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Abstract

The advent of Large Language
Models (LLMs) has enabled the
generation of text that increasingly
exhibits human-like characteristics.
As the detection of such content is
of significant importance, substan-
tial research has been conducted
with the objective of developing
reliable Al-generated text detectors.
These detectors have demonstrated
promising results on test data, but
recent research has revealed that they
can be circumvented by employing
different techniques. In this paper,
we present homoglyph-based attacks
(‘A — Cyrillic ‘A’) as a means of
circumventing existing detectors.
We conduct a comprehensive
evaluation to assess the effectiveness
of these attacks on seven detectors,
including ArguGPT, Binoculars,
DetectGPT, Fast-DetectGPT,
Ghostbuster, OpenAI’s detector,
and watermarking techniques, on
five different datasets. Our findings
demonstrate that homoglyph-based
attacks can effectively circumvent
state-of-the-art detectors, leading
them to classify all texts as either
Al-generated or human-written
(decreasing the average Matthews
Correlation Coefficient from 0.64 to
-0.01). Through further examination,
we extract the technical justification
underlying the success of the attacks,
which varies across detectors.
Finally, we discuss the implications
of these findings and potential
defenses against such attacks.
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1 Introduction

LLMs have soared in popularity in a wide
variety of domains as their text generation
capabilities become increasingly human-
like (Bin-Nashwan et al., 2023). For in-
stance, it is estimated that the percent-
age of arXiv articles whose abstract has
been revised by ChatGPT is around 35%
(GENG and Trotta, 2024). While LLMs
can prove beneficial (Ngo, 2023), there
is growing concern about their potential
misuse (Sullivan et al., 2023; Yan et al.,
2024, Li et al., 2023; Sebastian, 2023).

Thus, a number of approaches to detect
Al-generated text have been proposed, in-
cluding zero-shot classifiers (Gehrmann
et al., 2019; Mitchell et al., 2023; Bao
et al., 2024; Hans et al., 2024; Su et al.,
2023), binary classifiers (Solaiman et al.,
2019; Verma et al., 2024; Liu et al., 2023),
and watermarking techniques (Zhu et al.,
2024; Giboulot and Teddy, 2024; Zhang
and Koushanfar, 2024; Molenda et al.,
2024; Wu et al., 2023).

At the same time, research has been
conducted on methods for circumventing
Al-generated text detectors. Some popu-
lar techniques include paraphrasing (Kr-
ishna et al., 2023; Peng et al., 2023), wa-
termark stealing (Jovanovic et al., 2024),
Substitution-based In-Context example
Optimization (Lu et al., 2024), reinforce-
ment learning (Nicks et al., 2023) or space
infiltration (Cai and Cui, 2023). In this
paper, we study an alternative technique
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Figure 1: Homoglyph-based attack. The left box shows the original text, adapted from (Hans
et al., 2024), and the right box shows the text after rewriting some of its characters. The bottom
boxes show the tokenized versions from (OpenAl, 2024b). Differences are shown in red.

based on homoglyphs.

Homoglyphs are visually similar
characters with different encodings (e.g.,
Latin ‘a’ and Cyrillic ‘a’) (Ginsberg and
Yu, 2018). This allows us to generate
rewritten versions of any given text that
can evade Al-generated text detectors
(Figure 1). Kirchenbauer et al. (2023)
identified the usage of homoglyphs as a
potential avenue for evading Al-generated
text detectors. However, to the best of our
knowledge, no study has yet conducted
a comprehensive evaluation of the effec-
tiveness of this approach across diverse
datasets and detectors, nor has it provided
insights into the technical justification of
homoglyph-based attacks, a gap that we
aim to fill in this paper.

Our main contributions are:

* What are homoglyph-based attacks?
We introduce them as a way to evade
Al-generated text detectors.

e How much can homoglyph-based at-
tacks affect Al-generated text detec-
tors? We evaluate their effectiveness
on five datasets and seven detectors
in Section 2. In Section 3, we show
that they can bring average Matthews
Correlation Coefficients from 0.64
to -0.01. This shows a complete eva-

sion, discussed in Section 4.1.

e Why do homoglyph-based attacks
work? We analyze and justify such
performance decline in Section 4.2.

e What are the ethical implications of
these findings? We discuss them in
Section 6, along with possible de-
fenses against such attacks.

* Additionally, we introduce the
first publicly available dataset of
homoglyph-based attacks targeting
Al-generated text detectors.

