
Proceedings of the 31st International Conference on Computational Linguistics, pages 8504–8517
January 19–24, 2025. ©2025 Association for Computational Linguistics

8504

META-LORA: Memory-Efficient Sample Reweighting for
Fine-Tuning Large Language Models

Weicheng Li1, Lixin Zou1*, Min Tang2, Qing Yu1,
Wanli Li3,Chenliang Li1

1Wuhan University, Wuhan, China, 2Monash University, Melbourne, Australia
3Huazhong Agricultural University, Wuhan, China

{liweicheng, zoulixin, yu_qing, cllee}@whu.edu.cn, min.tang@monash.edu,
liwanli@mail.hzau.edu.cn

Abstract
Supervised fine-tuning (SFT) is widely adopted
for tailoring large language models (LLMs) to
specific downstream tasks. However, the sub-
stantial computational demands of LLMs hin-
der iterative exploration of fine-tuning datasets
and accurate evaluation of individual sample
importance. To address this challenge, we
introduce META-LORA, a memory-efficient
method for automatic sample reweighting.
META-LORA learns to reweight fine-tuning
samples by minimizing the loss on a small,
high-quality validation set through an end-to-
end bi-level optimization framework based on
meta-learning. To reduce memory usage as-
sociated with computing second derivatives,
we approximate the bi-level optimization us-
ing gradient similarity between training and
validation datasets, replacing bi-dimensional
gradient similarity with the product of one-
dimensional activation states and their corre-
sponding gradients. Further memory optimiza-
tion is achieved by refining gradient computa-
tions, selectively applying them to the low-rank
layers of LoRA, which results in as little as
4% additional memory usage. Comprehensive
evaluations across benchmark datasets in math-
ematics, coding, and medical domains demon-
strate META-LORA’s superior efficacy and ef-
ficiency. The source code is available at https:
//github.com/liweicheng-ai/meta-lora.

1 Introduction

Supervised fine-tuning (SFT) adapts pre-trained
large language models (LLMs) to specific down-
stream tasks by further training them on labeled
datasets (Chung et al., 2024; Taori et al., 2023;
Wang et al., 2023; Tang et al., 2025; Zhang et al.,
2024). However, as the number of model parame-
ters and the size of training corpora increase, the
cost of fine-tuning LLMs rises significantly. More-
over, developing or annotating a comprehensive

*Corresponding author.

instruction-tuning dataset comparable to those of-
fered by leading companies is extremely costly and
challenging, especially given the closed-source na-
ture of LLM training procedures (Achiam et al.,
2023). Consequently, iteratively selecting training
samples by directly training on available data is
less effective, as biased or noisy data are often en-
countered in practice (Khan et al., 2017; Zhang
et al., 2021).

Recent efforts have addressed this issue from
two perspectives. The first approach primarily uti-
lizes data similarity for selection. For instance,
GPT-3 (Brown et al., 2020) and PaLM (Chowd-
hery et al., 2023) both train a binary classifier to
select examples that are similar to formal text from
Wikipedia. Xie et al. (2023) introduce DSIR, a vari-
ant of Moore-Lewis Selection (Moore and Lewis,
2010), which selects data with hashed n-gram fea-
tures similar to those of validation samples. Sim-
ilarly, Yao et al. (2022) propose a retrieval-based
method (BM25) for efficient task-relevant data se-
lection. Although these methods can be applied
before training without adding any computational
burden during the training phase, their reliance on
textual similarity does not guarantee accurate con-
trol over data distribution and fails to precisely
assign weights to the training data.

An alternative approach is to optimize sample
weights through end-to-end gradient descent. The
core idea is to assess each training sample’s contri-
bution by comparing the model’s performance with
and without that sample, leveraging the automatic
optimization capabilities of deep learning tools.
Consequently, a series of representative gradient-
based data valuation methods, such as influence
functions (Koh and Liang, 2017; Park et al., 2023;
Schioppa et al., 2022; Pruthi et al., 2020; Hanawa
et al., 2021), have been proposed. Although these
methods can precisely calculate sample weights
in an end-to-end manner, the need to compute sec-
ond derivatives introduces significant memory over-

https://github.com/liweicheng-ai/meta-lora
https://github.com/liweicheng-ai/meta-lora


8505

head, limiting their applications in LLMs.
To address this, we propose META-LORA,

which reweights fine-tuning samples in an end-to-
end meta-learning manner while optimizing mem-
ory utilization to closely match that of naive train-
ing methods. Specifically, we weight the training
samples by minimizing their post-update valida-
tion loss on a small, high-quality validation set,
which is essentially a bi-level optimization pro-
cess. To avoid computing second derivatives, we
approximate the bi-level optimization by manually
deriving sample weights, leveraging the gradient
similarity between training and validation samples.
To reduce memory usage, we replace the gradi-
ent similarity of bi-dimensional parameters with
the product of one-dimensional activation states
and their corresponding gradients. Additionally, to
further decrease memory consumption, we approx-
imated the weight by only selecting the low-rank
layers of LoRA modules (Hu et al., 2022), which
use low-rank approximation on specific weight ma-
trices to enable efficient fine-tuning. Finally, with
only a 4% increase in memory usage, we can ef-
fectively select highly representative samples for
fine-tuning. Extensive experiments conducted on
downstream benchmark tasks in mathematics, cod-
ing, and medical domains validate the effectiveness
of the proposed method. In summary, the contribu-
tions are as follows:

• We propose META-LORA, an approximate end-
to-end learning to reweight strategy based on
approximated gradient similarity, which automat-
ically reweights training samples.

• By manually deriving sample weights, we ap-
proximate the weights with gradient similarity
on the low-rank layers of LoRA between the train
and validation. To our knowledge, this is the first
work to decompose gradient similarity for sample
weighting. This approach results in just a 4% in-
crease in memory consumption while achieving
up to a 5% improvement in performance.

• We conducted a series of experiments across var-
ious downstream tasks, including mathematical,
coding, and medical domains. The results show
that our method can up-weight beneficial training
samples, leading to superior downstream perfor-
mance compared to direct fine-tuning and other
baseline methods.

2 Preliminaries

This section covers supervised fine-tuning for large
language models, the meta-learning approach to
sample reweighting, and the use of Low-Rank
Adaptation (LoRA) to enhance memory efficiency.

