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Abstract

This paper presents a system developed for
Task 1 of the COLING 2025 Workshop on
Detecting AI-Generated Content, focusing on
the binary classification of machine-generated
versus human-written text. Our approach uti-
lizes an ensemble of models, with weights as-
signed according to each model’s inverse per-
plexity, to enhance classification accuracy. For
the English text detection task, we combined
RoBERTa-base, RoOBERTa-base with the Ope-
nAl detector, and BERT-base-cased, achieving
a Macro F1-score of 0.7458, which ranked us
12th out of 35 teams. We ensembled Rem-
BERT, XLM-RoBERTa-base, and BERT-base-
multilingual-case for the multilingual text de-
tection task, employing the same inverse per-
plexity weighting technique. This resulted in a
Macro F1-score of 0.7513, positioning us 4th
out of 25 teams. Our results demonstrate the
effectiveness of inverse perplexity weighting in
improving the robustness of machine-generated
text detection across both monolingual and mul-
tilingual settings, highlighting the potential of
ensemble methods for this challenging task.

1 Introduction

The rapid advancement of language models such as
GPT (Radford et al., 2019) and BERT (Devlin et al.,
2019) has increased machine-generated content,
raising significant concerns about misinformation
and academic integrity. Identifying Al-generated
text becomes more challenging in multilingual con-
texts, where linguistic diversity adds further com-
plexity to model generalization. While existing
approaches perform well in English, their effec-
tiveness decreases when applied to languages with
diverse syntactic and semantic structures.

In Task 1 of the COLING 2025 Workshop on De-
tecting Al-Generated Content (Wang et al., 2025),
we propose an ensemble-based solution to address
these issues. For English detection, we combine
RoBERTa-base (Liu et al., 2019), OpenAI’s Al

text detector (Solaiman et al., 2019), and BERT-
base-cased (Devlin et al., 2019). For multilin-
gual detection, we integrate RemBERT (Chung
et al., 2021), XLM-RoBERTa-base (Conneau et al.,
2019), and BERT-base-multilingual-cased (Devlin
et al., 2019). To further improve performance, we
incorporate inverse perplexity weighting to give
greater priority to models that produce lower per-
plexity scores. Our ensemble approach achieved
a Macro Fl-score of 0.7458 (Micro F1: 0.7568)
in English, placing us 12th out of 35 teams, and a
Macro F1-score of 0.7513 (Micro F1: 0.7527) for
the multilingual tasks, ranking 4th out of 25 teams.

We encountered several challenges during this
work. One major issue was data imbalance, as
human-written content vastly outnumbered Al-
generated samples. To address this, we employed
data augmentation and optimized our sampling
strategies. Another challenge involved ensuring the
models’ generalization across different languages
and writing styles, often with limited training data.
This highlights the importance of additional fine-
tuning and the need to explore alternative archi-
tectures that can better handle diverse linguistic
inputs.

This paper presents a robust ensemble approach
for detecting Al-generated content, with strong
performance across both English and multilingual
tasks. However, significant opportunities remain
for improving model generalization and addressing
data imbalance, which will be crucial for future
advancements in this field. The following sections
will discuss the dataset, methodology, results, a
detailed analysis of the findings, and conclusions
drawn from this study.

2 Background

2.1 Dataset

The provided dataset includes training and valida-
tion sets for two subtasks: Subtask A (English-only
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Dataset en zh bg de it id ur ar ru
Training 610,676 35,284 8,091 4,693 4,174 3,976 3,761 2,114 1,314
Validation | 261,849 14,772 3,489 2,059 1,843 1,803 1,573 906 600

Table 1: Data distribution for multilingual training and validation datasets, including the number of entries per
language. The English dataset is consistent across both English-only and multilingual contexts, so it is omitted from

the table for clarity.

Machine-Generated Text Detection) and Subtask B
(Multilingual Machine-Generated Text Detection).
Subtask A consists of over 610,000 English-only
entries in the training set and around 261,000 in the
validation set, each labeled as machine-generated
or human-generated. These texts are sourced from
various platforms, with information on their origin
and creation model (e.g., GPT-4, human). Subtask
B extends the dataset to include over 674,000 train-
ing entries and approximately 288,000 validation
entries across nine languages, including English,
Chinese, and Bulgarian. Each entry contains de-
tails on the source, sub-source, language, model,
label, and text. Data distribution details are shown
in Table 1.

2.2 Related Work

The detection of Al-generated text has garnered
significant attention with the advent of large lan-
guage models (LLMs) such as GPT (Radford et al.,
2019) and BERT (Devlin et al., 2019). Fine-tuning
Transformer-based models for binary classification
has shown efficacy; however, challenges persist,
particularly in multilingual settings where data bi-
ases impede generalization (Zellers et al., 2019;
Solaiman et al., 2019).