2 Methods

In this section, we delineate our experi-
mental approach, along with a description
of the detectors and datasets employed.
We make our code and datasets pub-
licly available at https://github.com/
ACMCMC/silverspeak, under CC BY-SA
4.0 and ODC-BY licenses. Furthermore,
we ensured that our study adheres to
the intended usages of the detectors and
datasets presented, for which we include
licensing information below.

2.1 Experiments

As shown in Figure 2, we evaluate the ef-
fectiveness of homoglyph-based attacks
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Figure 2: Our experimental process. First, we generate a set of rewritten datasets by applying
homoglyph-based attacks, with varying replacement percentages, on all original datasets. Then,
we run the detectors on the original and attacked datasets to get the metrics presented.

on seven detectors and five datasets, each
with 2,000 samples (1,000 human and
1,000 AI). We used the original text and
five attacked versions, generated by re-
placing 5%, 10%, 15%, and 20% of ran-
domly chosen characters in the text (ran-
dom attack), or all of the possible charac-
ters that can be replaced (greedy attack).

We also conducted initial experiments
on an optimized setting where we perform
replacement only on tokens that have the
highest loglikelihoods (those that are most
likely to be Al-generated) when evaluated
by an LLM. However, given that the pre-
vious attacks are already effective (Sec-
tion 3), we decided to focus on them for
the rest of the experiments, as they are
less computationally expensive and do not
vary depending on the choice of the LLM.

We utilized the homoglyphs provided
in (Davis and Suignard, 2023). We based
our code on the Hugging Face Transform-
ers and Datasets libraries with PyTorch as
backend (Wolf et al., 2019; Paszke et al.,
2019).We executed the experiments on a
NVIDIA A100, for which we present uti-
lization by each detector in Table 1.

Detector Time Space

ArguGPT 2 5.2

Binoculars 6 34.2
DetectGPT 276 10.8
Fast-DetectGPT 25 19.5

Ghostbuster 240 0

OpenAl 2 52
Watermark 3 8.6

Table 1: Approximate requirements on time
and space for one experiment, in minutes and
gigabytes. We report on the unattacked reuter
dataset as times do not vary significantly
across datasets. For a full experiment suite on
a detector, the time requirement is multiplied
by the number of attacks and datasets.

2.2 Detectors

We conduct experiments on:

¢ ArguGPT: A RoBERTa-based classi-
fier trained on a dataset of human
and Al-generated arguments (Liu
et al., 2023). We utilize the sentence-
level model under a MIT license.

* Binoculars: Computes a ratio of
the perplexity measured on an LLM



and its cross-entropy with the per-
plexity of another. The text is
determined to be Al-generated or
not by comparing the ratio with
a chosen threshold. We utilize
the code (BSD 3 license), de-
fault threshold (Low-fpr), and mod-
els (observer falcon-7b; performer
falcon-7b-instruct) provided by
the authors (Hans et al., 2024).

DetectGPT: Compares the likeli-
hood of an input text with a series of
Al-perturbed versions, assuming that
loglikelihoods will drop more for
Al-generated texts (Mitchell et al.,
2023). We utilize the open-source
implementation (MIT license) by
(Tayyab, 2023), with GPT-2-Medium
and T5-Large as scoring and rewrit-
ing models (Radford et al., 2019;
Raffel et al., 2020).

Fast-DetectGPT: An optimization
that measures the conditioned prob-
ability of each token against its al-
ternatives, rather than among texts.
This means that only one forward
pass is needed to score the perturbed
tokens, rendering it much faster (Bao
et al., 2024). It has been released un-
der a MIT license.

Ghostbuster: A classifier trained
on a set of forward-selected fea-
tures based on token probabilities
measured on weak language models
(Verma et al., 2024), licensed under
CCBY 3.0. We use its web interface,
as described in Section 7.

OpenAI’s detector: A ROBERTa-
based classifier trained on a large
dataset of human and Al-generated
texts (Solaiman et al., 2019). We uti-
lize the large variant (MIT license).

Watermark: Based on a lefthash al-
gorithm, which computes a hash of

the previous token and uses it to shift
the next token logits, so that this
skewed distribution can be detected
(Kirchenbauer et al., 2023). We use
the Hugging Face implementation
(Apache 2.0) (Wolf et al., 2019).

