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Abstract

Inspired by early research on exploring natu-
rally annotated data for Chinese Word Segmen-
tation (CWS), and also by recent research on
integration of speech and text processing, this
work for the first time proposes to explicitly
mine word boundaries from speech-text par-
allel data. We employ the Montreal Forced
Aligner (MFA) toolkit to perform character-
level alignment on speech-text data, giving
pauses as candidate word boundaries. Based
on detailed analysis of collected pauses, we
propose an effective probability-based strategy
for filtering unreliable word boundaries. To
more effectively utilize word boundaries as
extra training data, we also propose a robust
complete-then-train (CTT) strategy. We con-
duct cross-domain CWS experiments on two
target domains, i.e., ZX and AISHELL2. We
have annotated about 1,000 sentences as the
evaluation data of AISHELL2. Experiments
demonstrate the effectiveness of our proposed
approach.

1 Introduction

As a fundamental task in Chinese language pro-
cessing, CWS aims to segment an input character
sequence into a word sequence, since words, in-
stead of characters, are the basic meaning unit in
Chinese. Figure 1 gives an example of the CWS
task, along with the speech signals.

With the rapid progress of deep learning tech-
niques, especially the proposal of pre-trained lan-
guage models like BERT (Devlin et al., 2019),
CWS models have achieve very high performance
when there is abundant training data from the same
domain as the test data (Tian et al., 2020; Huang
et al., 2020b). Therefore, recent studies on CWS
have increasingly focused on the cross-domain sce-
narios (Huang et al., 2020a; Ke et al., 2021).

Meanwhile, considering the high cost of manu-
ally annotating high-quality CWS data, it has been
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some people is carefully listening
Figure 1: An example of speech-text alignment

data. The correct segmentation result is “# /A/4 /48
m/Ho/#7 97, translated as “some people is carefully
listening”.

an attractive research direction to explore naturally
annotated CWS data from different channels. For
instance, anchor texts in HTML-format web docu-
ments imply reliable word boundaries (Jiang et al.,
2013; Yang and Vozila, 2014); domain-aware dic-
tionaries can match words accurately in target do-
main texts (Liu et al., 2014). These studies illus-
trate that such information can be used as partial
annotations for training CWS models.

Another interesting research line in recent years
is the multi-modal integration of speech and texts,
mainly due to the adoption of unified model archi-
tectures in both speech processing (Baevski et al.,
2020; Hsu et al., 2021) and NLP fields (Devlin
et al., 2019; Lewis et al., 2020) in the deep learn-
ing era. These approaches can be broadly divided
into three categories, i.e., 1) using speech as extra
features for NLP (Zhang et al., 2021), 2) multi-
task learning (MTL) with cross-attention interac-
tion (Sui et al., 2021), and 3) end-to-end language
analysis from speech (Chen et al., 2022). Among
these, a work (Zhang et al., 2021) is closely related
to ours. They extract extra features from speech to
enhance CWS on corresponding texts.

Inspired by the progress of research directions
discussed above, we propose for the first time to
explicitly utilize pauses in speech as word bound-
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ary annotations. The basic motivation is that when
uttering a Chinese sentence, people often pause af-
ter finishing some complete meaning in the middle
of the sentence, to breathe or to make the speech
easier to understand. Considering that words are
the basic meaning unit, we hypothesize that pause
information can be utilized to help CWS.

Following previous works on cross-domain
CWS, we employ the Penn Chinese Treebank 5
(CTB5) (Xue et al., 2005) as the source domain
and use the widely used ZhuXian (“Jade Dynasty”
in English, abbreviated as ZX) data as the target
domain (Zhang et al., 2014). We collect and clean
the parallel speech-text corpus of ZX for mining
word boundaries. To more thoroughly evaluate the
models, we use AISHELL?2 as the second target
domain, which is a publicly available dataset for au-
tomatic speech recognition (ASR) (Du et al., 2018).
The contributions of our work are as follows.

* We have manually annotated about 1,000 sen-
tences as the dev/test evaluation data for the
AISHELL?2 domain.