2.1 Supervised Fine-Tuning

Our research focuses on supervised fine-tuning of
large language models to adapt pre-trained models
for specific tasks or domains. Given a training
dataset {(Xi, Yi)}Ni=1, where each Xi is an input
sequence (e.g., instructions or text) and Yi is the
corresponding target output, both represented as
token sequences x1:v = (x1, . . . , xv) and y1:k =
(y1, . . . , yk). The model predicts the probability
P (yk | x1:v, y1:k−1) for each token yk. We train
the model by minimizing the cross-entropy loss:

ℓi(θ) = ℓ(Xi, Yi, θ) = −
1

K

K∑
k=1

logP (yk | x1:v, y1:k−1; θ),

where K is the sequence length of the output and
θ represents the model parameters.

2.2 Sample Reweighting with Meta Learning

Meta-learning, or learning to learn, aims to de-
velop models that quickly adapt to new tasks using
limited high-quality data (Finn et al., 2017). To
select high-quality samples, we employ a meta-
learning approach that optimizes the sample dis-
tribution that best minimizes the validation loss.
Suppose we have a small, high-quality validation
set {(Xv

j , Y
v
j )}Mj=1, where M ≪ N , which we

use to reweight each training sample in a meta-
learning manner. Specifically, we aim to minimize
the weighted loss as

θ∗ = argmin
θ

N∑
i=1

wiℓi(θ), (1)

where wii = 1N are the weights assigned to each
training instance. Viewing these weights as hyper-
parameters, we optimize them by minimizing the
validation loss:

w∗ = arg min
w,w≥0

1

M

M∑
j=1

ℓvj (θ
∗(w)) (2)

= arg min
w,w≥0

1

M

M∑
j=1

ℓ(Xv
j , Y

v
j , θ∗(w)). (3)

Optimization with Automatic Differentiation
To alleviate the computational burden of nested
optimization loops, we adopt a single-step online



8506

approximation. At each step t, we sample mini-
batch of training samples {(Xi, Yi)}ni=1 and valida-
tion samples {(Xv

j , Y
v
j )}mj=1, where n ≪ N and

m ≪ M . We perturb its training loss by ϵi, aiming
to reweight each training sample before calculating
the parameter change:

ℓi,ϵ(θ) = ϵiℓi(θ). (4)

Using vanilla SGD, the parameters are updated as:

θt+1(ϵ) = θt − α∇
n∑

i=1

ℓi,ϵ(θ)
∣∣∣
θ=θt

, (5)

where α denotes the step size. We then perform a
gradient descent step w.r.t. ϵi using the mini-batch
of validation samples as:

ui,t = −β ∂

∂ϵi,t

1

m

m∑
j=1

ℓvj (θt+1(ϵ))
∣∣∣
ϵi,t=0

, (6)

with β as the descent step size for ϵ. The final
non-negative, normalized weights are:

w̃i,t = max(ui,t, 0), (7)

wi,t =
w̃i,t

(
∑

j w̃j,t) + δ(
∑

j w̃j,t)
, (8)

where δ(a) = 1 if a = 0, otherwise it is set to 0.
wi,t is the final weight assigned to the i-th training
sample at step t. Further details and memory usage
analysis are provided in Appendix B.

2.3 Low-Rank Adaptation in SFT
To reduce memory usage during fine-tuning, Low-
Rank Adaptation (LoRA) (Hu et al., 2022) has been
widely adopted. LoRA significantly reduces the
number of trainable parameters, by factors ranging
from 100 to 10,000, through learning pairs of rank-
decomposition matrices while keeping the original
weights frozen. Specifically, LoRA approximates
the changes of parameters ∆W ∈ Rd1×d2 as the
product of two low-rank matrices, A ∈ Rr×d2 and
B ∈ Rd1×r, where r ≪ min(d1, d2). After fine-
tuning, the matrices A and B are multiplied, and
the resulting product is incorporated into the origi-
nal parameters W as following:

W ←W +∆W = W +BA.

3 Methodology

To optimize memory utilization, this section first
provides a detailed analysis of the meta-learning
process and our strategy for avoiding the computa-
tion of second derivatives. Subsequently, we com-
pute approximate gradient similarity using the low-
rank layers of the LoRA modules. The overall
architecture of META-LORA is shown in Figure 1.

3.1 Analysis of Meta Learning

This section derives the weights of the training
samples {wi}ni=1 by analysing the gradient compu-
tation in the meta-learning context.

For clarity and simplicity, we first decompose
the gradient concerning the l-th layer parameters θl
as follows. Let zl and z̃l denote the input and out-
put associated with the parameters θl, respectively,
such that z̃l = zlθ

⊤
l . It is important to note that zl

and z̃l are not modeled as the input and output of
an entire Feed-Forward Network (FFN) block or a
Self-Attention block in a transformer. Instead, they
correspond to the input and output related to each
individual trainable weight matrix. During back-
propagation, let gl represent the gradients of the
loss with respect to z̃l. The gradients with respect
to θl can then be obtained by following the chain
rule for gradient calculation as

∂ℓi(θ)

∂θl
∝ zi,lg

⊤
i,l. (9)

Detailed derivations are provided in Appendix A.
With the gradient decomposition, the gradient

of validation loss w.r.t. ϵi at step t (denoted as ϵi,t)
can be derivated as follows:

∂

∂ϵi,t
E
[
ℓv(θt+1(ϵ))|ϵi,t=0

]
=

1

m

m∑
j=1

∂

∂ϵi,t
ℓvj (θt+1(ϵ))

∣∣∣
ϵi,t=0

(10)

=
1

m

m∑
j=1

∂ℓvj (θ)

∂θ

∣∣∣∣⊤
θ=θt

∂θt+1(ϵi,t)

∂ϵi,t

∣∣∣
ϵi,t=0

(11)

∝ − 1

m

m∑
j=1

∂ℓvj (θ)

∂θ

∣∣∣⊤
θ=θt

∂ℓi(θ)

∂θ

∣∣∣
θ=θt

(12)

= − 1

m

m∑
j=1

L∑
l=1

∂ℓvj (θ)

∂θl

∣∣∣⊤
θl=θl,t

∂ℓi(θ)

∂θl

∣∣∣
θl=θl,t

(13)

∝ − 1

m

m∑
j=1

L∑
l=1

vec(zvj,lg
v
j,l

⊤)⊤vec(zi,lg
⊤
i,l), (14)

where ℓv denotes the validation loss, m denotes
the mini-batch size of validation samples, and L
denotes the total number of trainable modules.
We derive Equation 11 following the chain rule.
The derivation of ∂θt+1(ϵi,t)

∂ϵi,t

∣∣∣
ϵi,t=0

∝ ∂ℓi(θ)
∂θ |θ=θt in

Equation 12 is based on the approximate compu-
tation of second-order partial derivatives, which’s
detailed in Appendix B. The Equation 14 follows
the rule in Equation 9.



