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Abstract

Handwritten text generation (HTG) aims to
synthesize handwritten samples by imitating
a specific writer, which has a wide range of
applications and thus has significant research
value. However, current studies on HTG are
confronted with a main bottleneck: dominant
models lack the ability to perceive and inte-
grate handwriting styles, which affects the re-
alism of the synthesized samples. In this pa-
per, we propose GL-GAN, which effectively
captures and integrates global and local styles.
Specifically, we propose a Hybrid Style En-
coder (HSE) that combines a state space model
(SSM) and convolution to capture multilevel
style features through various receptive fields.
The captured style features are then fed to the
proposed Dynamic Feature Enhancement Mod-
ule (DFEM), which integrates these features
by adaptively modeling the entangled relation-
ships between multilevel styles and removing
redundant details. Extensive experiments on
two widely used handwriting datasets demon-
strate that our GL-GAN is an effective HTG
model and outperforms state-of-the-art models
remarkably. Our code is publicly available at:
https://github.com/Fyzjym/GL-GAN.

1 Introduction

Handwritten text generation (HTG) is an emerging
and challenging research field that aims to produce
handwritten samples with the calligraphic style of
a given writer and arbitrary text. This research can
provide training data for handwritten text recogni-
tion (HTR) (Kang et al., 2022) and signature veri-
fication (Pippi et al., 2023a). It can also automat-
ically generate handwritten notes for individuals
with physical impairments, demonstrating signif-
icant practical importance (Bhunia et al., 2021).
Unlike font generation (Yao et al., 2024) and style
transfer (Gatys et al., 2016), HTG involves imitat-
ing a handwriting style and reproducing the style
in unseen characters or words. Handwriting style
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Figure 1: When humans perceive a handwritten image,
different brain regions are responsible for processing
various aspects of the visual input. Then, information
is integrated by cognitive regions. Our goal is to teach
the model this procedure, enabling it to perceive and
synthesize new handwritten images.

encompasses stroke slant, thickness, roundness, as
well as texture (e.g., ink and background) and lig-
atures. Therefore, the challenge of HTG lies in
enabling the model to fully comprehend and faith-
fully replicate the handwriting style under the given
text.

In light of this, specific methods (Vanherle et al.,
2024; Dai et al., 2023) have been proposed for
HTG. These methods can be divided into online
HTG and offline HTG according to the data type.
The former treats writing trajectories (strokes) as
time series, while the latter processes data in image
form. Compared to the former, offline HTG is more
in line with practical usage requirements. In addi-
tion, handwritten images contain a more wealthy
handwriting style. Therefore, we follow the offline
HTG paradigm.

Recently, although VATr++ (Vanherle et al.,
2024) and VATr (Pippi et al., 2023a) have made
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considerable advances in offline HTG, they still
lack adequate representation of handwriting styles.
We speculate that it is due to poor style extraction
steps. As shown in Figure 1, from a neuroscience
perspective, the brain processes visual information
by first performing preliminary processing of ba-
sic shapes and structures through multiple visual
cortices, followed by more complex analysis and
integration in higher-level visual areas (Felleman
and Van Essen, 1991). Inspired by this view, we
argue that the inability to analyze and integrate
handwriting styles comprehensively is the reason
for the failure of existing methods.

In this work, we further distinguish two critical
issues in existing methods that hinder the quality of
the generated samples. First, a single-style encoder
struggles simultaneously and precisely captures
both global and local handwriting styles, leading
to an incomplete representation of the handwriting
style. Second, existing methods ignore the integra-
tion of different levels of handwriting styles. Here,
we propose a generative architecture to address
these issues. Specifically, we propose a learning
global and local style generation framework (GL-
GAN) for HTG, which fully comprehends style ex-
amples through a Hybrid Style Encoder (HSE) and
a Dynamic Feature Enhancement Module (DFEM).
HSE effectively perceives style samples by com-
bining residual blocks and visual state space (VSS)
blocks. The module utilizes convolution to capture
local styles while capturing global styles by 2D-
Selective Scan Module (2D-SSM). Next, we design
a Dynamic Feature Enhancement Module (DFEM)
to integrate multilevel styles and fully capture style
entanglement. Additionally, cross-attention adap-
tively achieves the fusion of style entanglement and
text embedding.

Our main contributions are as follows:

• We propose a novel HTG model, GL-GAN,
which integrates multilevel handwriting styles
effectively.