» We employ the MFA toolkit' (McAuliffe et al.,
2017) to perform character-level alignment on
speech-text corpora, and conduct detailed analy-
sis on the collected pauses.

* We propose an effective probability-based strat-
egy for filtering unreliable word boundaries, and
a robust CTT strategy to make use of the word
boundaries as naturally annotated data.

* Experiments on both ZX and AISHELL?2 demon-
strate the effectiveness of our proposed approach.
We are currently conducting experiments on a
much larger dataset, named the Emilia dataset
(He et al., 2024) and will report additional results
in the Arxiv version of this paper.”

Our code and newly annotated data have been
released and are available at GitHub.

Please also note that an early version of this work
is reported in the arXiv:2210.17122 paper.

2 Mining Word Boundaries from Speech

This section describes how we collect speech
pauses from parallel speech-text data, which con-
sists of two steps. First, we prepare parallel speech-
text data. Second, we utilize a GMM-HMM based

"https://mfa-models.readthedocs.io/en/latest/
acoustic
Zhttps://arxiv.org/abs/2412.09045

Corpus Item Train Dev Test
CTBS # Sent 18,104 352 348
# Word 493,932 6,821 8,008
7X # Sent 788 1,394
# Word 20,393 34,355
AISHELL2 # Sent 306 643
(Annotated) # Word 2,125 4,366
Speech-text Data #Pause  # Sent
all — 25,038
7X containing pause 203,842 25,016
after filtering (»® >0.1) 198,361 25,007
after filtering (p® > 0.5) 197,981 24,997
after filtering (P >0.9) 197,540 24,964
all — 847,662
AISHELL2 containing pause 537,986 324,577

after filtering (p® > 0.1) 457,007 294,694
after filtering (p® > 0.5) 449,458 290,319
after filtering (pB > 0.9) 442,633 286,608

Table 1: Statistics of data used in our experiments. p?
means the probability threshold for filtering pauses.

model to obtain character-level speech-text align-
ments. Based on the alignments, we can obtain
the pause duration between characters. Finally, we
conduct detailed analysis on pauses and propose a
simple filtering strategy to keep reliable pauses as
word boundaries.

2.1 Preparing Speech-Text Parallel Data

In this work, we use CTB as the source domain and
employ two target-domain datasets. Table 1 shows
the data statistics.

(1) ZX. The first dataset is the ZX dataset for
the web fiction domain, which was constructed by
Zhang et al. (2014) and has been widely used in
previous works on cross-domain word segmenta-
tion (Liu and Zhang, 2012; Ding et al., 2020; Jiang
et al., 2021).

The ZX dataset contains about 5K sentences in
total.> The ZhuXian fiction consists of about 30K
sentences in total. In this work, we manage to de-
rive word boundaries from speech for the remaining
sentences that are not included in ZX-dev/test.

We select a version* characterized by high qual-
ity and little background noise from various itera-
tions available online. All audios are processed to
be at a sampling frequency of 16kHz.

3Among them, 2,373 sentences are reserved for training,
but usually are not used in cross-domain experiments.
*https://ting55.com/book/143
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Cleansing. We apply several data cleansing or fil-
tering strategies to improve data quality. (1) Num-
bers like “1200” are transformed into their Chinese
character form like “— - % & (one thousand and
two hundred). (2) Silent and special symbols are
removed in the text, such as punctuation marks.
(3) Irrelevant blanks or noises in the beginning or
end of the audio are removed. (4) Audios with
background music are discarded. Finally, we col-
lect 246 audio files amounting to 144 hours, each
corresponding to a chapter of the fiction.

(2) AISHELL2. For the second domain, we
adopt the AISHELL?2 (Du et al., 2018) Mandarin
Chinese speech corpus, which contains about 1,000
hours of high-quality audio, corresponding to about
one million transcription sentences.> The corpus
covers 12 different domains that are closely related
with the application of speech recognition in smart
home, autonomous driving, industrial production,
etc.

One major feature of the AISHELL?2 data, whose
major use is as training data for ASR, is that
the transcription texts do not contain punctuation
marks. In fact, outputs of ASR models usually
do not contain soundless symbols in written texts,
including punctuation marks.

