Pangram at GenAl Detection Task 3: An Active Learning Approach to
Machine-Generated Text Detection

Bradley Emi and Max Spero and Elyas Masrour
Pangram Labs, Inc.

Correspondence: info@pangram.com

Abstract

Deep learning approaches to machine-
generated text detection typically suffer from
chronic undertraining due to premature con-
vergence. In our submission to the COLING
Shared Task 3, we employ a two-stage training
procedure to mitigate undertraining. First,
we train an LLM-based classifier on a large
multilingual dataset comprised of a wide
variety of domains, languages, prompts, and
LLMs. Then, we run offline inference on
the Al-labeled side of the RAID train split,
selecting the examples with the highest error
and their human counterpart examples to
continue training the model. We employ
several preprocessing strategies to improve
the robustness of the model. As a result, we
achieve the highest score on the adversarial
attack portion of the RAID leaderboard.

1 Introduction

We employ the same approach to the COLING
Machine-Generated Text Detection task (Dugan
et al., 2025) as we describe for our main production
model at Pangram Labs (Emi and Spero, 2024).
As we describe in our technical report, classifier
accuracy when training deep learning models
to detect Al-generated text does not naturally
obey scaling laws. Classifier performance scales
sublinearly as the size of the dataset used to train
Al-generated text classifiers increases, ultimately
even converging to a regime in which adding more
data to the classifier no longer helps performance
at all (e.g., validation loss stops decreasing even
before the first epoch concludes).

We hypothesize that the reason for this "satura-
tion of scaling laws" occurs for multiple reasons.
First, we notice during training on a random distri-
bution of human and Al-generated examples that
the loss curves are very spiky. There are several
batches in a row with nearly-zero loss followed by

single batches with very high loss, causing gradient
norms to reach very high values. As a result, low
learning rates and aggressive gradient clipping are
required for stable convergence. Second, many Al
examples follow very simple patterns that make
detection very obvious. For example, LLMs re-
sponses often begin with "Certainly!" or "Sure,
here is a...", which are very obvious tells that a
piece of text is LLM-generated. These easy exam-
ples flood the training set and cause learning to end
prematurely as the model overfits to these simple
patterns.

Our intuition is that a naively sampled dataset is
flooded with examples that are too easy and have
such giveaway patterns. To fix this problem, we
resample the dataset with "hard" examples over-
sampled. To define a hard example, we first train a
model on the randomly sampled dataset. We then
use this model to mine for high error examples on
the RAID dataset. We then take these examples,
and their opposite label pairs, and retrain the model,
which results in much more stable convergence be-
havior.

2 Methodology

2.1 Initial Datasets

Our initial dataset is seeded with a wide vari-
ety of human-written datasets from prior to 2022.
We use datasets from the following domains: re-
views, news, general web text, email, student
writing/essays, creative writing, question and an-
swers, ELL/ESL (English as a Second Language),
scientific/medical papers, Project Gutenberg, and
Wikipedia. We do not filter our dataset on lan-
guage; however we tune the language composition
such that English is the primary language used and
there is sufficient representation from the top 20
languages used on the Internet. All data is ethi-
cally sourced and properly licensed for commercial
use. For specifics on dataset composition, please

347

Proceedings of the 1st Workshop on GenAl Content Detection (GenAlDetect), pages 347-351
January 19, 2025. ©2025 International Conference on Computational Linguistics


mailto:info@pangram.com

Generate
predictions

—>

Pangram

Text
Classifier

Human Training
Pool

Misclassified l- --=-==
human - |
examples | Human LLMs
)| Examples |
ChatGPT,
1 Llama,
Retrain | Gemini,
1 1 Mistral

Training set

Figure 1: Pangram Active Learning Approach

Accuracy vs. Examples seen per domain
98.0

97.5
97.0
96.5

96.0

Test Set Accuracy (%)

95.5

95.0

0 20000 40000 60000 80000
Training examples per domain

100000

Test Loss vs. Examples seen per domain

Test Set Average Cross Entropy Loss

0 20000 40000 60000 80000
Training examples per domain

100000

Figure 2: Without active learning, performance saturates as dataset size increases.

contact the authors.

2.2 Synthetic Data Creation

Our initial dataset is sampled randomly and all is
labeled as human. To generate the Al side of the
dataset, we use synthetic mirror prompts, which we
describe in more detail in our technical report (Emi
and Spero, 2024).

We define the term "mirror prompt" to be a
prompt based on the original example that is used
to generated a "synthetic mirror" or "mirror exam-
ple." The goal of each mirror prompt is to generate
an example that matches the topic and length of the
original document.