• We propose a Hybrid Style Encoder (HSE)
combining convolution and state space models
(SSM), which captures style features at vari-
ous levels by diverse receptive fields. More-
over, we employ the SSM to perceive global
styles for the first time in HTG.

• We propose a Dynamic Feature Enhancement
Module (DFEM), which integrates style fea-
tures by adaptively modeling the entangled

relationships between multilevel styles and
removing redundant information.

• Extensive experiments demonstrate that our
GL-GAN outperforms existing state-of-the-
art methods on two benchmark datasets in
terms of three evaluation metrics.

2 Related Works

2.1 Handwriting Text Generation

Online HTG. Online HTG aims to predict fu-
ture stroke points based on the current stroke po-
sition. Such methods frequently utilize sequence-
based models to reveal patterns between stroke
points (Graves, 2013; Aksan et al., 2018; Aksan
and Hilliges, 2019; Mayr et al., 2020). However,
these methods often struggle to accurately capture
the style of reference examples. Subsequently, Dai
et al. (2023) proposed a style-decoupled method
that distinguishes style from character features
through decoupling and contrastive learning to han-
dle the issue. However, the problem of long-range
dependency persists.

Offline HTG. Early methods obtained samples
through manual segmentation and combination (Xu
et al., 2009; Haines et al., 2016). Alonso et al.
(2019) were the first to use conditional generative
adversarial networks (cGAN) (Mirza and Osindero,
2014) to synthesize handwritten samples. How-
ever, the synthesized samples suffer from mode
collapse. ScrabbleGAN (Fogel et al., 2020) and
LineText-GAN (Davis et al., 2020) were proposed
to generate samples of arbitrary lengths. Subse-
quently, GANWriting (Kang et al., 2020) was de-
signed to generate handwritten samples with spe-
cific writing styles. Building on appointment, a
series of works have been proposed to further im-
prove sample quality, such as SmartPatch (Mattick
et al., 2021), Wang’s work (Wang et al., 2022),
and AFFGANwriting (Wang et al., 2023). Bhunia
et al. (2021) proposed Handwriting Transformer
(HWT) to address the loose connection between
style features and text embeddings. Notably, Niko-
laidou et al. (2023) proposed a method based on a
denoising diffusion probabilistic model (Ho et al.,
2020) for HTG, namely WordStylist. Although
it shows a significant gap compared to state-of-
the-art methods and cannot generate unseen styles,
it remains a meaningful exploratory work. Re-
cently, Pippi et al. (2023a) proposed VATr, which
improved the connection between text embeddings
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Figure 2: The overall architecture of the proposed model.

and styles through a text content representation
method. Following this, Vanherle et al. (2024) in-
troduced VATr++, further improving generalization
capabilities through input preparation and training
regularization strategies. Unlike these methods,
our GL-GAN can explicitly capture and elegantly
integrate multilevel styles. The advance leverages
the excellent global representation capabilities of
the visual state space model (VSSM).

2.2 Visual State Space Models

The Structured State Space Sequence Model
(S4) (Gu et al., 2021) was proposed to model long-
range dependency. Due to its excellent representa-
tion capabilities, it has attracted further exploration.
Gu and Dao (2023) proposed Mamba, which out-
performed previous baselines in multiple metrics.
Influenced by Mamba, state space models (SSM)
have shown remarkable achievement in the visual
field. Liu et al. (2024) proposed VMamba, achiev-
ing linear complexity without sacrificing global
receptive fields. Huang et al. (2024) proposed Lo-
calMamba, effectively capturing local dependen-
cies while maintaining a global perspective. Guo
et al. (2024) introduced MambaIR, which improves
vanilla Mamba through local enhancement and
channel attention. For HTG, as one of the earliest
methods to introduce SSM, our primary motivation
is to handle long-range dependencies and enhance
general modeling capabilities through the superior
representation capabilities of SSM.

3 Proposed Approach

3.1 Approach Overview

Problem Formulation. The HTG problem can
be formulated as follows. Specifically, for a par-
ticular writer w ∈ U , P (P = 15) handwritten
word images are randomly selected and denoted
as Xw = {xw,i}Pi=0. Given a text C = {ci}Qi=0 of
arbitrary length Q. HTG aims to generate a hand-
written sample Y C

w conditioned on the handwriting
style of the writer w and the text C.