Instead of injecting punctuation marks into
AISHELL?2 transcription texts, which would be
highly time-consuming and prone to annotation er-
rors, we decide to perform word segmentation on
transcription texts directly. We believe this is an
interesting and useful scenario for word segmenta-
tion research. Text normalization procedures such
as filling punctuation marks may be applied over
the output word sequence.

To alleviate the mismatch between the
AISHELL?2 data and the source-domain training
data, i.e., CTB, regarding punctuation marks,
we employ a simple strategy that can boost the
performance of the baseline model. For each
sentence in CTB-Train, we remove the punctuation
marks in the sentence. With this strategy, the
trained model can handle transcription texts well.

To evaluate the CWS model on AISHELL?2, we
have manually annotated about 1,000 sentences in
the original AISHELL?2-dev/test, and use them as
the dev/test evaluation datasets. We present more
details about data annotation in Section 4.1.

SWe sincerely thank the Beijing AISHELL Technology
Co., Ltd for sharing the data.

2.2 Character-level Speech-Text Alignment

In this paper, we try to derive word boundaries
from speech based on the pause information. The
intuition is that if the speaker pauses for some time
after uttering a character, then there may be a word
boundary after the character. The key challenge for
implementing this idea is how to obtain accurate
character-level alignments between speech signals
and the corresponding sentence.

In the past decade, end-to-end Transformer-
based models have become the dominant ASR
approach due to their superior performance (Gu-
lati et al., 2020; Zhang et al., 2023; Pratap et al.,
2023). With an extra Connectionist Temporal Clas-
sification (CTC) component, the model can explic-
itly produce alignments. However, our early ex-
periments reveal that the Transformer-CTC based
models suffer from a severe peak alignment issue,
meaning that every character is usually aligned to
a single speech frame, leaving most of the frames
aligned to blanks. This finding is consistent with
previous results (Senior et al., 2015; Zeyer et al.,
2021).

Instead, we employ the MFA toolkit with
its GMM-HMM implementation to obtain
character-level alignment between text and
speech (McAuliffe et al., 2017). We employ both
monophone and triphone GMMs.

Given a speech, we use the default frame win-
dow length of 25ms and the default frame offset
of 10ms. For each frame, the acoustic features
are the standard Mel-Frequency Cepstral Coeffi-
cients (MFCCs). Formally, we represent speech
as X = xg...%;...Tn, Where x; is an MFCC fea-
ture vector, and the corresponding transcription as
y = ¥o---Yi---Ym, Where y; denotes a token. The
objective of GMM-HMM is two fold: 1) to deter-
mine which phonemes correspond to a token, and
2) to determine which frames (e.g., x...x;) corre-
spond to a phoneme. Combining the results, we can
obtain the time range for each token. The model
works in the unsupervised scenario and apply the
expectation-maximization (EM) algorithm (Moon,
1996) on the training speech-text pairs.

We continue training the pre-trained Mandarin
model in the MFA toolkit using our parallel speech-
text data at hand, either ZX or AISHELL2. In
our context, a token y; corresponds to a character.’

f’By default, the Mandarin model in the MFA toolkit can
only perform alignment at the word level, since the acoustic
dictionary is word-based and polyphonic characters only have
one entry, corresponding to the most frequent pronunciation.
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Suppose y; is aligned to xy,...x,,, also denoted
as (b;, e;), where b; and e; are the beginning and
end indices of frames. Then we can calculate the
pause duration between two adjacent characters,
for instance y; and y; 41 as follows.

d(yi, yig1) = (biy1 — €) x 10ms (1)

Figure 1 gives an example. There are two pauses
in the sentence, with duration of 230ms and 110ms
respectively.

2.3 Filtering Pauses

At the beginning, our plan was to filter unreliable
word boundaries based on a global pause duration
threshold. For instance, if d(y;,yi+1) < 50ms,
then we discard the pause and do not consider it
as a boundary. However, our analysis shows that
pauses with short duration are equally helpful.

Then we turn to another simple probability-
based filtering strategy. The idea is to let the base-
line model trained on the source-domain data (i.e.,
CTB) to judge. If the baseline shows a low proba-
bility for a boundary, we discard it.

