language En-

gine. Cambridge, MA: MIT Press.
Billot, S., & Lang, B. (1989). The structure of

shared forests in ambiguous parsing. In Proceed-
ings of the 27th Meeting of the Association for
Computational Linguistics (pp. 143-151). Van-
couver, BC.

Carpenter, B. (1992). The logic of typed feature
structures. Cambridge, UK: Cambridge Univer-
sity Press.

Carpenter, B., & Penn, G. (1999)• ALE. The At-
tribute Logic Engine. User's guide version 3.2.
(Universit~it Tfibingen: http://wwww, s f s . nph i l
• u n i - t u e b i n g e n , de/~gpenn/ale, html)

Carroll, J. (1993). Practical unification-based
parsing of natural language (Technical Re-
port # 314). Cambridge, UK: Computer
Laboratory, Cambridge University. (Online
at: f t p : / / f t p . e l . cam. ac. u k / p a p e r s / r e p o r t s /
TR314-j ac-pract ical-unif-pars ing. ps. gz)

Copestake, A. (1992). The ACQUILEX LKB. Rep-
resentation issues in semi-automatic acquisition of
large lexicons. In Proceedings of the 3rd A CL Con-
ference on Applied Natural Language Processing
(pp. 88-96). Trento, Italy.

Copestake, A. (1999). The (new) LKB sys-
tem. User's guide. (CSLI, Stanford Uni-
versity: http ://www-csli. stanford, edu/-~aac/
ikb. html)

Earley, J. (1970). An efficient context-free parsing
algorithm. Communications of the ACM, 13 (2),
94 - 102.

Flickinger, D., Oepen, S., Uszkoreit, H., & Tsu-
jii, J. (Eds.). (2000). Journal of Natural Lan-
guage Engineering. Special Issue on Efficient pro-
cessing with HPSG: Methods, systems, evaluation.
Cambridge, UK: Cambridge University Press. (in
preparation)

Flickinger, D. P., & Sag, I. A. (1998). Linguis-
tic Grammars Online. A multi-purpose broad-
coverage computational grammar of English. In

CSLI Bulletin 1999 (pp. 64-68). Stanford, CA:
CSLI Publications.

Kiefer, B., Krieger, H.-U., Carroll, J., & Malouf, R.
(1999). A bag of useful techniques for efficient and
robust parsing. In Proceedings of the 37th Meeting
of the Association for Computational Linguistics
(pp. 473-480). College Park, MD.

Lavie, A., & Ros~, C. (2000). Optimal ambiguity
packing in context-free parsers with interleaved
unification. In Proceedings of the 6th Interna-
tional Workshop on Parsing Technologies (pp.
147-158). Trento, Italy.

Maxwell III, J. T., & Kaplan, R. M. (1995). A
method for disjunctive constraint satisfaction. In
M. Dalrymple, R. M. Kaplan, J. T. Maxwell III,
& A. Zaenen (Eds.), Formal issues in Lexical-
Functional Grammar (pp. 381-401). Stanford,
CA: CSLI Publications.

Miyao, Y. (1999). Packing of feature structures for
efficient unification of disjunctive feature struc-
tures. In Proceedings of the 37th Meeting of the
Association for Computational Linguistics (pp.
579-84). College Park, MD.

Moore, R. C., & Alshawi, H. (1992). Syntactic
and semantic processing. In H. Alshawi (Ed.),
The Core Language Engine (pp. 129-148). Cam-
bridge, MA: MIT Press.

Oepen, S., & Callmeier, U. (2000). Measure for
measure: Parser cross-fertilization. Towards in-
creased component comparability and exchange.
In Proceedings of the 6th International Workshop
on Parsing Technologies (pp. 183-194). Trento,
Italy.

Oepen, S., & Flickinger, D. P. (1998). Towards sys-
tematic grammar profiling. Test suite technology
ten years after. Journal of Computer Speech and
Language, 12 (4) (Special Issue on Evaluation),
411-436.

Shieber, S. M. (1985). Using restriction to extend
parsing algorithms for complex feature-based for-
malisms. In Proceedings of the 23rd Meeting of the
Association for Computational Linguistics (pp.
145-152). Chicago, IL.

Tomabechi, H. (1991). Quasi-destructive graph uni-
fication. In Proceedings of the 29th Meeting of the
Association for Computational Linguistics (pp.
315- 322). Berkeley, CA.

Tomita, M. (1985). An efficient context-free parsing
algorithm for natural languages. In Proceedings of
the 9th International Joint Conference on Artifi-
cial Intelligence (pp. 756- 764). Los Angeles, CA.

Wahlster, W. (1997). VerbMobil -- Erken-
hung, Analyse, Transfer, Generierung und Syn-
these yon Spontansprache (VerbMobil Report
198). Saarbriicken, Germany: Deutsches
Forschungszentrum fiir Kiinstliche Intelligenz
GmbH.

169