8507

Memory-usage Analysis According to the above
derivation, we only need to compute vec(zvj,lg

v
j,l

⊤)

and vec(zi,lg
⊤
i,l) for each trainable module, which

can then be multiplied to obtain the gradient simi-
larity, without actually calculating second deriva-
tives. However, the magnitudes of these vectors
are comparable to the sizes of the corresponding
bi-dimensional parameters, resulting in twice the
memory usage of computing a gradient, thus mak-
ing it rather expensive to be adopted in LLMs.

3.2 Reweighting as Gradient Similarity

We approximate gradient similarity by decompos-
ing the original gradient into one-dimensional ac-
tivation and gradient products. Additionally, to
compute this similarity with minimal overhead, we
utilize the low-rank layers in LoRA modules in-
stead of dense layers.

Gradient Decomposition Considering the high
cost of computing and saving the gradient sim-
ilarity, we perform further derivations based on
Equation 14 to convert the calculation of gradi-
ent similarity into product of one-dimensional ac-
tivation states and their corresponding gradients
(Equation 17), which is derived according to the
commutative property of multiplication:

∂

∂ϵi,t
E
[
ℓv(θt+1(ϵ))|ϵi,t=0

]
(15)

∝ − 1

m

m∑
j=1

L∑
l=1

vec(zvj,lg
v
j,l

⊤)⊤vec(zi,lg
⊤
i,l) (16)

= − 1

m

m∑
j=1

L∑
l=1

(zvj,l
⊤zi,l)(g

v
j,l

⊤gi,l). (17)

Through this conversion, we only need to save
the one-dimensional activations (i.e., zvj,l and zi,l)
and gradients (i.e., gvj,l and gi,l) in memory for
gradient similarity’s calculation, instead of the bi-
dimensional gradients, leading to a significant re-
duction in memory utilization.

Memory-usage analysis The above decompo-
sition of parameter gradients leads to substantial
memory savings in model training. Consider a
trainable parameter with dimensions d1×d2. Calcu-
lating its bi-dimensional gradient similarity incurs
a memory overhead proportional to 2×d1×d2. By
decomposing it into the product of one-dimensional
activation and gradient, the memory overhead is
reduced to being proportional to 2 × (d1 + d2),
achieving an approximate d1d2

d1+d2
-fold reduction in

memory usage. Similarly, the memory usage when
applying LoRA is reduced from 2× r × (d1 + d2)
to 2× (2r + d1 + d2), resulting in an approximate
r-fold reduction in memory usage. It should be
noted that the actual training parameters used in
META-LORA are the same as those used in naive
fine-tuning, and the additional memory overhead
arises from the one-dimensional activations and
gradients of training and validation samples used
to approximate sample weights.

Low-Rank Approximation of Gradients The
proposed approximated gradient similarity still
presents a critical issue: LLMs consist of exten-
sive trainable modules, making it overloaded to
store all activations and gradients even when apply-
ing LoRA. Additionally, the activations on these
modules’ dense layers may become unstable or re-
dundant during training, particularly in the lower
layers. Therefore, we approximates the gradient
similarity by utilizing the activations and gradients
on low-rank layers (with dimensions of r) of LoRA
modules, instead of those on the dense layers:

∂

∂ϵi,t
E
[
ℓv(θt+1(ϵ))|ϵi,t=0

]
∝ − 1

m

m∑
j=1

L∑
l=1

(zvj,l
⊤zi,l)(g

v
j,l

⊤gi,l)

≈ − 1

m

m∑
j=1

L̂∑
l̂=1

(zvj,l̂
⊤zi,l̂)(g

v
j,l̂

⊤gi,l̂),

(18)

where L̂ denotes the total number of LoRA mod-
ules’ low-rank layers in the model.

Memory-usage analysis Through low-rank ap-
proximation, we achieve a memory utilization that
is closely match that of the naive training. When
applying LoRA, calculating approximated gradient
similarity on low-rank layers only results in addi-
tional memory usage proportional to 2× (r+ r) =
4r, leading to a nearly (d1 + d2)-fold memory re-
duction compared to calculating bi-dimensional
gradient similarity.

4 Experiment

To verify META-LORA’s effectiveness, this sec-
tion presents a series of experiments and detailed
analyses to guide its usage.

4.1 Experimental Setting

Dataset We employ a variety of datasets across
mathematics, coding, and medical tasks to assess



8508

Figure 1: The META-LORA performs sample reweighting based on the approximated gradient similarity between
training and validation samples. To do this, we first decompose the gradient of all trainable weight matrices (taking
the down-projection module of FFN block as an example in the figure) into product of one-dimensional activations
(zl) and corresponding output gradient (gl), and then use them to approximate the gradient similarity. To further
reduce memory overhead, we only utilize the activations (zl̂) and gradients (gl̂) on LoRA’s low-rank layers for
calculation. An example of reweighting is shown in the bottom right, where important key terms are manually
highlighted in red.

the effectiveness of META-LORA. In the math-
ematics domain, we utilize MathInstruct(Yue
et al., 2023), an instruction tuning dataset covering
various mathematical fields, and GSM8K(Cobbe
et al., 2021), containing diverse grade-school level
math word problems. For coding tasks, we
use OSS-Instruct(Wei et al., 2023), comprising
extensive coding problem-solution pairs, Code-
Alpaca(Chaudhary, 2023), an instructional dataset
focusing on Python samples, and MBPP+ (Liu
et al., 2024), consisting of Python program-
ming problems solvable by entry-level program-
mers. In the medical field, we employ Pub-
MedQA(Jin et al., 2019), a question-answering
dataset with biomedical QA instances, ICliniq-
chatgpt(Li et al., 2023), MedQA (Jin et al., 2021),
a multiple-choice OpenQA dataset from profes-
sional medical board exams, and MedMCQA(Pal
et al., 2022), replicating real-world medical exams.
Table 1 presents the partitioning and statistics of
all the datasets used for the experiments.

Evaluation Metric For all the benchmarks, we
use the Accuracy (ACC) to measure the degree of
precise matching between the model’s outputs and
standard answers.

Task Dataset Dataset partitioning

Train Validation Test Total

Math MathInstruct 262,000 0 0 262,000
GSM8K 0 7,473 1,319 8,792

Coding
OSS-Instruct 75,200 0 0 752,000
Code-Alpaca 0 20,000 0 20,000
MBPP+ 0 0 378 378

Medical

PubMedQA 273,000 0 0 273,000
ICliniq-chatgpt 0 7,320 0 7,320
MedQA 0 0 1,273 1,273
MedMCQA 0 0 6,150 6,150

Table 1: The statistics and partition of all the datasets.

