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Abstract

The rapid advancement of Large Language
Models (LLMs) has raised issues concerning
the misuse of their text generation abilities for
creating forged content, fostering the need for
reliable detection methods. While most meth-
ods are supervised and require training samples
of human vs. artificial texts, we propose instead
to consider unsupervised detection approaches.
In a nutshell, most unsupervised methods rely
on one or several detector model(s), whose
(low) perplexity scores serve as a signal of
machine-generated contents. Such approaches
can be brittle as their performances strongly de-
pend on the choice of a particular detector. To
address these limitations, we evaluate a method
for combining multiple detectors and enhance
robustness. In this submission, we report evalu-
ation results on the RAID benchmark, a com-
prehensive English-centric testbed for machine-
generated texts. These results were obtained
in the context of the "Cross-domain Machine-
Generated Text Detection" shared task. We
show that our approach can be competitive for
a variety of domains and generator models, but
also that it is challenged by adversarial attacks
and by changes in the text generation strategy.

1 Introduction

Large Language Models (LLMs) have greatly
improved the fluency and diversity of machine-
generated texts. The release of ChatGPT and GPT4
by OpenAI has sparked global discussions regard-
ing the effective use of AI-based writing assistants.
This progress has also introduced major threats re-
lated to the generation of fake news (Zellers et al.,
2019), of toxic or dishonest content (Crothers et al.,
2023), or more generally regarding misuses of ma-
chine generation abilities. In response, the auto-
matic detection of such Machine Generated Texts
(MGT) has attracted a lot of recent work.

From a bird’s eye view, MGT detection uses de-
tector models to discriminate generator models’
outputs from human writings. Multiple instances
of this basic text classification problem have been
considered, varying e.g. the number of possible
categories to distinguish, the amount of available
supervision or the granularity of the task (e.g. at
the text, sentence, or even token level). Owing
to its large user base and applications, most ef-
forts to date have focused on specifically detecting
ChatGPT, for which training and test data is eas-
ily obtained. A more difficult problem, that we
study here, is unsupervised generator-agnostic
artificial text detection, where the models to de-
tect are not known in advance, and for which we
also assume no training data.

As pointed out e.g., in (Antoun et al., 2024; Hans
et al., 2024; Wang et al., 2024), the performance
of MGT detection systems varies depending on
the choices of the detector(s) / generator(s) pair.
The detector may serve to assess probabilities, as
in (Mitchell et al., 2023; Bao et al., 2024), or to
regenerate content, as e.g., in (Mao et al., 2024;
Yang et al., 2024). In most cases, optimal detec-
tion performance will require a systematic explo-
ration of the space of possible detectors. As the
number and diversity of LLMs keep increasing,
such exploration seems not only challenging but
also unrealistic. Furthermore, (Dugan et al., 2024)
demonstrated that the current detection methods
are brittle and easily fooled by changing the gener-
ator or altering the associated sampling method, a
finding that we reproduce in this study.

In an attempt to increase the robustness of ex-
isting detectors, we consider here ensemble meth-
ods, where a coalition of several models is ex-
ploited to build the detector. For this, we generalize
perplexity-based approaches, which flag as “artifi-
cial” texts having a suspiciously small perplexity.
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As perplexity is also an encoding measure, our en-
semble technique will seek to identify time-varying
mixture models, in order to minimize the worst-
case expected encoding size. The corresponding
architecture is in Figure 1. Further details, expla-
nations, and proofs can be found in a companion
paper (Dubois et al., 2024). Not only is this method
fully unsupervised, it also dispenses with the need
to search for the best detector(s). This method
nonetheless helps to develop MGT detection sys-
tems that can robustly detect multiple generators.
In this short contribution, we briefly present the de-
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Figure 1: Mixture Model.

tection task, then our detection algorithms, before
discussing and analyzing the experimental results.