Model Overview. We devised a handwriting
generation framework that targets global and lo-
cal Styles styles. Figure 2 illustrates the overall
architecture of our GL-GAN. It utilizes a Hybrid
Style Encoder (HSE) that combines convolution
and SSM to process the style sample Xw and han-
dles the style representation Zs and text embedding
Qt via cross-attention. First, the style sample Xw is
processed through residual blocks and visual state
space (VSS) blocks to obtain feature patches Fl

and Fg. The flattened vectors are then fed into the
proposed Dynamic Feature Enhancement Module
(DFEM), which integrates global and local styles
using various attention mechanisms and outputs
the entangled style Fgl. Furthermore, the Trans-
former encoder performs self-attention to integrate
further Fgl and outputs Zs. Next, the Transformer
decoder performs cross-attention between Zs and
text embedding Qt and renders the entangled se-
quence Fst. Finally, Fst is fed into a upsampling
module to generate the handwritten sample Y C

w ,
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which contains the handwriting style of the style
sample Xw and the text content C.

3.2 Multilevel Styles Generator

The multilevel style generator G synthesizes a new
sample Y C

w based on the style sample Xw and the
text C. It includes two main components: an en-
coder Gε and a decoder Gd.

Encoder Gε. The encoder aims to comprehend
and integrate handwriting styles from both global
and local perspectives, capturing a multilevel style
feature sequence Zs from a given set of style sam-
ples Xw. It consists of a Hybrid Style Encoder
(HSE) that combines convolution and SSM, a Dy-
namic Feature Enhancement Module (DFEM), and
a Transformer encoder. The encoding procedure
can be described as follows:

Fg = V SS Block(Xw), (1)

Fl = Residual Block(Xw), (2)

Fgl = DFEM(Fg, Fl), (3)

Zs = MHSA(Fgl, Fgl, Fgl), (4)

where, Fg and Fl represent the global and local
feature patches, respectively, Fgl denotes the en-
tangled feature sequence, ZS means the multilevel
styles feature sequence, and MHSA(·) stands for
multi-head self-attention. The motivation for HSE
lies in the long-range dependency handling and
computational efficiency of SSM, as well as the
ability of CNNs to extract representative features.
The HSE encodes style samples into Fg and Fl,
then integrates them into Fgl by the DFEM. Finally,
the Transformer encoder further merges these style
features. The designed VSS backbone has a struc-
ture similar to the CNN backbone, stacking four
blocks, each with two layers, with output channels
of [64, 128, 256, 512] for each block. The Trans-
former encoder consists of L (L = 3) layers, each
with J (J = 8) attention heads and a multilayer
perceptron, used to further integrate handwriting
features. This design compensates CNNs for the
hardship of modeling long-range dependencies be-
tween features by employing a dual-branch struc-
ture that combines convolution and SSM.

Decoder Gd. The decoder aims to establish an
entanglement between the style representation Zs

and the text embedding Qt, then reconstruct the im-
age. It comprises a linear injection layer, a Trans-
former decoder, and a convolutional decoder. The

decoding procedure can be described as follows:

Qt = linear(C), (5)

Qre = MHSA(Qt, Qt, Qt), (6)

Fst = MHCA(Zs, Zs, Qre), (7)

where Qre is the latent variable with text informa-
tion, Fst means the style-text entangled sequence,
and MHCA(·) denotes multi-head cross-attention.
After converting the text C into the text embedding
Qt, self-attention is applied. Then cross-attention
is performed between Qt (considered as queries)
and the multilevel style features Zs (considered as
keys and values). The step allows the model to
learn the entangled sequence Fst with style and
text information. Finally, synthetic samples Y C

w

are received through the upsampling module. The
Transformer decoder includes L (L = 3) layers,
each with J (J = 8) attention heads. The upsam-
pling module comprises four residual blocks. In
decoder, multilevel style features and text repre-
sentations can be effectively integrated due to the
efficient processing capability of cross-attention.