Ensemble methods combining BERT, RoBERTa,
and GPT variants have enhanced robustness across
domains and languages (Schick and Schiitze, 2020).
Perplexity-based weighting strategies further opti-
mize individual model contributions (Clark et al.,
2019). Multilingual models like XLM-RoBERTa
(Conneau et al., 2019) and RemBERT (Chung et al.,
2021) improve cross-lingual performance, though
low-resource languages remain challenging (Hu
et al., 2020).

Recent advancements in shared tasks, such as
those introduced by SemEval (Fetahu et al., 2023;
Wang et al., 2024), have refined methodologies
through task-specific fine-tuning and the integra-
tion of multilingual pre-trained models (Eger et al.,
2023; Siino, 2024).

Building upon these foundations, our work em-
ploys an inverse perplexity-weighted ensemble ap-

proach to optimize model contributions, enhancing
robustness in both monolingual and multilingual
detection scenarios.
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Figure 1: Overall Framework of our Proposed System.

3 System Overview

We developed an ensemble approach for Al-
generated text detection across English and multi-
lingual contexts, using Transformer models with a
weighted voting strategy based on inverse perplex-
ity for improved accuracy. The system overview is
shown in Figure 1.

3.1 Ensemble Model Selection and
Justification

We selected six Transformer-based models for our
ensemble: three for English and three for multilin-
gual contexts, chosen for their ability to capture
linguistic and syntactic patterns.

* English Models: The models utilized in
our work include RoBERTa-base, renowned
for its robust performance in natural lan-
guage understanding, effectively capturing
deep syntactic and semantic patterns (Liu
et al.,, 2019). Additionally, the RoBERTa-
base OpenAl detector is fine-tuned to detect
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Dataset en zh bg de it id ur ar ru
Training 40,000 20,000 8,091 4,693 4,174 3,976 3,761 2,114 1,314
Validation | 26,000 10,000 3,489 2,059 1,843 1,803 1,573 906 600

Table 2: Reduced data distribution for the multilingual task after balancing by scaling down English and Chinese
samples to improve performance in underrepresented languages.

Al-generated content by identifying subtle
machine-generated patterns (Solaiman et al.,
2019). Lastly, BERT-base-cased is incorpo-
rated for its capability to handle case-sensitive
distinctions, which are critical for nuanced
classification tasks (Devlin et al., 2019).

* Multilingual Models: For Multilingual, we
employed RemBERT, a model optimized for
multilingual tasks, demonstrating exceptional
performance in syntactic and semantic un-
derstanding across languages (Chung et al.,
2021). Furthermore, XLM-RoBERTa-base
is employed for its strength in cross-lingual ap-
plications, adeptly handling diverse language
structures (Conneau et al., 2019). Addition-
ally, BERT-base-multilingual-cased is used
as it is specifically designed to capture lin-
guistic diversity and perform effectively in
multilingual tasks (Devlin et al., 2019).

We trained these models on the dataset provided
as part of the shared task 1 (Wang et al., 2025), in-
cluding human-authored and Al-generated content.
This enabled the ensemble to generalize effectively
across both English and multilingual contexts.

3.2 Data Pre-processing

The multilingual task presented a significant data
imbalance across languages, as shown in Table 1,
which details the original distribution of training
and validation samples. For instance, the dataset
included 610,676 English (en) samples and 35,284
Chinese (zh) samples, whereas underrepresented
languages like Urdu (ur), Arabic (ar), and Russian
(ru) had far fewer samples (3,761, 2,114, and 1,314,
respectively). This imbalance hindered the model’s
ability to predict outputs for these underrepresented
languages accurately.

To mitigate this issue, we implemented a dataset
balancing strategy by reducing the number of En-
glish and Chinese samples to a proportionate scale.
This adjustment enabled the model to better focus
on learning patterns in the underrepresented lan-
guages, thereby enhancing overall performance and
reducing biases in predictions. The detailed data

distribution after applying this balancing strategy
is presented in Table 2.

Following this, text data was processed using
model-specific tokenizers, with truncation and
padding applied as needed. To optimize memory
usage and training efficiency, text length was cal-
culated and sorted by word count, minimizing un-
necessary padding. A fixed random seed was used

throughout to ensure reproducibility.