2.3 Datasets

‘We derived our datasets as follows:

* essay, writing prompts, reuter: De-
rived from (Verma et al., 2024),
also utilized by (Hans et al., 2024).
The essay dataset consists of essays
from IvyPanda. The writing prompts
dataset consists of prompts from the
subreddit r/WritingPrompts. The
reuter dataset consists of news ar-
ticles from the Reuters 50-50 author-
ship identification dataset. They are
licensed under CC BY 3.0.

e CHEAT: Abstracts of academic pa-
pers, derived from (Yu et al., 2024)
under a MIT license.

e realnewslike: Derived from the C4
realnewslike dataset (Raffel et al.,
2020) (ODC-BY license). We gener-
ate 200-token watermarked comple-
tions with OPT-1.3B (Zhang et al.,
2022), as in (Kirchenbauer et al.,
2023), taking 8 minutes and 23.9
GB on a NVIDIA A100. The nature
of this dataset is such that it is only
used to test the Watermark detector,
as others cannot detect watermarks.

To ensure that all datasets have the
same number of examples, we randomly
select 1,000 human and 1,000 Al-written
examples from each source dataset. We
do not split the datasets as our study does
not require training any model.

3 Results

We summarize our experimental results
in Table 2. Full results are reported in



Dataset |

Detector | Original | 5%

| 10% | 15% | 20% | Greedy |

ArguGPT
Binoculars
DetectGPT
Fast-DetectGPT
Ghostbuster
OpenAl
ArguGPT
Binoculars
DetectGPT
Fast-DetectGPT
Ghostbuster
OpenAl
ArguGPT
Binoculars
DetectGPT
Fast-DetectGPT
Ghostbuster
OpenAl
ArguGPT
Binoculars
DetectGPT
Fast-DetectGPT
Ghostbuster
OpenAl
Watermark

CHEAT

essay

reuter

writing prompts

realnewslike

Average | 0.64

Standard deviation | 0.36

Table 2: Matthews Correlation Coefficient (MCC) of all detectors on all datasets for all attack
configurations. The color of the cell represents its value, clipped between 0 (red) and 1 (green).

Appendices A and B, with the raw results
available in our released datasets.

The results correspond to a single run,
as we confirmed that the scores obtained
are identical across multiple executions.

It should be noted that some conven-
tional metrics employed to assess the effi-
cacy of detectors may prove to be decep-
tive in this particular setting. For exam-
ple, Figure 13e shows a confusion matrix
where the F1 score is 0.67, but the detec-
tor is classifying almost all examples as
Al-generated. We argue that the Matthews
Correlation Coefficient (MCC) is better
suited (in this case, 0.08), placing greater
emphasis on class balance (Baldi et al.,
2000). Therefore, we use it as our main
metric, and advise caution when interpret-
ing the results based on other metrics in
the appendices. MCC yields values from
-1 (inverse correlation) to 1 (perfect corre-

lation), with O representing no correlation.

4 Discussion

In this section, we discuss the results ob-
tained from the experiments conducted on
different Al-generated text detectors us-
ing homoglyph-based attacks. Then, we
analyze the effectiveness of the attacks
and their technical justifications.

4.1 Effectiveness of the attacks

Baseline performance varies across de-
tectors and datasets. Before the attacks,
MCC values range from -0.21 to 0.94,
with an average of 0.64 and a standard
deviation of 0.36.

Binoculars and Fast-DetectGPT
show consistently high MCCs. ArguGPT
and Ghostbuster show a wider range of
MCCs across datasets, with DetectGPT
and the OpenAl detector having lower



baseline scores. The Watermark detector
shows a high baseline MCC, albeit only
tested on the realnewslike dataset.

We performed a side exploration on the
low scores of DetectGPT and the OpenAl
detector. We found that their scores can
be improved by adapting their classifica-
tion thresholds to each dataset they are ap-
plied on. However, including these results
would mean deviating from the original
implementations, so we abstained from
changing the thresholds in our study.

Interestingly, not all detectors are af-
fected in the same way by the attacks.
Generally, we observe two distinct trends
when applying the attacks:

* The detector tends to classify the
examples as human-written, even
when they are Al-generated. This
happens on all replacement percent-
ages, but even more prominently as
the percentage of replacements in-
creases. This is the case for ArguGPT,
Binoculars, Fast-DetectGPT, the
OpenAlI detector, and Watermark.

* The detector classifies more ex-
amples as human-written on low
replacement percentages (5% or
10%). However, as the percentage
of replacements increases, the detec-
tor starts classifying the examples as
Al-generated. On intermediate re-
placement percentages, the detector
tends to behave as a random classi-
fier. This temporarily increases the
MCC, as some examples are classi-
fied correctly. Then, the tendency
reaches a plateau and higher per-
centages (20%, greedy attack) cause
the detector to classify almost all ex-
amples as Al-generated. This is the
case for DetectGPT, which plateaus
around 15%, and Ghostbuster,
which plateaus around 10%.