3.3 Visual State Space Blocks
The State Space Model (SSM) is typically regarded
as a linear time-invariant system. Mathematically,
these models are typically expressed as linear ordi-
nary differential equations (ODEs):

h′(t) = Ah(t) +Bx(t), (8)

y(y) = Ch(t) +Dx(t), (9)

where A, B, and C are the continuous parameters
of the system, x(t), h(t), and y(t) represent the
current input, state, and output of the system, re-
spectively. As a continuous-time module, SSM
must undergo discretization before it can be effec-
tively applied in deep learning. The objective is to
discretize the ODEs.

hk = Āhk−1 + B̄xk, (10)

yk = C̄hk + D̄xk, (11)

Ā = e∆A, (12)

B̄ = (e∆A − I)A−1B, (13)

C̄ = C, (14)

where Ā, B̄, and C̄ are the discrete parameters of
the system, xk, hk, and yk represent the discrete in-
put, state, and output of the system, respectively. In-
spired by the equations above, Gu and Dao (2023)
proposed Mamba and achieved impressive results.
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Figure 3: The structure of the VSS block and illustration
of the 2D-Selective-Scan on the image.

Based on this, Liu et al. (2024) proposed VMamba,
which successfully applies SSM in visual recogni-
tion.

To effectively capture global styles, we intro-
duce VSS blocks in the encoder Gε. Figure 3 il-
lustrates its core designs, the VSS Block and the
2D-selective-scan (SS2D) module. Specifically, the
input passes through an initial linear embedding
layer, and the output splits into two information
streams. One stream undergoes a depth-wise con-
volution (DWC) (Chollet, 2017) layer, then via the
SiLU activation function (Shazeer, 2020), and fi-
nally enters the SS2D module. The output of SS2D
is passed through a layer normalization layer and
then added to the output of the other stream, which
has undergone SiLU. This procedure delivers the
last output of the VSS block. For SS2D, it scans
the image using CSM (scan extension). Then, the
four resulting features are separately processed by
S6 blocks, and the four output features are merged
(scan merge) to construct the final 2D feature map.
Benefiting from the global receptive area of the
VSS block, the proposed Hybrid Style Encoder
perceives handwriting styles from both global and
local views, effectively enhancing the understand-
ing capability of the model.

3.4 Dynamic Feature Enhancement Module

The Dynamic Feature Enhancement Module
(DFEM) aims to adaptively model the entangled
relationships between multilevel style features and
efficiently remove redundant information, as illus-
trated in Figure 4. Specifically, the DFEM receives
two hierarchical levels of style features (Fg and
Fl) as input. The Attention-Guided Style Entan-
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glement Module (ASEM) effectively extracts and
integrates complementary features and texture de-
tails between multilevel styles, enhancing overall
fusion performance. Subsequently, the Dual-aspect
Squeezed Enhancement Module (DSEM) removes
the redundant information, while valuable features
are preserved and emphasized. Then, the two
groups of features are added pointwise to get the
final entangled style sequence. The motivation be-
hind DFEM is to mimic the cognitive regions of the
brain to integrate different types of visual features.
The module effectively links stylistic features from
different levels, enhancing the perceptual ability to
recognize handwriting styles.

3.5 Training and Loss Objectives
In order to maintain the realism of the generated
samples, the multilevel style generator G is trained
in conjunction with three other modules. The most
essential component is the discriminator D, which
consists of a series of stacked residual blocks. It
distinguishes between real and fake images, com-
pelling G to produce authentic samples. We utilize
adversarial loss to optimize D and G:

LD =E[max(1−D(Xw), 0)]+

E[max(1 +D(Y C
w ), 0)]. (15)

Furthermore, we employ a text recognizer (Shi
et al., 2016) R to identify the text in synthetic sam-
ples, compelling the generator to produce samples
with the correct and desired textual content. R is
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Style Samples GL-GAN (Ours) VATr++ VATr

Figure 5: Qualitative comparison between our model and baselines in generating samples with the desired text in
the desired handwriting style. We use the same textual content: ’The brain perceives written text through visual and
cognitive areas. This is what inspired us.’

trained with real data (samples and their transcrip-
tions) and computes the CTC loss using generated
samples. The CTC loss can be expressed as:

LR = E[−
∑

log(p(t|R(x)))], (16)

where x means the input dragged from the set Xw

or Y C
w , and t is the actual transcription of x. More-

over, a writer classifier W is introduced to classify
based on the handwriting style, compelling the gen-
erator to produce samples in the desired style. Sim-
ilar to D, W comprises a series of stacked residual
blocks. The CE loss can be represented as:

LW = E[−
∑

log(p(w|W (x)))], (17)

where w implies the identity information of the
writer corresponding to sample x. Lastly, the cy-
cle consistency loss is adopted to ensure that the
generated samples maintain the same style as the
original style samples. The loss can be expressed
as:

LC = E[∥Gε(XW )−Gε(Y
C
W )∥1], (18)

In summary, the objective function of GL-GAN
consists of the losses mentioned above and can be
represented as:

L = LD + LR + LW + LC . (19)

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on two public
benchmark datasets for HTG. The details of each
dataset are as follows:

• IAM (Marti and Bunke, 2002) comprises
62,855 images written by 500 writers. Fol-
lowing previous work (Pippi et al., 2023a),
we select 339 writers as the training set, while
the remaining 161 writers were used for the
test set.

• CVL (Kleber et al., 2013) consists of 101,069
images, which are written by 311 writers. We
selected 27 writers to compare the generaliz-
ability of different HTG methods.

Settings. In all experiments, images are resized
to a height of 32 pixels while maintaining the aspect
ratio. The batch size is set to 8. Adam is used as an
optimizer with a learning rate of 2× 10−4. In this
case, the training is terminated after 10,000 epochs.
All experiments are conducted using PyTorch and
trained on a single NVIDIA Tesla V100s GPU.

Evaluation. To comprehensively compare our
proposed GL-GAN with other state-of-the-art meth-
ods, we utilize five recognized metrics to evaluate
HTG performance. • Fréchet Inception Distance
(FID) (Heusel et al., 2017) measures the distance
between the generated and real image distribu-
tions. • Handwriting Distance (HWD) (Pippi et al.,



2440

Method
IAM (IND) CVL (OOD)

FID ↓ HWD ↓ KID ↓ FID ↓ HWD ↓ KID ↓
GANwriting (Kang et al., 2020) 38.37 0.8406 3.286 51.51 1.9496 3.775

HWT (Bhunia et al., 2021) 19.40 0.4572 1.370 37.41 1.4283 2.275

VATr (Pippi et al., 2023a) 17.79 0.4205 0.706 29.55 1.4192 2.273

VATr++ (Vanherle et al., 2024) 16.29 0.3942 0.701 26.18 1.1562 2.011

GL-GAN (Ours) 14.32 0.3498 0.595 26.03 1.1357 1.551

Table 1: Quantitative comparison with SOTA methods for HTG on IAM and CVL dataset using three widely used
evaluation metrics (i.e., FID, HWD, and KID). IND and OOD denote in-distribution and out-of-distribution scenario,
respectively. KID score stands for the actual value multiplied by 102. "↓" indicates that smaller is better. The best
results are highlighted in bold fonts.

2023b) is tailored to evaluate handwritten images.
• Kernel Inception Distance (KID) (Sutherland
et al., 2018) measures the kernel distance between
two sets of images. • Word Accuracy Rate (WAR)
measures the percentage of correctly recognized
words out of all recognized words. • Normalized
Edit Distance (NED) calculates the average num-
ber of changes required to correct for recognized
words.

4.2 Baselines
To demonstrate the effectiveness of the proposed
model, our baselines include:

• GANwriting (Kang et al., 2020). This model
introduces a writer classifier to ensure that syn-
thetic samples exhibit different handwriting
styles.

• HWT (Bhunia et al., 2021). It utilizes a Trans-
former encoder to capture the entanglement
between handwriting style and textual content.

• VATr (Pippi et al., 2023a). This model uses
a text representation method based on visual
prototypes, allowing for more refined learning
of the relationship between handwriting style
and textual content.

• VATr++ (Vanherle et al., 2024). It employs
input preparation and training regularization
strategies to enhance the generalization abil-
ity.

To ensure fair comparisons, we conducted exper-
iments using publicly available weights for HWT,
VATr, and VATr++. For GANwriting, we per-
formed comparisons after reproducing the model
according to the report.

4.3 Styled Handwritten Text Generation
Table 1 summarizes the quantitative results of four
baselines on the IAM dataset. It can be observed
that the three evaluation metrics perform better than
the previous methods. Specifically, compared with
the VATr++, FID increased by 12.09%, HWD in-
creased by 11.26%, and KID increased by 15.12%.
This indicates that the images generated by GL-
GAN are more realistic than those produced by
previous methods. Figure 5 shows the qualita-
tive results of different HTG methods. Compared
with other models, our model can achieve better
visual effects by capturing more adequate hand-
writing styles. Specifically, VATr++ incorrectly
generates the character ’T’ (see dashed box). Some
words generated by VATr have collapsed shapes
(see dashed line) and are inconsistent with the orig-
inal style ink traces.