Following previous works, we adopt the BERT-
CRF model as our baseline model and employ the
label set {B, M, E, S}, which represents “begin-
ning”, “middle”, “end”, and “single-char”, respec-
tively. Given an input char sequence y = 4g...Ym,
we denote a label sequence as z = zj...2,,. The
marginal probability of a label bigram at given po-
sitions ¢ and ¢ + 1, for instance E_S, is:

pESly,i)= > p(ly). @
z:2;=E,z;11=S

Then the probability that there is a boundary
between y; and y;1 is:

PP(y,i) = >

le{s_s, S_B, E_S, E_B}

p(lly,i). (3)

And the probability that there is no boundary is:

1—pP(y,i) = > p(lly,i). (@)

le{B_M, B_E, M_M, M_E}

Please note that illegal label bigrams (a.k.a. illegal
transitions), such as B_B, are forbidden and always
receive zero probability.

According to our experiments and analysis, our
final approach keeps all pauses with p® > 0.5,
regardless of the pause duration.

To handle this issue, we extend the acoustic dictionary by

leveraging a Pinyin-based Chinese lexicon (both words and
characters). We will release the related resource and scripts.
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Figure 2: Statistics of pauses regarding probabil-
ity/accuracy of being boundaries and duration distri-
bution. Probabilities are grouped into four bins, i.e.,
[0.0,0.1), [0.1,0.9), [0.9,1.0), and 1.0. The overall
percentage means the proportion of pauses belonging to
a given probability bin against all pauses. Pause dura-
tions are divided into four bins, i.e., [10, 50), [50, 150),
[150,500), and [500, INF), in the unit of ms. Given a
probability bin, the internal percentage means the pro-
portion of pauses belonging to a given duration bin
against all pauses in the probability bin. For the ZX
data, accuracy means the proportion of pauses that are
really word boundaries according to further verification.

2.4 Analysis of Pauses

The lower part of Table 1 presents the overall statis-
tics of pauses in both ZX and AISHELL?2, both
with and without filtering. One notable difference
between the two datasets is that pauses are much
sparser in the latter. Almost all sentences in ZX
contain pauses (> 10ms), and for sentences that
contain pauses, the average number of pauses is
about 8. In contrast, less than 40% of sentences in
AISHELL?2 contain pauses, and the average num-
ber is only 1.7. We believe that the major reason
is that the sentences are much longer in ZX than
in AISHELL?2. Each sentence contains about 25
words on average in the former, while only about 7
in the latter.

Figure 2 provides more details about the pauses.
We group probability of [0.1,0.9) into one bin for
two reasons. First, the total percentage of pauses
falling into this bin is still not high. Second, pauses
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within the bin scatter quite evenly in terms of prob-
ability. Our experiments show that despite the low
overall percentage, pauses in this bin are quite valu-
able for improving model performance.

From the aspect of overall percentage, the
most notable difference is that the percentages for
the first two probability bins, i.e., [0.0,0.1) and
[0.1,0.9), are much higher in AISHELL?2 than in
ZX (2.7 — 16.7 and 0.4 — 2.6).

From the aspect of internal percentage, we can
see that pauses of different duration bins have a
similar distribution in the four probability bins in
AISHELLZ2. In contrast, in ZX the percentages of
smaller pause durations, i.e., [10, 50) and [50, 150),
decrease consistently as the probability increases.

For ZX, we also manage to report the accuracy
for each probability bin, in order to gain more in-
sights. Instead of performing manual annotation,
we notice that the ZX data with word segmentation
(WS) annotations are a part of the transcription
texts. Thus, we evaluate the accuracy of pauses as
word boundaries over the overlapping sentences,
using annotated WS information as gold standard.”

It is clear that accuracy increases consistently
as the probability becomes higher. Most of the
pauses falling into the [0.0,0.1) bin are incorrect
boundaries and thus should be excluded.

Pauses with high probability, i.e., [0.9,1.0) and
1.0, have almost perfect accuracy and should be
included. Despite the model has high confidence
in these word boundaries, they are valuable addi-
tions to the cross-domain training dataset due to
the extensive data volume.