2 Data and Task Description

2.1 The Task

The Cross-Domain Machine-Generated Text Detec-
tion Task at the COLING 2025 Workshop on De-
tecting AI-Generated Content (Dugan et al., 2025)
aims to challenge detection methods on the RAID
test dataset (Dugan et al., 2024), containing sam-
ples spanning multiple domains, generators, and
decoding methods. The dataset can be split into
two parts, each corresponding to a separate subtask:

• Subtask A : Original human-authored texts
and MG counterparts, one for each model
and decoding method proposed in the RAID
dataset;

• Subtask B : The same data with adversarial
attacks such as misspellings or paraphrasing.

As our method scores texts in a zero-shot manner,
we use the same detection model for both subtasks.
The metric used in the competition is the True Pos-
itive Rate when the False Positive Rate equals 5%
(TPR@5%FPR). For this metric, our method sim-
ply outputs one score per text, with larger scores
corresponding to natural texts, and lower scores to
artificial texts.

2.2 Data Description

Both training and testing sets for this task are de-
scribed in (Dugan et al., 2024). RAID is a com-
prehensive benchmark designed to assess the ro-
bustness of MGT detection systems. The test set
contains about 6 million generated texts produced
by 11 models, across 8 domains (Arxiv Abstracts,
Book Plot Summaries, BBC News Articles, Po-
ems, Reddit Posts, Recipes, IMDb Movie Reviews
and Wikipedia Articles). Each human-written doc-
ument was paired with a generation prompt used
to produce outputs for all models, employing both
zero-shot chat and non-chat templates depending
on each model’s intended usage. When applicable,
multiple decoding methods were used, e.g. greedy
decoding or ancestral sampling, also varying the
repetition penalty for a total of 4 combinations. To
further challenge detectors, each text is assigned
variations, using 11 types of adversarial attacks
such as paraphrasing, alternative spelling, and syn-
onym replacements. As each human entry gets a
corresponding version for each model and available
decoding strategy, the dataset is mostly comprised
of machine generations. When adding the adversar-
ially attacked variations, they make up the majority
of the data.

3 Our Method : MOSAIC

Language models predict the probability of a token
conditioned on the preceding ones, thus defining
a probability distribution over the set of all pos-
sible sequences. The probability of generating a
sequence y = ⟨y0, y1, . . . , yT ⟩ is computed as the
product of conditional probabilities for each token,
given its preceding context.

A central concept in our method is information,
which measures the “surprise” of observing a par-
ticular token for a model parameterized by θ. This
surprisal is quantified as − log pθ(yt|y<t), where
lower values indicate higher predictability. This
is akin to compression in information theory: the
lower the surprisal, the better the corresponding
token can be compressed by the model pθ(.|y<t).

Instead of relying on a detector single model, as
in most unsupervised methods, our method lever-
ages a diverse set of LLMs, denoted as PM(Y).
The key idea is to assign each token in a sequence to
the model that best “explains” it, i.e., the model that
can compress it most effectively. Given a sequence
y<t, we combine the models logits to obtain q⋆t , the
distribution minimizing the excess codelength w.r.t
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any distribution pθ ∈ PM.

q⋆(yt|y<t) ≜ arg min
q∈P(Ω)

max
m∈M

Rθ(m, q,y<t)

Rθ(m, q y<t) ≜E
[
− log q(yt|y<t)

]
−Hθ(Yt|m,y<t)

where Ω is the model vocabulary, Hθ(Yt|m,y<t)
is the conditional entropy, and the expectation E
is computed over yt ∼ pθ(yt|m,y<t). It can be
shown that the optimal distribution is a mixture
distribution, whose weights are computed by the
Blahut-Arimoto algorithm (Blahut, 1972; Arimoto,
1972). Our scoring method then evaluates the dif-
ference in codelength between the observed text on
the one hand, and an averaged equivalent measure
for generated texts (for models in M), using:

SAv(w) =
1

TM

T∑
t=1

∑
m∈M

[
L⋆(wt|w<t)−∑

yt∈Ω
pθ(yt|m,w<t)L⋆(yt|w<t)

]
, (1)

where L⋆(yt|w<t) represents the optimal code-
length obtained using a mixture of models. The
first term measures how well the optimal model
compresses the actual input text, while the second
term captures how well the LLMs in the set M
compress typical machine-generated outputs.