Hyperparameter

Value

Number of Epochs
Learning Rate

Training Batch Size
Validation Batch Size
Early Stopping Patience
Early Stopping Threshold
Weight Decay
Optimizer

Loss Function
Evaluation Strategy
Checkpointing Strategy

2~3

1x107° ~2x107°
4

16

5 validation steps
0.001

0.01

AdamW

Binary Cross-Entropy
Every Y4 epoch
Validation loss

Table 3: Training Configuration

3.3 Training Procedure

The model was fine-tuned using the Hugging Face
Transformers library! for both English and mul-
tilingual text classification tasks. Datasets were
processed into Hugging Face Dataset objects, with
tokenization performed using AutoTokenizer for
models like RemBERT and RoBERTa-base. The ar-
chitecture was adapted for classification tasks with
appropriate label mappings.

Key hyperparameters, including learning rate,
batch size, and weight decay, were optimized
through empirical experiments to balance perfor-
mance and efficiency. Learning rates between
1 x 1075 and 2 x 10~° were tested, with lower
rates promoting smoother convergence. A batch
size of 4 for training and 16 for validation balanced
memory and efficiency.

1Hugging Face Transformers: https://huggingface.
co/transformers/
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English-only Task Multilingual Task
Model Micro Macro | Rank Model Micro Macro | Rank
F1- F1- F1- F1-
Score Score Score Score
RoBERTa + RoBERTa 0.7568 | 0.7458 12/35 RemBERT + XLM-R + 0.7527 | 0.7513 | 4/25
OpenAl + BERT cased BERT multilingual
RoBERTa + RoBERTa 0.7495 | 0.7380 - RemBERT 0.7507 | 0.7489 -
OpenAl
Baseline(RoBERTa)* 0.7381 0.7342 - RemBERT + XLM-R 0.7473 0.7435 -
RoBERTa + BERT cased 0.7275 | 0.7229 - Baseline(XLM-R)* 0.7426 | 0.7416 -

Table 4: Performance of various experimented models on English-only and multilingual tasks compared with

baseline results.

Hyperparameter tuning reduced overfitting and
improved generalization, leading to faster conver-
gence and better validation performance. Early
stopping (patience of 5 steps, threshold of 0.001)
prevented overfitting and enhanced robustness.

Checkpoints were saved for each epoch, and the
best model was retained for testing. Further details
of the final configurations are in Table 3, ensuring
effective fine-tuning across both datasets.

3.4 Ensemble Voting Strategy

Our ensemble employs a weighted soft-voting strat-
egy, combining predictions from three different
models for each subtask. The weights are deter-
mined based on inverse perplexity, with lower per-
plexity values reflecting higher confidence.

3.4.1 Perplexity Calculation

For each model, we compute the perplexity based
on its predictions. The perplexity P is computed
using the Negative Log Likelihood formula:

L
P =exp <_N Zlog(p(yi \ CUz)))

=1

where p(y; | z;) is the predicted probability
for the true label y;, and N is the number of test
samples. Lower perplexity values indicate higher
confidence.

To compute perplexity, we use each model’s log-
its, apply softmax to obtain probabilities, and then
calculate perplexity based on the true labels and
these probabilities.

3.4.2 Perplexity-Based Weighting Adjustment

To calculate model weights, each model’s perplex-
ity is adjusted by subtracting 1, creating an effective
weighting scale. The weight w; for model ¢ is then

computed as the inverse of this adjusted perplex-
ity and normalized across models, giving higher
confidence models greater influence.

1/(P—1)
> (1/(P = 1)

where M represents the total number of models,
and P; is the original perplexity of model .

P =

3.4.3 Weighted Soft-Voting

Each model’s predicted probabilities are scaled by
its weight and summed to form the final ensemble
prediction. This weighted voting prioritizes models
with higher confidence (lower perplexity), giving
them greater influence on the final decision. The
ensemble’s final prediction for each class c is:

M
pensemble(c) = Z Wi - Pi (C)
=1

where p;(c) is the predicted probability for class
c by model i, and w; is its weight.

This method enhances ensemble accuracy by pri-
oritizing predictions from more confident models,
improving overall performance.

4 Results

This section presents the performance of our ensem-
ble approach for Task 1 at the COLING 2025 Work-
shop on Detecting AI-Generated Content, evalu-
ated using the Macro F1-score. Detailed results are
shown in Table 5.

The baseline scores provided by the task orga-
nizers (Wang et al., 2025) used RoBERTa-base
(Liu et al., 2019) for the English track and XLM-
RoBERTa-base (Conneau et al., 2019) for the mul-
tilingual track. These scores serve as benchmarks
for our ensemble method.
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During testing, models in the ensemble
were weighted based on perplexity, with lower-
perplexity models given greater influence. This ap-
proach, along with sorting test data by text length,
reduced inference time by 40% while generating
predictions using softmax and weighted averaging.