While the behavior of the detectors

varies, the effectiveness of the attacks
is consistent across all detectors and
datasets, showing a pronounced decline
in performance. Lowest MCCs are ob-
served in the greedy replacement setting,
where the attack consistently (standard
deviation of 0.08) renders detectors in-
effective (average of -0.01).

4.2 Technical justification

In this section, we provide insights into
the effectiveness of the attacks, separately
exploring each group of detectors.

4.2.1 Perplexity-based models

Binoculars, DetectGPT and
Fast-DetectGPT are based on per-
plexity, shown in Equation 1 (Alon
and Kamfonas, 2023). Let N be the
number of tokens in the text, and p(¢;) the

probability of token ¢; given t1,...,t;—1,
according to an LLM.
1N
Perplexity = exp !_N z; log p(t;)
1=
ey

As homoglyphs have different encod-
ings, tokenizers treat them differently.
Two observations can be made:

1. Since the training corpora used to
train popular tokenizers (such as
those based on Byte-Pair Encoding
(Sennrich et al., 2016)) do not of-
ten contain sequences that mix char-
acters from different alphabets, it is
likely that attacked tokens will be
split into smaller ones: IV increases.

2. Since the attacked sequence of to-
kens does not resemble the training
data, the loglikelihoods for attacked
tokens will generally be lower.

Therefore, the summation contains more
tokens (T N) with lower loglikelihoods

(J log p(t;)), increasing perplexity.
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Figure 3: Token loglikelihoods for the text in Figure 1 on BLOOM-560m (Le Scao et al., 2023).
The attacked text (10% replacement) has a distribution shifted towards more negative values.

Figure 3 illustrates the impact of
homoglyph-based attacks on tokens and
their associated log likelihoods. In this
example, modifying 10% of the charac-
ters in the text changes their tokenization
70% of the time. The attacked text ex-
hibits a more negative loglikelihood dis-
tribution than the original text, as shown
in Figure 3b. Therefore, the attacked text
appears “more likely to be human” when
the perplexity is evaluated with an LLM,
while keeping the same appearance. In
summary, homoglyph-based attacks are
effective at shifting the distribution of
loglikelihoods towards more negative
values, which can evade detection.

4.2.2 Classification models

ArguGPT and the OpenAl detector are
RoBERTa-based models with a classifica-
tion head (Liu et al., 2023; Solaiman et al.,
2019). We hypothesize that the presence
of homoglyphs in the text causes the out-
put embeddings to become much less dis-
criminative, as the model is unable to un-
derstand the semantics of the text.

To test this hypothesis, we remove the
classification head from ArguGPT and ob-
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Figure 4: Embeddings from ArguGPT. While
the original texts are well-separated, the em-
beddings of the attacked texts are mixed and
placed in a different subspace.

tain the mean of the embeddings for the
original and attacked texts (10% replace-
ment) on the CHEAT dataset. We then
reduce their dimensionality to 2D with
UMAP (Mclnnes et al., 2018). We set the
local connectivity to 5, minimum distance
to 0.1, and number of neighbors to 15. We
plot the embeddings in Figure 4.

Three clusters can be observed. Two
of them correspond to the original texts,
where Al and human texts are clearly sep-
arated. However, the third cluster (green



and purple) corresponds to the attacked
texts, where embeddings are mixed. This
indicates that the classification head is fed
with discriminative embeddings in a nor-
mal scenario, but with homoglyphs, the
embeddings are less discriminative and
placed in an unseen region of the space,
therefore leading to misclassifications.
As for Ghostbuster, a similar justifi-
cation to Section 4.2.1 can be made. The
model is based on a linear classifier, and
while it does not use perplexity, the fea-
tures it is trained on are based on the prob-
ability of generating each token in the text
under several weaker language models
(Verma et al., 2024). Therefore, the same
principles apply: the presence of homo-
glyphs in the text alters the calculation of
the probabilities, leading to a shift in the
distribution of the features used by the
classifier that evades detection.

4.2.3 Watermarking

The Watermark detector is a special case,
as it is not designed to analyze the seman-
tics of the text, or any of its features, other
than the presence of a watermark. The
probability of a text having been gener-
ated with a watermark is calculated with
a one-proportion z-test, as shown in Equa-
tion 2. Given a text, |s|g is the num-
ber of green (“expected”) tokens and T'
is the total number. -y is a hyperparame-
ter, the probability of a token being green
(Kirchenbauer et al., 2023).

a—T)/VTy(1=7v) ()

If the text is generated with knowledge
of the watermark rule, we can expect |s|a
to deviate significantly from 47'; i.e. the
sample mean will be higher than the ex-
pected mean, leading to a high z value.
This is the case for the original texts,
where the watermark is easily detected.