If the original document is "<original review>",
then a mirror prompt may look like this:

[Prompt] Write a <original review star
rating> star review for <original review
business name>. Make the review around
<original review length> words long.

Another example may be for a student essay.
We sometimes use double prompts, such as the

following:

[Prompt] What is a good title for this
essay? <original essay> Only give the
title in your response.

[Assistant] <Title>

[Prompt] Write an essay with the
following title: <Title>. Make the essay
around <original essay length> words
long.

2.3 LLMs used for Synthetic Mirrors

When the initial data is not in English, we translate
our prompts to the language of the source data
using DeepL’s translation API. (DeepL SE, 2024)

For synthetic mirrors in the initial training stage,
we use the following LLMs:

* GPT-3.5 (multiple subversions)

* GPT-4, GPT-4-turbo, and GPT-40 (multiple
subversions)

* Claude 2 and 3 (multiple subversions and
sizes)

348



e LLaMA 2, 3, and 3.1 (multiple subversions
and sizes)

* Mistral (multiple versions and sizes)
* Gemini Pro and Flash (multiple subversions)

It is notable that we only use modern LL.Ms that
are instruction-tuned and post-trained. We do not
train on base models because they produce notice-
ably lower-quality outputs and are substantially less
commonly used in real-world applications.

2.4 Preprocessing and Filtering

We employ the following preprocessing strategies
prior to tokenization to enhance robustness.

* We remove all zero-width spaces.
¢ We convert all text to lowercase.

* We collapse all consecutive whitespace into a
single whitespace.

* We attempt to remove LLM "headers", such
as "Sure! Here is a..." or "Certainly!" or "As
an Al language model,", etc.

* We convert all text to unicode standard char-
acters using the unidecode package (English
text only).

Prior to training, we also filter the dataset using
the following criteria:

* We remove all examples that are under 25
words long.

* Sometimes LLMs simply repeat the prompt
back to the user and do not say anything else.
We attempt to filter out this use case by check-
ing to see if 50 percent or more of the LLM
output matches the input prompt exactly and
if it does, we filter the example out.

2.5 Augmentation

We also employ two augmentation strategies.

* We randomly machine translate around 20 per-
cent of the English training set to another lan-
guage using DeepL.. We randomly select the
language from the top 20 languages on the
Internet.

* With 50 percent probability, we randomly
mask 15 percent to 75 percent of the input
tokens from the model at training time. We
find that this improves training stability and
helps the model from overfitting to common
giveaway phrases and syntactic patterns. This
technique is very similar to CutOut which is
commonly used in computer vision (DeVries
and Taylor, 2017).

2.6 Tokenization, Architecture, and Model
Training

We use the Mistral NeMo architecture (Mistral Al
Team, 2024) which has approximately 12 billion
parameters, with an untrained linear classification
head and an LLM classification head (to identify
which LLM an Al text came from, as an auxiliary
task). Following the usual convention for sequence
classification modeling using an autoregressive lan-
guage model, the hidden state from the final token
in the sequence is used as the input to both clas-
sification heads. As is common practice in LLM
finetuning, we use trainable LoRA (Hu et al., 2022)
adapters while keeping the base model frozen. We
use the Tekken tokenizer out of the box, which is
noted for its strong multilingual performance. We
truncate the context window to 512 tokens to con-
strain the model to using only short-range features.
When necessary, we simply crop the input to fit the
context window.

We train the model to convergence using 8 A100
GPUs with an effective batch size of 24 using a
weighted cross-entropy loss. We use the AdamW
optimizer and a linearly decaying learning rate
schedule. We train the model for 1 epoch, which
took about 9 hours, and select the checkpoint based
on a weighted cross-entropy loss with 3 times the
weight given to false positives.

2.7 Active Learning

After the initial model is trained, we mine the RAID
training set for Al examples that the initial model
classifies as human. We then select the 50,000
highest error examples and add them back into the
training set with the 50,000 human example pairs
corresponding to these highest error examples. We
restrict our search to only examples that have no
adversarial attack.

This process has several side effects that also
improve the underlying data distribution. First,
base models and other models that are difficult to
detect are introduced into the training set, but only

349



the base model distribution that differs significantly
from the instruction-tuned model distributions, and
proportionally to how poorly the generalization is
to each particular model.

This side effect generalizes to domains, lan-
guages, and attacks as well: the worse the initial
model is at predicting a particular split of the data,
the more that split gets overrepresented in the fol-
lowing training run.

We reintroduce this data into the training set and
retrain the model for 1 epoch until convergence.