Baseline Methods To demonstrate the effective-
ness of META-LORA, we compare it with both
classical methods and recent state-of-the-art tech-
niques: (1) The Base Model before fine-tuning. (2)
Fine-tuning the model on Dtrain. (3) Binary Clas-
sification (Brown et al., 2020) trains a classifier to
select data sharing similar characteristics with val-
idation samples. (4) MIX training and validation
samples in a certain ratio. (5) Using BM25 (Robert-
son et al., 2009; Yao et al., 2022) scores to assign
weights to training samples based on textual statis-
tical features (i.e., TF-IDF). (6) DSIR (Xie et al.,
2023) reweights training samples based on the sim-
ilarity of hashed n-gram features with validation
samples.



8509

Experimental Protocols We employ Baichuan2-
7B-Base (Yang et al., 2023) as the backbone LLM
for both math and coding experiments, while se-
lecting OPT-1.3B (Zhang et al., 2022) as the back-
bone model for medical experiments. The reason
for this choice is that the Baichuan2-7B model
already performs exceptionally well on the med-
ical dataset, making further fine-tuning less im-
pactful in enhancing its performance. All fine-
tuning processes are conducted using LoRA (Hu
et al., 2022), with the rank r of the LoRA modules
set to 32. To minimize GPU memory overhead,
we employ mixed-precision with bfloat16 (Wang
and Kanwar, 2019) for both fine-tuning and infer-
ence. In the math and coding experiments, we set
the maximum length of each sample to 400, as
the input and output fields of related datasets are
generally short. For the medical experiments, we
increase the maximum length to 2048, since the
context and response fields of PubMedQA (used as
the training dataset) are typically long. During fine-
tuning, we use a learning rate scheduler with cosine
decay, setting the peak learning rate to 5 × 10−4.
All the models are optimized by the Adam opti-
mizer (Kingma, 2014), with parameters β1 and β2
set to 0.9 and 0.95 respectively. To ensure gen-
erality, we perform fine-tuning with a batch size
of 4 across all experiments on a single RTX3090
(24GB) GPU node.

4.2 Main Results

The main results of META-LORA across different
downstream tasks and its comparison with base-
lines are presented in Table 2. From the table, we
have following observations: (1) META-LORA is
the best practice in boosting downstream per-
formance. In Table 2, META-LORA shows an
improvement over direct fine-tunning across all
downstream tasks, with increases of 2.40%, 5.25%,
1.73% and 1.84% in accuracy respectively. Com-
pared with the best baseline in each task, META-
LORA achieves an improvement in accuracy of
1.60%, 0.75%, 1.41% and 0.19% respectively. (2)
Training a binary classifier is ineffective in im-
proving performance. In Table 2, Binary Classifi-
cation realizes only a slight enhancement compared
to direct fine-tuning in most cases (< 0.5%), pri-
marily due to the inadequate features it utilizes.
(3) Mixing training and validation samples can
sometimes lead to better performance compared
to direct fine-tuning. In Table 2, Mixing training
and validation samples in a 10:1 ratio achieves an

improvement in accuracy of 4.25% and 1.39% com-
pared to direct fine-tuning in MBPP+ and MedM-
CQA task respectively. However, it may sometimes
lead to performance degradation (e.g., GSM8K and
MedQA), probably due to the large discrepancy
between training and validation samples leading to
unstable model learning.

4.3 Analysis Experiments
We provide analyses of META-LORA from four
perspectives. First, we analyze the influence of low-
rank approximation, examining whether it would
impair model’s downstream performance. Second,
we present a memory-usage analysis from both the-
oretical and experimental perspectives. Third, we
conduct an ablation study to explore the influence
of different modules used for gradient similarity
computation. Lastly, we provide an analysis on the
key hyperparameters involved in META-LORA.

Influence of Low-Rank Approximation To ex-
plore whether the low-rank approximation would
impair downstream performance, we conduct ex-
periments using activations and gradients on dense
layers in META-LORA. Specifically, we adjust
META-LORA with the following variants: (1)
META-LORA (L): using the low-rank layers of
LoRA modules for computing approximated gra-
dient similarity; (2) META-LORA (D): using the
dense layers of all trainable modules for comput-
ing gradient similarity. We report accuracy on all
downstream tasks, as detailed in the previous eval-
uation setting. As shown in Figure 2, the low-rank
approximation of gradients leads to substantial
memory savings while maintaining performance.
It even outperforms the results obtained by utilizing
the dense-layer gradients in most cases in empirical
results due to the stability of the low-rank layers.

Memory-Usage Analysis To explore the mem-
ory usage of META-LORA, we begin with an exam-
ple quantitative analysis of one of the FFN down-
projection modules in the Baichuan2-7B model (di-
mensions 4096× 11008). Using LoRA, the weight
matrix is decomposed into two low-rank matrices
of sizes 4096 × 32 and 32 × 11008. For gradient
similarity between training and validation samples,
we apply a low-rank approximation by multiplying
one-dimensional low-rank activations (32× 1) and
gradients (32×1), achieving a 7,552-fold reduction
in memory usage.

Additionally, Table 3 reports GPU memory us-
age on an NVIDIA RTX 3090 with mixed precision



8510

Downstream Task GSM8K MBPP+ MedQA MedMCQA
Metric ACC(%) ACC(%) ACC(%) ACC(%)
Base Model 23.0 19.5 25.77 27.95
Fine-tuning 27.5 25.25 26.55 28.16
Binary Classification 27.6 25.5 26.30 28.55
MIX 26.4 29.5 26.39 29.55
BM25 28.1 29.75 26.87 29.81
DSIR 28.3 29.5 26.55 29.62
META-LORA 29.9* 30.5* 28.28* 30.00*

Table 2: Results of META-LORA across all the downstream tasks and its comparison with baselines. Bold numbers
denote the best results. "*" indicates significant improvements over the best baselines with p-value < 0.05.

����� ����� � ��� � �����
��$!$

	�

	�

	


	�

	�


�


�


	

�
��
&#
��
'�
��

�

� %���"������ � %���"������

	���

���

	��	�


���

	��

	��
�

	���



���


Figure 2: Results of META-LORA on all downstream
tasks using gradients on low-rank layers (denoted as L
in parentheses) or dense layers (denoted as D in paren-
theses).

(bfloat16), showing the maximum memory con-
sumption during LoRA fine-tuning. The results
indicate that META-LORA is highly memory ef-
ficient with low-rank gradient approximation,
increasing memory usage by only 4%.