Most importantly, pauses in the [0.1,0.9) have
79.3% accuracy, which is much higher than that
for the [0.0,0.1) bin. Our experiments show that
these pauses are very useful for the model.

3 Utilizing Pauses as Word Boundaries

Pauses as word boundaries for CWS. In fact,
quite a few previous studies try to explore word
boundaries from different channels and use them
as naturally annotated CWS data (Jiang et al., 2013;
Liu et al., 2014; Yang and Vozila, 2014). Under
a sequence labeling framework, word boundaries
can be naturally treated as partial annotations and
used to construct a constrained label space. A con-

"Due to several factors, including transcription mistakes,
difference in the fiction versions, difference in sentence seg-
mentation procedures, etc, we collect about 2K overlapping
sentences that appear both in the transcription texts and the
ZX data.

B
WY
\%‘Qt’@\ &
® foleNe
VAN PN

Figure 3: Constrained label space for the sentence in
Figure 1, in which we obtain two boundaries “# A/%
¢m m /40 77 . Tllegal labels are marked as gray. The
red thick lines present a legal path. In this context,
the character “A (people)” is constrained to be either
a single-char word (“S”) or the end of a word (“E”)
due to the pause after it. This constraint is based on
the assumption that the pause indicates a clear word
boundary, preventing “A” from being labeled as the
beginning (“B”) or middle (“M”) of a multi-char word.

strained label space refers to a set of allowed labels
for each character in a sequence, based on the iden-
tified word boundaries. This space restricts the
possible labels for each character, and similarly,
labels that contradict existing annotations are ex-
cluded. The constrained label space ensures that
only correct word boundaries are considered.

Figure 3 gives an example. Due to the pause “A
(people) / 4= (is)”, the left-side char “A” can only
be either a single-char word (“S”) or the end of a
word (“E”), while the right-side char “#£” can only
be either a single-char word (“S”) or the beginning
of a word (“B”). A similar explanation goes to the
second boundary.

3.1 Problem with the Partial-CRF strategy

To make use of partially annotated training samples,
shown in Figure 3, we first employ the partial-CRF
strategy (Liu et al., 2014), which is theoretically
elegant. The basic idea is that instead of maximiz-
ing the probability of a single gold-standard label
sequence, the training objective is to maximize the
sum of probabilities of all legal paths in the con-
strained space, which can be efficiently computed
via a variant of the Forward algorithm.

However, our experiments show that this strategy
performs terribly when the model is trained on both
CTB-Train and the target-domain data with par-
tial boundaries. Further analysis shows the model
heavily predicts the “S” label for target-domain
sentences (i.e., most words being single-char). We
suspect the major reason is that all characters in
the constrained space can be labeled as “S” tags, as
shown in Figure 3, and the model fails to transfer
from CTB to the target domain the knowledge of
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Step 1: train the baseline model

/ CTB-Train |/

Baseline
Model

Step 2: complete the partial annotations into full annotations

‘ Training }

Partial

) Jl Baseline | Constrained | / Full /
/ Annotations/ Model | Decoding | / Annotations/
Step 3: train with the completed annotations

Our Model

/ CTB-Train / | |
y——————— I Training
/Rl \ \
/ Annotations/

Figure 4: The CTT training strategy.

when/how to compose multi-char words.

3.2 The Complete-Then-Train (CTT) Strategy

To address the above issue, we present a simple
yet effective CTT strategy. The idea is converting
partial annotations into full annotations by letting a
basic model select an optimal sequence in the con-
strained space. Figure 4 illustrates the strategy, con-
sisting of three steps. First, we train a CWS model
(i.e., the baseline) on the source-domain dataset.
Second, we employ this baseline to complete par-
tial annotations into full ones. More concretely, the
baseline selects an optimal label sequence through
constrained Viterbi decoding. For example, the
model selects the red thick lines path in Figure 3.
Lastly, we use both the source-domain and com-
pleted data to train the full model.