3 Results

Pangram places first overall in detecting GPT4,
ChatGPT, and LLaMA (state-of-the-art models)
with no adversarial attacks, second overall in de-
tecting all models without adversarial attacks, and
tied for first overall in detecting Al-generated text
with adversarial attacks.

The full results are posted publicly on the RAID
website. We refer the reader to the leaderboard for
full details. (Dugan et al., 2025)

4 Discussion

We believe our method is a general framework for
scaling the deep learning approach to detecting Al-
generated text, and this prototype model is only a
starting point. For example, the framework could
be extended beyond the current dataset to even
more domains and data and larger models, or cus-
tomized to private data or domains in which open
data is not readily available at scale, such as mes-
saging, email, or other data with high amounts of
PIL

4.1 Differences between RAID submission
and Pangram’s Commercial Model

Our submission uses a similar framework and is
otherwise trained in the same way as Pangram’s
commercial model, but there are some slight differ-
ences.

In Pangram’s original framework (Emi and
Spero, 2024), we perform hard negative mining
with synthetic mirrors on large human-written text
corpora, to reduce the false positive rate as much as
possible. However, when evaluated on RAID, the
initial model has excellent precision but poor re-
call. This is due to the domain shift to the different
models used in the RAID benchmark. To reduce
our false positive rate, we perform the inverse op-
eration: hard positive mining with human mirrors.

This is not generally possible in a real-world set-
ting due to the fact that positively labeled examples
are not as abundant as negatively labeled examples,
but it was possible for the RAID benchmark and so
we decided to take advantage.

Because the RAID benchmark contains many
lower-quality models, such as MPT, GPT-2, etc.,
we needed to optimize the model to perform well
on these lower quality models, but this required
trading off some false positives. For real-world
usage, detecting these low-quality model outputs
is not important, so our production model does not
detect these as well as the RAID model, but has a
lower false positive rate.

We also enforce a higher minimum word count
for the commercial model, which again lowers our
false positive rate but hurts our recall on shorter text.
Other researchers have given theoretical and em-
pirical grounding for the relationship between de-
tectability and sequence length (Chakraborty et al.,
2023). In practice, for the production model, we
choose to prioritize precision, but for the RAID
submission, we instead to choose a more balanced
approach where we equally prioritize precision and
recall on these short texts.

Additionally, we do not use unidecode for the
commercial model on non-English languages.

5 Conclusion

In this work, we have demonstrated a general
framework for domain and model adaptation of
deep-learning based Al detectors based on active
learning and mirroring. We further argue that ac-
tive learning is necessary for scaling performance
both in terms of model size and data and present
a model larger and more accurate than the other
methods in the RAID benchmark, without the need
for using perplexity-based features or otherwise
handcrafted feature engineering.

References

Souradip Chakraborty, Amrit Singh Bedi, Sicheng Zhu,
Bang An, Dinesh Manocha, and Furong Huang. 2023.
On the possibilities of ai-generated text detection.
Preprint, arXiv:2304.04736.

DeepL SE. 2024. Deepl translator. Accessed: 2024-11-
12.

Terrance DeVries and Graham W. Taylor. 2017. Im-
proved regularization of convolutional neural net-
works with cutout. Preprint, arXiv:1708.04552.

350


https://arxiv.org/abs/2304.04736
https://www.deepl.com
https://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1708.04552

Liam Dugan, Andrew Zhu, Firoj Alam, Preslav Nakov,
Marianna Apidianaki, and Callison-Burch Chris.
2025. GenAl Content Detection Task 3: Cross-
domain machine generated text detection challenge.
In Proceedings of the 1st Workshop on GenAl Con-
tent Detection (GenAlDetect), Abu Dhabi, UAE. In-
ternational Conference on Computational Linguis-
tics.

Bradley Emi and Max Spero. 2024. Technical report
on the pangram ai-generated text classifier. Preprint,
arXiv:2402.14873.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2022. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Mistral AI Team. 2024. Mistral NeMo. Released in
collaboration with NVIDIA, July 18, 2024.

351


https://arxiv.org/abs/2402.14873
https://arxiv.org/abs/2402.14873
https://mistral.ai/news/mistral-nemo/

	Introduction
	Methodology
	Initial Datasets
	Synthetic Data Creation
	LLMs used for Synthetic Mirrors
	Preprocessing and Filtering
	Augmentation
	Tokenization, Architecture, and Model Training
	Active Learning

	Results
	Discussion
	Differences between RAID submission and Pangram's Commercial Model

	Conclusion