Ablation Study We explore META-LORA’s per-
formance against different modules used for com-
puting gradient similarity. In particular, we ad-
just META-LORA with the following variants: (1)
META-LORA (all): using the low-rank layers on
all LoRA modules for computing approximated
gradient similarity; (2) META-LORA (w/o MLP):
using the low-rank layers on Attention LoRA mod-
ules for computing approximated gradient simi-
larity; (3) META-LORA (w/o Attn.): using the
low-rank layers on MLP LoRA modules for com-
puting approximated gradient similarity. We report
accuracy on all downstream tasks in Table 4. Our
observation is that both MLP and Attention mod-

ules are crucial for calculating gradient similar-
ity as the variant of META-LORA (all) yields
optimal results in all the scenario. Due to this
fact, we default to computing gradient similarity
on all modules when applying META-LORA in the
aforementioned experiments. Additionally, we find
that the importance of MLP and Attention modules
varies for different tasks. Specifically, the variant
of META-LORA (w/o Attn.) performs better than
META-LORA (w/o MLP) in both GSM8K and
MBPP+ task, but in the MedQA and MedMCQA
task, the latter variant performs better. This may be
attributed to different base model adopted and the
model’s focus on learning different weight matrices
for different tasks.

Hyperparameter Analysis The key hyperparam-
eter involved in META-LORA is the ratio of train-
ing samples to validation samples. In the afore-
mentioned experiment, we adopt a ratio of 10:1,
and we further explore how its change will affect
performance by shifting it to 5:1 and 50:1. Fig-
ure 3 presents the results, which indicate that the
ratio of training to validation samples does not
significantly affect the META-LORA’s perfor-
mance. Particularly, the outcomes are very similar
when the ratio is set to 5:1 and 50:1, demonstrating
the algorithm’s robustness even with a small num-
ber of validation samples. Therefore, we adopt a
default ratio of 10:1 in META-LORA unless other-
wise specified, as this ratio most frequently yields
optimal results.

Additional analyses We provide more analyses
concerning bad cases and META-LORA’s scala-
bility to multi-GPU or multi-node environments
in Appendix C. In brief, with respect to the bad
case, an inappropriate choice of the validation
set can degrade META-LORA’s performance. As



8511

Model Dataset LoRA Fine-tuning META-LORA ∆

Baichuan2-7B GSM8K 20.30 GB 20.99 GB ↑ 3.4%
Baichuan2-7B MBPP+ 19.79 GB 20.19 GB ↑ 2.0%
OPT-1.3B MedQA & MedMCQA 7,156 MB 7,435 MB ↑ 3.9%

Table 3: GPU memory usage analyses for META-LORA. Fine-tuning represents directly fine-tuning on the training
set. META-LORA denotes fine-tuning using low-rank approximated gradient similarity for sample reweighting. ∆
denotes the increase in total memory usage.

Downstream Task GSM8K MBPP+ MedQA MedMCQA
Metric ACC(%) ACC(%) ACC(%) ACC(%)
META-LORA (all) 29.9 30.5 28.28 30.00
META-LORA (w/o MLP) 29.1 27.5 27.65 29.84
META-LORA (w/o Attn.) 29.7 29.25 27.49 29.79

Table 4: Performance comparison of META-LORA’s different variants. Bold numbers denote the best results.

����� ����� �! �� �! ����
��%"%

	�

	


	�

	�

	�


�


�


	

�
��
'$
��
(�
��

�

�!&���#��������
�!&���#���������

�!&���#���������

	��� 	���

	���

	���	���


���

	��	�


���
	���

	��


	���

	���

Figure 3: Performance comparison of META-LORA
using different ratios. The ratios in the parentheses rep-
resent the proportion of training samples to validation
samples used in META-LORA.

for its applicability in multi-GPU environments,
META-LORA can be adapted to distributed set-
tings through the incorporation of some distributed
data processing techniques and synchronization
mechanisms, like DeepSpeed (Rasley et al., 2020),
ensuring its scalability to distributed systems.

5 Related Work

Traditional Data Selection Data selection or
reweighting has been extensively studied in tra-
ditional machine learning tasks(Moore and Lewis,
2010; Ren et al., 2018; Guo et al., 2021; Yao et al.,
2022; Luo et al., 2024; Xie et al., 2024b). Moore-
Lewis Selection (Moore and Lewis, 2010; Axelrod,
2017; Feng et al., 2022) utilizes cross-entropy dif-
ference between LMs trained on training and target

dataset to score training samples, and Xie et al.
further proposes DSIR, a variant of Moore-Lewis
Selection, to use hashed n-gram features to effi-
ciently perform data weighting. In addition, Yao
et al. utilize a retrieval-based method (BM25) to
select task-relevant training data. These methods
can be easily applied to LLMs for they do not use
gradient information. Furthermore, Ren et al. pro-
poses a gradient-based method to reweight training
samples in a meta-learning manner, but the second
derivative calculation involved hinders it from be-
ing applied to LLMs. In contrast, our proposed
META-LORA convert gradient similarity to the
low-rank layer-wise product of one-dimensional
activation states and corresponding gradients, mak-
ing it applicable to billion-scale LLMs.

Data Selection for LLM The selection of pre-
training data is critical for improving LLM’s per-
formance (Brown et al., 2020; Gururangan et al.,
2020; Zou et al., 2021; Hoffmann et al., 2022; Xie
et al., 2024a, 2025). Many existing works rely on
data similarity to assess training data’s quality, e.g.,
GPT-3 (Brown et al., 2020) and PaLM (Chowdhery
et al., 2023) both train a binary classifier to select
training samples that are similar to formal text from
Wikipedia (Gao et al., 2020). However, training a
classifier demands extensive data, and binary clas-
sification does not guarantee consistency with the
target distribution (Xie et al., 2023), which makes
it suboptimal in fine-tuning scenarios.

Data Valuation and Influence Functions Data
Valuation, also referred to as Data Attribution (Park
et al., 2023), indicates measuring the contribution



8512

of training data on model’s performance (Ghorbani
and Zou, 2019; Jia et al., 2019). Most data valu-
ation methods, like Data Shapley (Ghorbani and
Zou, 2019; Kwon and Zou, 2021) or Datamodels
(Ilyas et al., 2022), evaluate a training instance’s
value by comparing the model’s performance with
or without this sample in training set, which re-
quires multiple repeated training, leading to sig-
nificant scalability challenges. To alleviate this
issue, a series of representative gradient-based data
valuation methods, i.e., influence functions (Koh
and Liang, 2017; Park et al., 2023; Schioppa et al.,
2022; Pruthi et al., 2020; Hanawa et al., 2021), have
been proposed. However, these works primarily fo-
cus on small models and can hardly be applied to
LLMs due to the prohibitive computational and
memory overhead caused by second derivatives.
Indeed, we find that running these methods with
billion-scale models all results in CUDA OOM er-
rors on NVIDIA RTX 3090 GPUs. In contrast, our
proposed META-LORA can be applied to billion-
scale LLMs with minimal additional overhead.