A larger score indicates that the text is likely
human-written because the observed codelength is
significantly larger than what would be expected
from AI-generated content. Conversely, a lower
score suggests that the text closely resembles out-
puts from the models in M. Since this competition
requires the machine outputs to get higher scores,
we simply inverted use a negated version of (1)
before submission. More information about MO-
SAIC can be found in (Dubois et al., 2024).

4 Results and Discussion

4.1 Experimental Setup

For our submission to the shared task, we used two
settings: MOSAIC-4 and MOSAIC-5, where the
former uses an ensemble of four models (Tower-
7b, Tower-13b (Alves et al., 2024), Llama-2-7b
and Llama-2-7b-chat (Touvron et al., 2023)), and
the latter additionally includes Phi-3-4k-Instruct
(Abdin et al., 2024). As the gold labels were not

provided, the results discussed below are based on
the online leaderboard,1 reporting the True Positive
Rate @ 5% False Positive Rate.

4.2 Results
As our method requires no training at all, we went
with the default implementation without ever look-
ing at the training set. This explains why our stand-
ings are below other teams who perform tuning
on the RAID training set. However, our results
are competitive with a similar method evaluated on
the RAID leaderboard, the Binoculars approach of
Hans et al. (2024). Binoculars obtains a score of
0.790 without adversarial attacks, while MOSAIC-
4 and 5 get 0.752 and 0.745 respectively. In the
following, unless explicitly specified, we report the
results of MOSAIC-4, our default version.

The detailed results for the sampling configura-
tions and various attacks are shown in Figure 2.
The values presented for adversarial attacks are av-
eraged across all decoding methods, making them
directly comparable to the "all" setting in the table
displaying the sampling results.

4.2.1 Impact of the decoding strategy
When Greedy Decoding is used, generated texts
are very unsurprising, thus our method gets great
overall results (over 95% of TPR@5%FPR on av-
erage). However, texts generated by GPT2, Mis-
tral, and MPT are harder to reliably detect, getting
scores of 0.781, 0.900, and 0.897 respectively. We
can only speculate that GPT2 is the furthest from
our ensemble’s distribution. We notably obtain a
perfect score on Llama-chat, which makes sense
since our models are Llama-2 variations, the gen-
erator in this case is arguably the closest to the
probability distribution provided by the models of
our ensemble.

In the case of Ancestral Sampling, the irreg-
ularities added to the text led to a drop in per-
formance for our method, with MOSAIC-4 and
MOSAIC-5 scores falling down to 0.785 and 0.799.
Not only do the worse generator models (GPT2,
Mistral and MPT) become even harder to iden-
tify (0.333, 0.571, and 0.609 respectively), but
GPT4 generations also join them, as MOSAIC-
4 results go from 0.979 to 0.584 when changing
the decoding method. Llama-chat texts are still
(near)-perfectly identified (TPR@5%FPR=0.999),
and so are MPT-chat’s. They happen to be the
only two open-source models’ instruct versions in

1https://raid-bench.xyz/shared-task
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the generators, allowing us to speculate that either
these versions’ outputs do not significantly differ
when switching from greedy to sampling, or that
our ensemble’s distribution is very suited to these
instruction-tuned models.

Adding Repetition Penalty when greedy decod-
ing is used does not change our results much except
for MPT generations, the detection score of which
drops drastically from 0.897 to 0.343. Similarly,
MPT-chat’s score goes from near perfect (0.996) to
second-to-last (0.621). However, combining sam-
pling and repetition penalty makes the generated
text very surprising and completely breaks our de-
tection approach, leading to results close to 0 for
GPT2, Mistral, and MPT (0.005, 0.002 and 0.018).
Even in this scenario, Llama-chat remains easy to
detect, keeping our average results afloat with a
score of 0.864.