However, results show that watermarks
are highly sensitive to changes in the text.

z=(|s

This is due to the fact that the lefthash wa-
termarking algorithm is based on a simple
scheme where a list of green tokens is
generated using the previous token ¢t — 1
(Kirchenbauer et al., 2024). This list is
used to shift the logits of the current to-
ken ¢, so that the distribution is skewed
towards green tokens. As homoglyph-
based attacks alter tokenization, many of
the green lists are generated with different
seeds, and the probability of ¢ being green
becomes 7, as in a human-written text.
Moreover, even if ¢ — 1 remains the same,
if ¢ is changed, its probability of being
green is also 7. The two factors combined
lead to a significant decrease in the num-
ber of green tokens, thus reducing 2z and
rendering the watermark undetectable.

5 Conclusion

This paper demonstrated that homoglyph-
based attacks can evade state-of-the-art
Al-generated text detectors. We per-
formed a systematic evaluation of the ef-
fectiveness of these attacks on seven dif-
ferent detectors and five different datasets.
Our results showed that homoglyph-based
attacks are very effective, to the point that
their MCC drops to around O (no correla-
tion) in all of them, albeit at different re-
placement percentages. We then analyzed
the internal mechanisms of the detectors
to provide a technical justification for the
effectiveness of the attacks. Furthermore,
we have publicly released our implemen-
tation and datasets, which we hope will
facilitate further research on Al-generated
text detection algorithms. The effective-
ness of these attacks adds to the existing
evidence that existing Al-generated text
detectors are unfit for purpose, highlight-
ing the need for more robust detection
mechanisms. The proposed attacks can
be employed to assess the resilience of
future Al-generated text detectors and to
develop more effective solutions.



6 Ethical impact and safeguards

Our work has significant ethical implica-
tions, including the potential for increased
instances of academic misconduct, misin-
formation, and social engineering (Ma-
jumdar et al., 2024).

Furthermore, while alternative methods
such as paraphrasing necessitate the use of
LLMs (Krishna et al., 2023), homoglyph-
based attacks can be conducted with a
simple script and minimal computational
resources. This lower barrier for access
exacerbates their potential impact.

It is not our intention to encourage mali-
cious usage; rather, we seek to contribute
to the growing evidence on the unreliabil-
ity of current detectors (Sadasivan et al.,
2024; Yan et al., 2024) and promote the
design of sturdier ones. It is deeply con-
cerning that a number of commercially
available tools like Undetectable (2024)
are widely used in sectors like academia,
yet they are vulnerable to an attack that
can be executed with minimal effort.

Fortunately, it is possible to forestall
these attacks by incorporating additional
safeguards into the detection process. In-
put constraints, such as limiting the char-
acter set that can be utilized (Ginsberg and
Yu, 2018) or mapping them to a standard
form (Alvi et al., 2017), can be an effec-
tive mitigation strategy in several cases.

Other contexts may require more So-
phisticated solutions. For instance, sci-
entific articles frequently contain Greek
symbols in their discourse, which should
not be treated as indicators of homoglyph-
based attacks. Instead, one possibility is
to analyze loglikelihood scores (Figure
3) (Alon and Kamfonas, 2023), while an-
other is to consider architectures based on
neural networks (Woodbridge et al., 2018)
or optical character recognition (Ginsberg
and Yu, 2018). No universal solution ex-
ists, and the choice should be based on
the nature of the text and detector.

7 Limitations

Our work has some limitations that should
be considered when interpreting results.

Optimized attacks As our aim was to
justify and assess the extent to which
homoglyph-based attacks are able to
evade Al-generated text detectors, we did
not attempt to optimize (Section 2.1). It
may be possible to achieve the same eva-
sion rates with lower replacement percent-
ages by strategically selecting the charac-
ters to replace. Additionally, there may be
merit in studying character sets other than
homoglyphs (Boucher et al., 2022).

Datasets We are confident that the num-
ber of samples per dataset (2,000) is
enough to demonstrate the effectiveness
of the attacks, as the results do not elicit
the need for further exploration (we ob-
serve a complete evasion of the detec-
tors with a low standard deviation). How-
ever, generalizability to languages other
than English remains to be studied, where
homoglyphs may be naturally present.
Nonetheless, if detectors tend to misclas-
sify non-native English writing samples as
Al-generated (Liang et al., 2023), we ex-
pect that homoglyph-based attacks would
be effective in other languages as well.