6 Conclusion

We propose META-LORA, a memory efficient
sample reweighting method for LLMs’ fine-tuning.
It is achieved by manually computing the gradient
similarity between training and validation samples,
without calculating second derivatives. Further, we
decompose bi-dimensional gradients into product
of one-dimensional activations and corresponding
gradients, and calculating approximated gradient
similarity on LoRA’s low-rank layers. Experimen-
tal results show that our approach yield better down-
stream performance than direct fine-tuning on train-
ing set and other baselines, with minimal additional
memory overhead.

7 Limitations

The primary limitation of our proposed method is
its tight integration with LoRA, which may restrict
its flexibility or general applicability to other archi-
tectures that do not use LoRA. Nevertheless, we
can calculate the approximated gradient similarity
without LoRA (see the first half of Section 3.2),
since the decomposition can be applied to other ar-
chitectures as well, and we simply combine it with
LoRA to further conserve memory and enhance the
model’s applicability.

Acknowledgments

We express our sincere gratitude for the finan-
cial support provided by the National Natural Sci-
ence Foundation of China (NO. 62302345 and
NO. U23A20305), the Natural Science Foun-
dation of Hubei Province (NO. 2023AFB192
and NO.2023BAB160), the CCF-ALIMAMA
TECH Kangaroo Fund (NO. CCF-ALIMAMA OF
2024009), the Xiaomi Young Scholar Program, and
the Natural Science Foundation of Wuhan (NO.
2024050702030136).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Amittai Axelrod. 2017. Cynical selection of lan-
guage model training data. arXiv preprint
arXiv:1709.02279.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and
Thomas Moreau. 2022. A framework for bilevel opti-
mization that enables stochastic and global variance
reduction algorithms. Advances in Neural Informa-
tion Processing Systems, 35:26698–26710.

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca


8513

Yukun Feng, Patrick Xia, Benjamin Van Durme, and
João Sedoc. 2022. Automatic document selection for
efficient encoder pretraining. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 9522–9530.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on ma-
chine learning, pages 1126–1135. PMLR.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Saeed Ghadimi and Mengdi Wang. 2018. Approxi-
mation methods for bilevel programming. arXiv
preprint arXiv:1802.02246.

Amirata Ghorbani and James Zou. 2019. Data shapley:
Equitable valuation of data for machine learning. In
International conference on machine learning, pages
2242–2251. PMLR.

Siyuan Guo, Lixin Zou, Yiding Liu, Wenwen Ye, Suqi
Cheng, Shuaiqiang Wang, Hechang Chen, Dawei
Yin, and Yi Chang. 2021. Enhanced doubly robust
learning for debiasing post-click conversion rate es-
timation. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 275–284.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964.

Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and Kentaro
Inui. 2021. Evaluation of similarity-based explana-
tions. In 9th International Conference on Learning
Representations, ICLR 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, et al. 2022. An empirical analy-
sis of compute-optimal large language model training.
Advances in Neural Information Processing Systems,
35:30016–30030.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guil-
laume Leclerc, and Aleksander Madry. 2022. Data-
models: Predicting predictions from training data.
arXiv preprint arXiv:2202.00622.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. 2021. Bilevel
optimization: Convergence analysis and enhanced de-
sign. In International conference on machine learn-
ing, pages 4882–4892. PMLR.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis,
Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang,
Dawn Song, and Costas J Spanos. 2019. Towards
efficient data valuation based on the shapley value.
In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1167–1176. PMLR.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng,
Hanyi Fang, and Peter Szolovits. 2021. What disease
does this patient have? a large-scale open domain
question answering dataset from medical exams. Ap-
plied Sciences, 11(14):6421.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. Pubmedqa: A dataset
for biomedical research question answering. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2567–2577.

Salman H Khan, Munawar Hayat, Mohammed Ben-
namoun, Ferdous A Sohel, and Roberto Togneri.
2017. Cost-sensitive learning of deep feature repre-
sentations from imbalanced data. IEEE transactions
on neural networks and learning systems, 29(8):3573–
3587.

DP Kingma. 2014. Adam: a method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
International conference on machine learning, pages
1885–1894. PMLR.

Yongchan Kwon and James Zou. 2021. Beta shap-
ley: a unified and noise-reduced data valuation
framework for machine learning. arXiv preprint
arXiv:2110.14049.

Yunxiang Li, Zihan Li, Kai Zhang, Ruilong Dan, Steve
Jiang, and You Zhang. 2023. Chatdoctor: A medical
chat model fine-tuned on a large language model
meta-ai (llama) using medical domain knowledge.
Cureus, 15(6).

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2024. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. Advances in Neural
Information Processing Systems, 36.

Dan Luo, Lixin Zou, Qingyao Ai, Zhiyu Chen, Chen-
liang Li, Dawei Yin, and Brian D Davison. 2024. Un-
biased learning-to-rank needs unconfounded propen-
sity estimation. In Proceedings of the 47th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1535–
1545.

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


8514

Robert C Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Pro-
ceedings of the ACL 2010 conference short papers,
pages 220–224.

Ankit Pal, Logesh Kumar Umapathi, and Malaikan-
nan Sankarasubbu. 2022. Medmcqa: A large-scale
multi-subject multi-choice dataset for medical do-
main question answering. In Conference on health,
inference, and learning, pages 248–260. PMLR.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guil-
laume Leclerc, and Aleksander Mądry. 2023. Trak:
attributing model behavior at scale. In Proceedings
of the 40th International Conference on Machine
Learning, pages 27074–27113.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund
Sundararajan. 2020. Estimating training data influ-
ence by tracing gradient descent. Advances in Neural
Information Processing Systems, 33:19920–19930.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel
Urtasun. 2018. Learning to reweight examples for
robust deep learning. In International conference on
machine learning, pages 4334–4343. PMLR.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and
Artem Sokolov. 2022. Scaling up influence functions.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 8179–8186.

Min Tang, Lixin Zou, Shiuan-ni Liang, She Jin, Weiqing
Wang, and Shujie Cui. 2025. Chifraud: A long-term
web text benchmark for chinese fraud detection. In
Proceedings of the 31st International Conference on
Computational Linguistics (COLING 2025).