4 Experiments

4.1 Annotation Details for AISHELL2

Upon release, the AISHELL?2 dataset set aside
2,500 sentences and 3,000 sentences, serving as
the dev and test sets, respectively. We apply the
baseline models and our full models to the 5,500
sentences. From the sentences that receive differ-
ent results from a baseline model and a full model,
we collect about 1,000 sentences for annotation.
Two postgraduate students participate in the data
annotation. Our annotation process consists of two
stages. At the first stage, each sentence is anno-
tated by two annotators, and the differences are
resolved by further discussion. During this stage,
the annotators become familiar with the segmenta-
tion guidelines of CTB (Xia, 2000). At the second
stage, one annotator (the first author of this submis-
sion) conducts a thorough review and correction

Item Sentence

Bk LR AT

Invite friends to host a dinner party

Bk [k bk ) AE ) I I AT RE
Invite / please up / friends / to host /
a/ dinner party

Results of Model 1

Box [ Ex ) L IAR ) AT B
Results of Model 2 Invite / please / up / friends / to host /

a / dinner party

Annotation Results A LI I AR
“ Invite / friends / to host / a / dinner party

Table 2: Illustration of the annotation process of the
AISHELL?2 dev/test data. * highlights differences in
model results.

of the annotations. We plan to annotate additional
sentences to make the experimental conclusions
more solid.

To speed up the annotation process, we provide
the results of the two models with differences high-
lighted. Meanwhile, the model outputs are random-
ized to ensure annotators cannot tell which results
are from which model, thereby avoiding any bias
towards our method. Table 2 illustrates the annota-
tion process.

After removing sentences that cannot be labeled
due to noise or transcription errors, we obtain 949
sentences in total. We reorganize them into new dev
and test sets based on their original set affiliations
(dev or test). Table 1 shows the data statistics.

4.2 Settings

For the evaluation, we employ the standard metrics
of precision (P), recall (R), and the F1 score.

As discussed in Section 2.3, we regard CWS as
a sequence labeling task and employ the BERT-
based® CRF baseline model. We use AdamW with
an initial learning rate of 5e-5, and a mini-batch
size of 1000 characters. The dropout ratio is 0.1 for
all models. We train each model for 10 epochs.

Following previous works on cross-domain WS
on ZX, we use CTBS5-Train and full annotations as
the training data, and use the target-domain dev set
to select the best iteration.

To be more convincing, we train each model
three times with three different random seeds and
present the average and standard deviation.”

8https: //huggingface.co/bert-base-chinese

%0 = [ S (i - 2
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P R F1 P R F1
Models ZX-dev ZX-test
Baseline 94.16 94.39 94271020 93.16 93.82 93.4910.22
Using word boundaries
w/o filtering 94.18 94.34 94261024 93.69 94.03 93.86+0.36
w/ filtering (p® > 0.9), self-training 94.27 94.64 94.45.017 93.46 94.08 93.7710.25
w/ filtering (p® > 0.5) 94.33 94.66 94.5610.39 93.59 94.22 93.9040.30
w/ filtering (p® > 0.1) 94.23 9478 94.5040.27 93.56 94.32 93.94..20
Previous Results
Ding et al. (2020) — 90.90
Luo et al. (2022) — 91.11
Higashiyama et al. (2020) — 93.30

Models AISHELL2-dev AISHELL2-test
Baseline 89.08 90.10 89.584+0.48 88.20 88.43 88.314+0.34
Using word boundaries
w/o filtering 89.32 90.81 90.06+0.52 87.88 88.76 88.31+0.15
w/ filtering (p® > 0.9), self-training 90.59 90.89 90.7440.21 88.39 88.36 88.38.0.41
w/ filtering (p® > 0.5) 90.82 90.84 90.83+0.58 89.45 88.63 89.04.0.26
w/ filtering (p® > 0.1) 90.65 91.06 90.8510.47 89.02 88.67 88.84+0.25

Table 3: Main results on both datasets.

4.3 Results

Table 3 presents the main results. Compared with
previous results on ZX, our baseline models already
achieve very good performance.

Most importantly, our best models using filtered
pauses as word boundaries achieve significant im-
provement of 0.45 and 0.73 in F1 score on ZX-test
and AISHELL2-test, respectively, compared with
the baseline models.