Ghostbuster deprecation Another
limitation is that Ghostbuster is based
on the deprecated ada and davinci
models (OpenAl, 2024a). This prevents
us from running it on our infrastructure,
and while we have tried to contact the
authors for a solution, we have not
received a response yet. Surprisingly, the
web interface provided by the authors
remains operational, enabling us to
evaluate the detector. However, we are
unable to confirm the models currently
in use, and therefore cannot guarantee
that the results are consistent with those
presented in the original paper, nor that
they will remain reproducible.
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Appendices

A Detection metrics

The detection metrics are reported in the
following tables. The metrics include the
MCC, accuracy, F1 score, precision and
recall for each detector and dataset.
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Type MCC | Accuracy | F1 Precision | Recall
Original | 0.94 | 0.97 0.97 | 0.96 0.98
5% 0.0 0.5 0.0 |00 0.0
10% 0.0 0.5 0.0 |00 0.0
15% 0.0 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | 0.0 0.5 0.0 |00 0.0

Table 3: Results for ArguGPT on the CHEAT dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.93 | 0.96 0.96 | 0.94 0.99
5% 0.37 | 0.62 0.39 | 0.24 1.0
10% 0.11 0.51 0.05 | 0.03 1.0
15% 0.04 |05 0.01 | 0.0 1.0
20% 0.02 |05 0.0 |00 1.0
Greedy | 0.13 | 0.52 0.11 | 0.06 0.84

Table 4: Results for Binoculars on the CHEAT dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.14 | 0.52 0.08 | 0.04 0.95
5% -0.02 | 0.5 0.0 |00 0.0
10% 0.03 | 0.51 0.13 | 0.08 0.55
15% 0.13 | 0.56 0.59 | 0.62 0.56
20% 0.06 | 0.52 0.64 | 0.86 0.51
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 5: Results for DetectGPT on the CHEAT dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.9 0.95 0.95 | 0.94 0.95
5% 023 | 0.55 0.19 | 0.1 0.99
10% 0.04 |05 0.01 | 0.0 1.0
15% 0.02 | 0.5 0.0 |00 1.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | -0.01 | 0.5 0.13 | 0.07 0.48

Table 6: Results for Fast-DetectGPT on the CHEAT dataset.

14




Type MCC | Accuracy | F1 Precision | Recall
Original | 0.64 0.8 0.83 | 0.99 0.71
5% 0.41 0.69 0.63 | 0.53 0.79
10% 0.32 0.61 0.71 | 0.97 0.57
15% 0.12 0.52 0.67 | 1.0 0.51
20% 0.06 0.5 0.67 | 1.0 0.5
Greedy | 0.02 0.5 0.67 | 1.0 0.5
Table 7: Results for Ghostbuster on the CHEAT dataset.
Type MCC | Accuracy | F1 Precision | Recall
Original | 0.47 0.7 0.61 | 0.46 0.9
5% 0.0 0.5 0.0 | 0.0 0.0
10% 0.0 0.5 0.0 | 0.0 0.0
15% 0.0 0.5 0.0 | 0.0 0.0
20% -0.02 | 0.5 0.0 | 0.0 0.0
Greedy | 0.0 0.5 0.0 | 0.0 0.0
Table 8: Results for OpenAI on the CHEAT dataset.
Type MCC | Accuracy | F1 Precision | Recall
Original | 0.92 0.96 0.96 | 0.95 0.96
5% 0.0 0.5 0.0 | 0.0 0.0
10% 0.0 0.5 0.0 | 0.0 0.0
15% 0.0 0.5 0.0 | 0.0 0.0
20% 0.0 0.5 0.0 | 0.0 0.0
Greedy | 0.0 0.5 0.0 | 0.0 0.0
Table 9: Results for ArguGPT on the essay dataset.
Type MCC | Accuracy | F1 Precision | Recall
Original | 0.91 0.95 0.95 | 09 1.0
5% 0.22 0.55 0.17 | 0.1 1.0
10% 0.05 0.5 0.01 | 0.01 1.0
15% 0.0 0.5 0.0 | 0.0 0.0
20% 0.0 0.5 0.0 | 0.0 0.0
Greedy | 0.05 0.5 0.02 | 0.01 0.82