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Alpaca: A
strong, replicable instruction-following model. Stan-
ford Center for Research on Foundation Models.
https://crfm. stanford. edu/2023/03/13/alpaca. html,
3(6):7.

Shibo Wang and Pankaj Kanwar. 2019. Bfloat16: The
secret to high performance on cloud tpus. Google
Cloud Blog, 4(1).

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In The 61st

Annual Meeting Of The Association For Computa-
tional Linguistics.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du,
Hanxiao Liu, Yifeng Lu, Percy S Liang, Quoc V Le,
Tengyu Ma, and Adams Wei Yu. 2024a. Doremi:
Optimizing data mixtures speeds up language model
pretraining. Advances in Neural Information Pro-
cessing Systems, 36.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and
Percy S Liang. 2023. Data selection for language
models via importance resampling. Advances in
Neural Information Processing Systems, 36:34201–
34227.

Tianchi Xie, Jiangning Zhu, Guozu Ma, Minzhi Lin,
Wei Chen, Weikai Yang, and Shixia Liu. 2024b.
Structural-entropy-based sample selection for ef-
ficient and effective learning. arXiv preprint
arXiv:2410.02268.

Yunfan Xie, Lixin Zou, Dan Luo, Min Tang, Chenliang
Li, Liming Dong, and Xiangyang Luo. 2025. Mit-
igating language confusion through inference-time
intervention. In Proceedings of the 31st International
Conference on Computational Linguistics (COLING
2025).

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, et al. 2023. Baichuan 2: Open large-scale
language models. arXiv preprint arXiv:2309.10305.

Xingcheng Yao, Yanan Zheng, Xiaocong Yang, and
Zhilin Yang. 2022. Nlp from scratch without large-
scale pretraining: A simple and efficient framework.
In International Conference on Machine Learning,
pages 25438–25451. PMLR.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Chaoran Zhang, Lixin Zou, Dan Luo, Xiangyang Luo,
Zihao Li, Min Tang, and Chenliang Li. 2024. Effi-
cient sparse attention needs adaptive token release.
In Findings of the Association for Computational
Linguistics ACL 2024, pages 14081–14094.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. 2021. Understanding
deep learning (still) requires rethinking generaliza-
tion. Communications of the ACM, 64(3):107–115.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.



8515

Lixin Zou, Shengqiang Zhang, Hengyi Cai, Dehong Ma,
Suqi Cheng, Shuaiqiang Wang, Daiting Shi, Zhicong
Cheng, and Dawei Yin. 2021. Pre-trained language
model based ranking in baidu search. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 4014–4022.

A The Derivation of Gradient
Decomposition

In this section, we provide a detailed derivation
of the gradient decomposition in backpropagation,
utilizing the chain rule. The chain rule, initially
proposed in calculus, is used to compute derivatives
of composite functions. In the context of neural
networks, the gradient of a weight matrix can be
calculated by propagating derivatives layer by layer.
Consider a neural network where the output of a
certain layer is given by

z̃ = Wz + b, (19)

where W is the weight matrix, z is the input to
the current layer (the activation from the previous
layer), z̃ is the output of current layer, and b is
the bias (which is typically set to be constantly
zero in LLMs’ fine-tuning). In backpropagation,
the gradient of loss function ℓ with respect to the
weight matrix W is computed as

∂ℓ

∂W
=

∂ℓ

∂z̃
· ∂z̃

∂W
(20)

according to the chain rule. In Equation 20, the
term ∂ℓ

∂z̃ represents the gradient of ℓ with respect to
the output z̃ of this layer, which is propagated from
the next layer during backpropagation. The term
∂z̃
∂W is simply the input activation z:

∂z̃

∂W
= z, (21)

which is because the transformation is linear in
W in Equation 19. Substituting the results from
Equation 20 and Equation 21, we get:

∂ℓ

∂W
=

∂ℓ

∂z̃
· z, (22)

which shows that the gradient of weight matrix W
is the input activation z multiplied by the gradient
of the output ∂ℓ

∂z̃ .
It’s worth noting that Equation 19 also applies

to the settings in Section 3.1 because we take each
individual trainable weight matrix in LLMs into
account. Given the weight matrix θl of a trainable
module, and let zi,l and z̃i,l denote the input and

output asscociated with θl for the i-th training sam-
ple, Equation 19 can be rewritten as

z̃i,l = zi,lθ
⊤
l . (23)

Therefore, Equation 22 can be expressed as:

∂ℓi(θ)

∂θl
∝ zi,lg

⊤
i,l, (24)

where ℓi denotes the loss of the i-th training sample,
and θ denotes all weight matrices in the model. In
this way, the gradients of θl is decomposed into
product of one-dimensional input activation zi,l
and corresponding output gradient g⊤i,l.

B The Bi-level Optimization in Meta
Learning

In this section, we provide a detailed derivation and
memory-usage analysis of the bi-level optimization
in meta learning.

In order to circumvent the two nested loops of
optimization illustrated in Section 2.2, we adopt
an online approximation, following the manner
in (Ren et al., 2018). Specifically, we first sam-
ple a mini-batch of training samples {(Xi, Yi)}ni=1

at every step t, where n ≪ N . Then the parame-
ters are adjusted based on the descent direction of
the expected loss on this mini-batch. When using
vanilla SGD, it can be expressed as follows:

θt+1 = θt − α∇

(
1

n

n∑
i=1

ℓi(θt)

)
, (25)

where α denotes the step size. To further assess
the impact of each training sample to validation
performance, we perturb its loss by ϵi:

ℓi,ϵ(θ) = ϵiℓi(θ), (26)

θt+1(ϵ) = θt − α∇
n∑

i=1

ℓi,ϵ(θ)
∣∣∣
θ=θt

, (27)

then look for the optimal ϵ∗ that minimizes the
validation loss ℓv at training step t:

ϵ∗t = argmin
ϵ

1

M

M∑
i=1

ℓvi (θt+1(ϵ)). (28)

To expedite the estimation of wi at step t,
we sample a mini-batch of validation samples
{(Xv

i , Y
v
i )}mi=1, where m ≪ M , then execute a

single gradient descent step w.r.t. ϵt on this mini-
batch. Finally, we adjust the output to ensure that
they are non-negative and sum up to one:



8516

ui,t = −β ∂

∂ϵi,t

1

m

m∑
j=1

ℓvj (θt+1(ϵ))
∣∣∣
ϵi,t=0

, (29)

w̃i,t = max(ui,t, 0), (30)

wi,t =
w̃i,t

(
∑

j w̃j,t) + δ(
∑

j w̃j,t)
, (31)

where β denotes the descent step size on ϵ, and
δ(a) = 1 if a = 0, otherwise it is set to 0. We
proceed with further derivation of the Equation 29:

−β
∂

∂ϵi,t

1

m

m∑
j=1

ℓ
v
j (θt+1(ϵ))

∣∣∣
ϵi,t=0

(32)

= −β
1

m

m∑
j=1

∂ℓvj (θ)

∂θ

∣∣∣∣∣
⊤

θ=θt

∂θt+1(ϵi,t)

∂ϵi,t

∣∣∣
ϵi,t=0

(33)

= β
1

m

m∑
j=1

∂ℓvj (θ)

∂θ

∣∣∣∣∣
⊤

θ=θt

∂(α∇ℓi,ϵ(θ))

∂ϵi,t

∣∣∣
θ=θt,ϵi,t=0

(34)

= αβ
1

m

m∑
j=1

∂ℓvj (θ)

∂θ

∣∣∣∣∣
⊤

θ=θt

∂2(ϵi,tℓi(θ))

∂ϵi,t∂θ

∣∣∣
θ=θt,ϵi,t=0

(35)

∝ αβ
1

m

m∑
j=1

∂ℓvj (θ)

∂θ

∣∣∣⊤
θ=θt

∂ℓi(θ)

∂θ

∣∣∣
θ=θt

. (36)

The above process involves calculating second-
order mixed partial derivatives (Equation 35), and
its result is proportional to the gradient similar-
ity between training and validation samples (Equa-
tion 36).

Memory-usage Analysis The above process re-
quires computing and storing Hessian matrix of
the function ℓ relatively to θ and ϵ (Equation 35),
which consists of all the second-order partial deriva-
tives, resulting in a quadratic growth in memory
overhead. In fact, assuming the number of train-
able parameters is ϕ, the space and time complexity
of calculating full Hessian matrix are O(ϕ2) and
O(ϕ3) respectively, which is impractical in LLMs
with more than 1 Billion parameters. Therefore,
in order to circumvent explicit computation of full
Hessian matrix, some works (Ghadimi and Wang,
2018; Ji et al., 2021; Dagréou et al., 2022) have ex-
plored computing Hessian-vector products (HVPS)
to evaluate the directional variation of gradients
along a specific direction, instead of the full Hes-
sian matrix. In the meta-learning schema, we need
to compute HVPs in a reverse-over-reverse mode,
i.e., conduct backpropagation in the computational
graph of gradients, leading to no less than twice
the complexity of calculating the gradient. In prac-
tice, computing an HVP requires two or three times
more memory than computing a gradient, which is
quite resource-intensive to be applied to LLMs.

C Additional analyses of META-LORA

In this section, we first take the mathematical task
as an example to illustrate the bad case of META-
LORA, and explain its underlying cause. Then,
we demonstrate the effectiveness of META-LORA
when extended to multi-GPU environments.

Bad cases. One of the key factors that influences
META-LORA’s effectiveness is the choice of val-
idation set, and we find that the inappropriate se-
lection of validation set (or inappropriate choice
of input fields in the validation set) would lead to
performance degradation. Taking the mathematical
task as an example, we replace the validation set for
mathematical training with Ape210K 1, while other
settings are consistent with those in Section 4.1.
Ape210K is a large-scale dataset of math word
problems where each problem includes a question,
an equation (the calculation formula), and the final
answer, as shown in Table 5.

Question A school has 75 basketballs and
35 volleyballs. If these balls
are distributed evenly among 5
classes, how many balls does
each class receive?

Equation x = (75 + 35) / 5
Answer 22

Table 5: Data fields of Ape210K.

We first choose ’Question’ and ’Equation’ as
input fields, where the former serves as instructions
and the latter as responses in the instruction tuning
scenarios, and then select ’Question’ and ’Answer’
respectively for comparison. Table 6 shows the
performance comparison of META-LORA using
different datasets as the validation set. It can be
seen that using Ape210K-ans as the validation set
degrades META-LORA’s effectiveness, resulting
in performance even worse than direct fine-tuning,
which may be because the selected ’Answer’ field
in Ape210K contains only a single answer without
any reasoning information, hindering the model’s
learning, and thus leads to bad results. On the other
hand, the performance using Ape210K-equ as the
validation set is better than direct fine-tuning, but
worse than using gsm8k as the validation set, which
may be because the "Equation" field in Ape210K
contains insufficient reasoning processes and lacks
textual explanations.

1https://github.com/Chenny0808/ape210k

https://github.com/Chenny0808/ape210k


8517

Downstream Task GSM8K
Metric ACC(%)

Fine-tuning 27.5
META-LORA (gsm8k) 29.9

META-LORA (Ape210K-equ) 28.5
META-LORA (Ape210K-ans) 26.3

Table 6: Performance comparison of META-LORA us-
ing different datasets (shown in the parentheses) as the
validation set. Ape201K-equ denotes using ’Equation’
as the response field, and Ape210K-ans denotes using
’Answer’ as the response field. Bold number denotes the
best result, and italic number denotes the worst result.

Scalability to multi-GPU environments. By uti-
lizing some distributed data processing and syn-
chronization mechanisms, like DeepSpeed (Rasley
et al., 2020), we can extend META-LORA to multi-
node or multi-GPU settings. For better comparison,
we modify the single-GPU setup to a dual-GPU
environment using RTX 3090 (24GB), while other
settings are consistent with those in Section 4.1.
Table 7 presents the performance superiority of
META-LORA over direct fine-tuning under this
setup, which demonstrates META-LORA’s effec-
tiveness in multi-GPU or multi-node environments,
ensuring its applicability in large-scale distributed
systems.

Task GSM8K MBPP+ MedQA MedMCQA
Metric ACC(%) ACC(%) ACC(%) ACC(%)

Fine-tuning 28.0 25.5 25.8 28.5
META-LORA 30.3 30.5 27.57 29.5

Table 7: Performance comparison between direct fine-
tuning and META-LORA in the dual-GPU environment.
Bold number denotes the best results.


	Introduction
	Preliminaries
	Supervised Fine-Tuning
	Sample Reweighting with Meta Learning
	Low-Rank Adaptation in SFT

	Methodology
	Analysis of Meta Learning
	Reweighting as Gradient Similarity

	Experiment
	Experimental Setting
	Main Results
	Analysis Experiments

	Related Work
	Conclusion
	Limitations
	The Derivation of Gradient Decomposition
	The Bi-level Optimization in Meta Learning
	Additional analyses of Meta-LoRA