Effect of filtering pauses. In comparison to mod-
els without filtering pauses, our final models (p® >
0.5) are consistently superior in F1 scores.

To enhance comprehension of our approach, we
train the CWS model on datasets without speech in-
formation, i.e., we directly complete target-domain
annotations instead of constrained decoding. This
technique, referred to as self-training (Zhou et al.,
2024), aligns with our approach using word bound-
aries with p® > 0.9, as evidenced by the experi-
mental results in Table 3.

Usefulness of word boundaries with probability
of [0.1,0.9). On the one hand, compared with us-
ing the self-training method, our final models are
consistently superior in F1 scores. On the other
hand, compared with baselines, models using all
pauses have even lower F1 scores on ZX-test and
AISHELL2-test. These two aspects highlight the ef-
fectiveness of pauses with probability of [0.1,0.9).

To better explore the role of word boundaries
within the probability interval [0.1,0.9) on the
model, we take the AISHELL2 dataset, which

has a larger number of word boundaries than ZX,
as an example to conduct more detailed experi-
ments. The results presented in Table 4 indicate
that word boundaries within the range [0.5,0.9)
have the most positive impact on the model perfor-
mance. The utilization of word boundaries with
probabilities falling within the interval [0.1,0.5)
has resulted in a detrimental impact on perfor-
mance. In conjunction with Table 3, our analysis
reveals that word boundaries within the probability
range [0.1,0.5) exhibit only slight negative effects
when trained on entire datasets.

4.4 Additional Results on Larger Datasets

As illustrated in Figure 2, the quantity of effective
pauses is limited due to the small size of the dataset
we used. Therefore, we plan to conduct experi-
ments on the Emilia dataset (He et al., 2024) to
mine more word boundaries. However, given the
substantial volume of data and the time constraints,
we have yet to complete this experiment. We will
provide updates on ArXiv upon completion.

Models AISHELL2-test-F1

Word boundaries (0.1 < p® < 0.5)

Self-training 88.19

Our method 87.20
Word boundaries (0.5 < p® < 0.9)

Self-training 88.14

Our method 88.33

Table 4: Comparative experiments on AISHELL2.
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5 Related Works

5.1 Integrated Speech and Text Processing

In deep learning, the Transformer-based model ar-
chitecture becomes popular in both speech process-
ing and NLP fields. The same architecture makes
it convenient to process speech and textual data in
an integrated manner. Intuitively, speech and text
can provide complementary useful features. We
summarize recent works into four groups.

(1) Speech as extra features for NLP. The most
straightforward way is to extract features from
speech and use them as extra inputs for an NLP
model. Zhang et al. (2021) make a pioneer effort
to use speech features for CWS, which is closely
with our work. Their approach requires parallel
speech-text data in both training and test phases,
with WS annotations and the character-frame align-
ments. They manually annotate 250 sentences and
split them into training-test data. Experiments show
that extra speech features are beneficial.

Different from their work, ours emphasis on the
use of pause information in speech. We do not need
WS annotations for the text data and automatically
derive character level alignments. In the test phase,
our CWS model performs only on text data, rather
than parallel speech-text data.

(2) MTL with cross-attention interaction.
Given speech-text parallel data, Sui et al. (2021)
present a multi-task learning approach that per-
forms NER and ASR at the same time. They first
use separate encoders for the two types of inputs,
and then employ the cross-attention mechanism to
achieve multi-model interaction.

(3) End-to-End language analysis from speech.
Several works propose to directly derive language
analysis results from speech inputs in an end-to-
end manner. Ghannay et al. (2018) embed named
entity labels into texts and train a model that tran-
scribes speech into texts and treats named entity
labels as normal tokens. They conduct experiments
on French NER. Yadav et al. (2020) apply the ap-
proach to English NER and propose a new label
embedding scheme. Chen et al. (2022) present a
Chinese datasets of parallel speech-text data with
NE annotations, and systematically compare the
pipeline and end-to-end approaches.

Wu et al. (2022) propose an end-to-end relation
extraction model that transcribes speech into (en-
tity, entity, relation) triples, and totally ignores the

full text (not performing ASR). However, their ex-
periments show that the end-to-end approach is
inferior to the pipeline model, i.e., first ASR and
then relation extraction on texts.