Table 10: Results for Binoculars on the essay dataset.
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Type MCC | Accuracy | F1 Precision | Recall
Original | 0.24 | 0.55 0.2 | 0.11 0.99
5% -0.01 | 0.5 0.0 |00 0.33
10% 0.11 0.53 0.16 | 0.09 0.72
15% 0.21 0.59 0.67 | 0.85 0.56
20% 0.08 | 0.51 0.67 | 0.99 0.51
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 11: Results for DetectGPT on the essay dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.88 | 0.94 0.94 | 0.89 0.99
5% 022 | 0.55 0.2 |0.12 0.93
10% 0.04 |05 0.01 | 0.0 1.0
15% 0.0 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | -0.08 | 0.48 0.08 | 0.04 0.35

Table 12: Results for Fast-DetectGPT on the essay dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.92 | 0.96 0.96 | 0.95 0.96
5% 0.73 | 0.86 0.84 | 0.76 0.94
10% 0.51 0.71 0.77 | 0.99 0.64
15% 0.13 | 0.52 0.67 | 1.0 0.51
20% 0.0 0.5 0.67 | 1.0 0.5
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 13: Results for Ghostbuster on the essay dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | -0.21 | 0.43 0.09 | 0.06 0.22
5% 0.0 0.5 0.0 |00 0.0
10% 0.0 0.5 0.0 |00 0.0
15% 0.0 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.5
Greedy | 0.03 | 0.5 0.0 |00 1.0

Table 14: Results for OpenAI on the essay dataset.
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Type MCC | Accuracy | F1 Precision | Recall
Original | 0.92 | 0.96 0.96 | 0.95 0.97
5% 0.0 0.5 0.0 |00 0.0
10% 0.0 0.5 0.0 |00 0.0
15% 0.0 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | 0.0 0.5 0.0 |00 0.0

Table 15: Results for ArguGPT on the reuter dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.8 0.89 0.88 | 0.78 1.0
5% 022 | 0.55 0.17 | 0.09 1.0
10% 0.07 | 0.51 0.02 | 0.01 1.0
15% 0.03 |05 0.0 |00 1.0
20% 0.02 |05 0.0 |00 1.0
Greedy | 0.08 | 0.51 0.03 | 0.02 0.94

Table 16: Results for Binoculars on the reuter dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.23 | 0.56 0.22 | 0.12 0.93
5% 0.0 0.5 0.0 |00 0.0
10% 0.03 | 0.5 0.01 | 0.0 0.8
15% 0.34 | 0.67 0.63 | 0.57 0.7
20% 0.14 | 0.54 0.67 | 0.94 0.52
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 17: Results for DetectGPT on the reuter dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.92 | 0.96 0.96 | 0.92 1.0
5% 0.28 | 0.57 0.25 | 0.14 1.0
10% 0.1 0.51 0.04 | 0.02 1.0
15% 0.02 | 0.5 0.0 |00 1.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | 0.04 | 0.51 0.11 | 0.06 0.58

Table 18: Results for Fast-DetectGPT on the reuter dataset.
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Type MCC | Accuracy | F1 Precision | Recall
Original | 0.93 | 0.96 0.96 | 0.94 0.99
5% 0.61 0.79 0.75 | 0.63 0.93
10% 0.51 0.72 0.78 | 0.98 0.64
15% 0.16 | 0.53 0.68 | 1.0 0.51
20% 0.04 |05 0.67 | 1.0 0.5
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 19: Results for Ghostbuster on the reuter dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.27 | 0.57 0.25 | 0.14 0.98
5% 0.0 0.5 0.0 |00 0.0
10% -0.04 | 0.5 0.0 |00 0.0
15% -0.09 | 0.49 0.0 |00 0.0
20% -0.11 | 0.49 0.0 |00 0.06
Greedy | -0.06 | 0.5 0.0 |00 0.0

Table 20: Results for OpenAl on the reuter dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.39 | 0.63 0.42 | 0.26 1.0
5% 0.0 0.5 0.0 |00 0.0
10% 0.0 0.5 0.0 |00 0.0
15% 0.0 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | 0.0 0.5 0.0 |00 0.0

Table 21: Results for ArguGPT on the writing prompts dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.85 | 0.92 091 | 0.84 1.0
5% 0.2 0.54 0.14 | 0.08 1.0
10% 0.0 0.5 0.0 |00 0.0
15% 0.0 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | -0.04 | 0.5 0.01 | 0.0 0.23