4.2.2 Adversarial Attacks
As the golden labels are not provided, we can only
hypothesize that the test set is constructed in a sim-
ilar way as the training set. If that is the case, the
attacks are also applied to the human texts and thus
produce interesting results. While changing the
decoding method could only affect the machine-
generated outputs, adversarial techniques modify
all samples and can sometimes make human texts
even more surprising, improving our results. We
report scores on average over all decoding tech-
niques, i.e., when decoding strategy and repetition
penalty are both set to "all". MOSAIC-4 goes from
0.752 without attacks to 0.693 on average over all
of them, while MOSAIC-5 drops from 0.745 to
0.694. Unless otherwise specified, the scores men-
tioned below correspond to MOSAIC-4.

Most attacks only cause a slight performance
decrease, indicating that they add more surprise
to machine outputs than human ones. Shuffling
numbers, inserting paragraph breaks, switching be-
tween the British spelling and American spelling
of some words, deleting some articles, and adding
common misspellings are adversarial techniques
that lead to score drops lower than 0.05. Swapping
the lower or upper case of words and adding
spaces between characters have more impact on
our results but these changes remain minor. Both
methods decrease our performance by about 0.07.

Swapping tokens with synonyms chosen by
BERT is by far the best attack against our de-
tection method. As pointed out in the Detect-
GPT paper (Mitchell et al., 2023), synonyms have

lower model log-probability on average in machine-
generated samples while human-written text does
not exhibit this tendency. This heavily disrupts our
method’s underlying assumptions and makes our
TPR@5%FPR drop down to 0.285.

Using Homoglyphs leads to an interesting out-
come, as the attack actually improves our perfor-
mance, making MOSAIC-5 the best performing
submission of the competition when only consider-
ing homoglyphs attacks for some generators (Chat-
GPT, Cohere, Cohere-chat and Llama-chat). We
suspect it is due to the Tower models having seen
Cyrillic data in their training.

Inserting zero-width space is the most pecu-
liar of the lot, as it leads to a slight MOSAIC-4
deterioration and a MOSAIC-5 improvement. Our
interpretation is that Phi-3 saw this Unicode char-
acter during its pretraining, while the other models
in our ensemble probably did not.

Overall, our method proves to be quite resilient
to adversarial attacks even though it was not de-
signed for this purpose as we operate in a com-
pletely zero-shot and tuning-free setting. This fur-
ther demonstrates the robustness of our method.

The detailed results for the sampling configura-
tions and various attacks are shown in Figure 2.
The values presented for adversarial attacks are av-
eraged across all decoding methods, making them
directly comparable to the "all" setting in the table
displaying the sampling results.

5 Conclusion

About our system and its underlying models In
this task, we used the MOSAIC scoring algorithm
presented in equation 1, using either 4 of 5 models,
(Tower-7b, Tower-13b Llama-2-7b and Llama-2-
7b-chat with Phi-3-4k-Instruct in the 5 models ver-
sion). None of these are used as generators in the
RAID test set and they are all Llama-2 variants, as
mentioned in (Alves et al., 2024). The only Llama
model present in the dataset is Llama-chat, and is
the easiest generator to detect according to the com-
petition results. Furthermore, the whole test set is
in English and 5 of the 11 generator models are
chat versions. The assumption behind our score is
that the generated texts’ distribution are close to our
models’, considering two of our members are spe-
cialized in multilingualism, and only one is a chat
version, our ensemble choice was not optimized
for this task at all. We believe this showcases the
generalization capabilities of the method. Further
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Figure 2: TPR@5% for all Sampling options and Attacks for both MOSAIC configurations

details can be found in the MOSAIC paper (Dubois
et al., 2024).

Insights gained from this competition Partic-
ipating in this shared Task 3 with our MOSAIC
method has allowed us to gain valuable insights as
to how our method fares against opponents using
supervised methods, and take a better look at the
effects on detectability of the decoding techniques
used to generate the text. Since we underlyingly
use language model’s probability distribution to
identify machine outputs, we expected sampling
to affect our performance, and it did. The same
observation holds for the use of a repetition penalty
and the combination of these generation parame-
ters. However, the adversarial attacks, which were
never considered when developing our scoring sys-
tem, only slightly weaken our results, confirming
that our approach is robust to not only changes in
the generator model and domain but also resilient
to many forms of noise.
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