(4) Utilizing speech pauses. Fleck (2008) utilize
speech pauses to aid in word segmentation from
transcribed adult conversations. Specifically, the
pauses serve to bootstrap a discriminative model
that determines word boundaries by examining
phone ngrams observed before and after pauses.
The algorithm segments the phoneme sequence
into words by estimating the likelihood of a phone
sequence occurring at the end of a phrase, which
is a strong indicator of a word boundary. This
approach is effective in handling morphologically
complex languages like English and Arabic.

5.2 Cross-domain CWS.

Ding et al. (2020) design a distant annotation
method to annotate the target domain text and
use the adversarial training strategy to train the
cross-domain model. Luo et al. (2022) propose
supervised CRF and semi-CRF to train models in
both the source and target domains; Higashiyama
et al. (2020) training bilstm-Affine predicts BMES
tags separately to achieve lexicon words prediction.
Compared with their method, our method uses the
information from speech to annotate the text, and
leverage basic model to complete the partial anno-
tated data for further training.

5.3 Naturally annotated CWS data

Mining naturally annotated data. Previous
studies try to mine naturally annotated CWS data
from different channels. Jiang et al. (2013) hy-
pothesize that anchor texts (i.e., for hyperlinks) in
HTML-format web documents are very likely to
correspond to complete meaning units, and thus can
be explored to obtain at least two word boundaries.
In the cross-domain scenario, Liu et al. (2014) use
a domain-related dictionary and perform maximum
matching on unlabeled target-domain text, treating
matched texts as annotated words.

Utilizing naturally annotated data. Above nat-
urally annotated data are in two forms. In the first
form, some word boundaries in the sentence are
given, whereas in the second, some words are given.
Both forms can be treated as partial annotations,
in contrast to full annotations, and be encoded as
constrained label space as shown in Figure 3.
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Jiang et al. (2013) proposes a constrained de-
coding approach to learn from partially annotated
data with word boundaries. They use a max-margin
training loss. For each training sentence, they first
obtain an optimal label sequence from the con-
strained space and use it as gold-standard reference
in an online fashion.

Some researchers employ the CRF (Liu et al.,
2014; Yang and Vozila, 2014) to extend the loss
for learning from partial/incomplete annotations.
In this work, we also use this approach, but ob-
tain inferior performance probably due to the issue
of pervasive “S” labels. Therefore, we propose a
simple yet effective CTT strategy.

6 Conclusion

This paper for the first time proposes to explicitly
mine word boundaries from speech-text data as
extra naturally annotated training data for cross-
domain CWS.

Firstly, we collect speech-text data from the
web fiction domain (ZX) and annotate part of
AISHELL2-dev/test datasets for CWS evaluation.
Secondly, we perform character-level alignment
on the speech-text data to mine word boundaries.
Thirdly, we employ the baseline to calculate the
marginal probability of word boundaries. By ana-
lyzing the accuracy across four probability ranges,
we filter out word boundaries with lower prob-
abilities. Finally, we apply the CTT method to
effectively leverage the filtered word boundaries
for the annotation of target-domain training data,
thereby substantially enhancing the performance of
the CWS model in cross-domain settings. Our ex-
periments demonstrate that mined word boundaries
significantly improve CWS via the CTT method.
Analysis reveals that filtering boundaries is crucial
to the efficacy of the CTT method.

Limitations

We believe our work has built a solid foundation
for future research in this direction. Meanwhile,
we are aware that our work is limited and can be
improved in several aspects.

First, our approach relies on accurate character-
level alignment between speech and texts. So far,
we have used MFA as a black-box and our early
trials showed that the end-to-end Transformer-CTC
model is inferior. Therefore, our proposed ap-
proach may be more effective with improved align-
ment quality.

Second, this work only utilizes pauses detected
by character-level aligner to derive word bound-
aries, but it ignores other rich features in speech.
For example, intonation or pitch change may also
be helpful.

Finally, as discussed in 4.1, we plan to annotate
more evaluation data for AISHELL?2 to make the
experiments more solid.
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