Table 22: Results for Binoculars on the writing prompts dataset.
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Type MCC | Accuracy | F1 Precision | Recall
Original | 0.44 | 0.68 0.55 | 0.39 0.93
5% 0.04 |05 0.01 | 0.0 1.0
10% 0.01 0.5 0.09 | 0.05 0.52
15% 0.02 | 0.51 0.57 | 0.65 0.51
20% 0.02 | 0.51 0.66 | 0.96 0.5
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 23: Results for DetectGPT on the writing prompts dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.79 | 0.89 0.88 | 0.81 0.97
5% 0.3 0.59 0.31 | 0.19 0.96
10% 0.05 |05 0.02 | 0.01 0.83
15% -0.03 | 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.5
Greedy | -0.33 | 0.37 0.09 | 0.07 0.17

Table 24: Results for Fast-DetectGPT on the writing prompts dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.88 | 0.94 0.94 | 0.9 0.98
5% 042 | 0.66 0.49 | 0.33 0.96
10% 0.64 | 0.82 0.83 | 0.86 0.79
15% 033 | 0.6 0.71 | 0.99 0.56
20% 0.09 | 0.51 0.67 | 1.0 0.5
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 25: Results for Ghostbuster on the writing prompts dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | -0.05 | 0.5 0.0 |0.0 0.11
5% -0.04 | 0.5 0.0 |00 0.0
10% -0.05 | 0.5 0.0 |00 0.0
15% -0.13 | 0.48 0.0 |00 0.0
20% -0.11 | 0.49 0.01 | 0.0 0.11
Greedy | 0.01 0.5 0.01 | 0.0 0.57

Table 26: Results for OpenAl on the writing prompts dataset.
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Type MCC | Accuracy | F1 Precision | Recall
Original | 0.92 0.96 0.96 | 0.95 0.96
5% 0.18 0.54 0.14 | 0.08 0.94
10% -0.01 | 0.5 0.01 | 0.0 0.43
15% 0.0 0.5 0.01 | 0.0 0.5
20% -0.03 | 0.5 0.0 | 0.0 0.29
Greedy | 0.0 0.5 0.01 | 0.01 0.5
Table 27: Results for Watermark on the realnewslike dataset.
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B Confusion matrices

The following figures show the confusion
matrices for each detector and dataset. As
stated in Section 2.3, the datasets used in
the experiments are CHEAT, essay, reuter,
writing prompts, and realnewslike (only
used for the watermarking detector). Each
dataset contains 1,000 human-written ex-
amples and 1,000 Al-written examples.
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Figure 5: Confusion matrices for the ArguGPT detector on the CHEAT dataset.
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Figure 6: Confusion matrices for the Binoculars detector on the CHEAT dataset.
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Figure 7: Confusion matrices for DetectGPT on the CHEAT dataset.
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Figure 8: Confusion matrices for the Fast-DetectGPT detector on the CHEAT dataset.
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Figure 10: Confusion matrices for the OpenAl detector on the CHEAT dataset.
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Figure 11: Confusion matrices for the ArguGPT detector on the essay dataset.
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Figure 12: Confusion matrices for the Binoculars detector on the essay dataset.
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Figure 13: Confusion matrices for DetectGPT on the essay dataset.
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Figure 14: Confusion matrices for the Fast-DetectGPT detector on the essay dataset.
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Figure 15: Confusion matrices for the Ghostbuster detector on the essay dataset.
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Figure 16: Confusion matrices for the OpenAI detector on the essay dataset.
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Figure 17: Confusion matrices for the ArguGPT detector on the reuter dataset.
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Figure 18: Confusion matrices for the Binoculars detector on the reuter dataset.
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Figure 19: Confusion matrices for DetectGPT on the reuter dataset.
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Figure 20: Confusion matrices for the Fast-DetectGPT detector on the reuter dataset.
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Figure 21: Confusion matrices for the Ghostbuster detector on the reuter dataset.
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Figure 22: Confusion matrices for the OpenAl detector on the reuter dataset.
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Figure 23: Confusion matrices for the ArguGPT detector on the writing prompts dataset.
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Figure 24: Confusion matrices for the Binoculars detector on the writing prompts dataset.
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Figure 25: Confusion matrices for DetectGPT on the writing prompts dataset.
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Figure 26: Confusion matrices for the Fast-DetectGPT detector on the writing prompts dataset.
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Figure 27: Confusion matrices for the Ghostbuster detector on the writing prompts dataset.
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Figure 28: Confusion matrices for the OpenAI detector on the writing prompts dataset.
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Figure 29: Confusion matrices for the watermarking-based detector on the realnewslike dataset.
Here, “generated” refers to the watermarked versions of the texts.
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