For the English-only task, our ensemble of
RoBERTa-base, RoBERTa-base OpenAl detector,
and BERT-base-cased achieved a Macro F1-score
of 0.7458, outperforming the baseline (0.7342)
and ranking 12th out of 35 teams. Similarly,
for the multilingual task, our ensemble of Rem-
BERT, XLLM-RoBERTa-base, and BERT-base-
multilingual-cased achieved a Macro F1-score of
0.7513, surpassing the baseline (0.7416) and rank-
ing 4th out of 25 teams. The combination of
these models effectively enhanced both language-
specific and cross-lingual accuracy.

Table 5 highlights the effectiveness of Inverse
Perplexity Weighting, which achieved the highest
Macro F1-scores for both tasks (0.7458 for English
and 0.7513 for multilingual). This method dynami-
cally prioritizes models with lower uncertainty in
their predictions, outperforming other techniques
such as accuracy-based weighting, mean ensem-
bling, and majority voting.

Our ensemble also outperformed individual mod-
els, such as RoBERTa-base (0.7342) for the En-
glish track and the dual combination of RemBERT
+ XLM-R (0.7435) for the multilingual track. This
demonstrates the effectiveness of combining di-
verse models to achieve better performance.

Ensemble English Task | Multilingual
Technique (Macro F1) | Task (Macro
F1)
Inverse Perplexity 0.7458 0.7513
Weighting
Accuracy Based 0.7251 0.7393
Weighting
Mean Ensemble 0.7153 0.7211
Majority Voting 0.6850 0.7005

Table 5: Comparison of ensemble techniques for
English-only and multilingual tasks, highlighting the
effectiveness of Inverse Perplexity Weighting.

5 Discussion and Conclusion

In this work, we presented an ensemble approach
to detect Al-generated content across English
and multilingual datasets. By combining multi-
ple pre-trained models, including RoBERTa-base,

OpenAl detector, BERT-base-cased for English,
and RemBERT, XLLM-RoBERTa-base, BERT-base-
multilingual-cased for multilingual tasks, and ap-
plying inverse perplexity weighting, our ensem-
ble demonstrated strong performance. It achieved
a Macro Fl-score of 0.7458 (Micro F1: 0.7568)
for English, ranking 12th, and 0.7513 (Micro F1:
0.7527) for multilingual tasks, ranking 4th.

Compared to individual models, our ensemble
consistently outperformed or matched their perfor-
mance. For example, in the English task, the en-
semble scored 0.7568, surpassing RoBERTa + Ope-
nAl detector (0.7381) and BERT (0.7275). Sim-
ilarly, the multilingual task achieved 0.7527, ex-
ceeding RemBERT + XILM-R (0.7473) and Rem-
BERT (0.7507). Notably, our ensemble also out-
performed baseline models, with a Macro F1-score
of 0.7458 for English (baseline: 0.7342 achieved
by RoBERTa) and 0.7513 for multilingual (base-
line: 0.7416 achieved by XLM-RoBERTa). These
results highlight the effectiveness of combining
model strengths to improve detection accuracy.

A key challenge faced during the multilin-
gual task was the data imbalance between well-
represented languages like English and Chinese
and underrepresented ones such as Urdu, Arabic,
and Russian. This disparity hindered the model’s
accuracy for underrepresented languages. To ad-
dress this, we scale down samples from overrepre-
sented languages to balance the dataset. This ad-
justment improved performance across languages,
validating the effectiveness of our approach.

Despite these successes, challenges persist. De-
tecting Al-generated content in multilingual con-
texts remains complex and demands further refine-
ment in model architectures and data processing
techniques. Future work could explore advanced
methods for mitigating data imbalance, such as
data augmentation or active learning, to enhance
the model’s generalization ability across diverse
languages. Additionally, more sophisticated en-
semble strategies or domain-specific models could
improve detection accuracy.

In conclusion, this study demonstrates the effec-
tiveness of an ensemble approach for detecting Al-
generated content across English and multilingual
datasets. Addressing data imbalance and using in-
verse perplexity weighting improved performance,
though ongoing challenges highlight the need for
continuous innovation in Al detection systems.
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A Appendix

Tools & Libraries Version
Python 3.10.14
Pandas 2.2.2
NumPy 1.26.4
PyTorch 24.0
Transformers 4.44.2
Evaluate 0.4.3
WandB 0.16.6

Table 6: Main tools and libraries used in our system

Table 6 provide the details about the correspond-

ing libraries, which are beneficial to help replicate
our experiments.
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