4.4 Generalization to the OOD Dataset
To validate the generalizability of GL-GAN, we
evaluated the performance in an OOD scenario. We
selected 11,668 images from the CVL dataset as a
test set and generated these images using models
trained on the IAM dataset. As shown in Table 1,
GL-GAN achieved more impressive performance
than other methods. These results indicate that GL-
GAN can generate high-quality synthetic samples
even when the input data domain is different from
the training data. The capability is crucial for prac-
tical applications where models are often required
to handle OOD data without additional training.

4.5 Ablation Analysis
To verify the effectiveness of each key module,
we designed four ablation experiments and evalu-
ated them using the most convincing FID metric,
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Ver. HSE ASEM DSEM FID ↓ HWD ↓ KID ↓
No.1 17.70 0.4205 0.706

No.2 ✓ 15.57 0.3312 0.664

No.3 ✓ ✓ 15.40 0.4171 0.614

No.4 ✓ ✓ 14.82 0.3964 0.607

No.5 ✓ ✓ ✓ 14.32 0.3498 0.595

Table 2: Quantitative evaluation for ablation studies on
IAM test set. KID score stands for the actual value
multiplied by 102. "↓" indicates that smaller is better.
The best results are highlighted in bold fonts.

as shown in Table 2. In No.1 experiment, we re-
moved HSE, ASEM, and DSEM, retaining only
the original CNN feature extractor. In No.2 experi-
ment, we removed ASEM and DSEM, handling the
two features output by HSE by element-wise addi-
tion. In No.3 and No.4 experiments, we removed
ASEM and DSEM, respectively. No.5 experiment
represents the complete model, consistent with the
structure in Figure 2.

Effectiveness of HSE. We investigated the ef-
fectiveness of HSE. From Table 2, we observe that
No.2 outperforms No.1, clearly indicating that the
Hybrid Style Encoder (HSE) is necessary to im-
prove performance.

Effectiveness of DSEM. We studied the bene-
fits of DSEM. We observe that No.3 slightly im-
proves the performance of No.2. This suggests that
the Dual-Aspect Squeezed Enhancement Module
(DSEM) allows GL-GAN to eliminate redundant
information, slightly enhancing performance.

Effectiveness of ASEM. We further investigated
the contribution of ASEM. We observe that No.4
further improves the performance of No.2. This
indicates that the Attention-Guided Style Entangle-
ment Module (ASEN) enables our model to effec-
tively integrate global and local styles.

Effectiveness of ASEM & DSEM. To evalu-
ate the combination of ASEM and DSEM (i.e.,
DFEM), we assess the performance of No.5. As
shown in Table 2, our model overall outperforms
other settings. This clearly demonstrates that utiliz-
ing both ASEM and DSEM can enhance the overall
fusion performance.

4.6 HTR Experiment

To further validate the effectiveness of the proposed
GL-GAN, we produce fake images using existing
HTG methods to augment the HTR model. In this
section, CRNN (Shi et al., 2016) is used as the ba-
sic model to observe improvements under various

Method WAR (%) ↑ NED (%) ↑
No Augmentation

IAM only 63.08 84.69

Augmentation With GAN-based Method

GANwriting 64.19 83.55

HWT 65.14 85.75

VATr 65.59 85.84

VATr++ 65.42 86.02

GL-GAN (Ours) 66.09 86.19

Table 3: HTR experiment. Results are evaluated on the
IAM test set at word level. "↑" indicates that larger is
better. The best results are highlighted in bold fonts.

conditions. As shown in Table 3, the upper part
indicates the performance of CRNN without aug-
mentation by generated images. For augmentation,
we generated 294,780 images using different HTG
methods. The step prevents the CRNN from gain-
ing prior knowledge about the test set. To maintain
the balance between real and generated samples,
we randomly selected 44,419 images from the gen-
erated images as the augmented training set and
trained them jointly with the IAM training set. The
lower part of Table 3 illustrates the results of the
augmentation experiments. It is easy to observe
that the experiments using GL-GAN as the aug-
mentation method achieved the best performance.
This clearly indicates that the images generated by
GL-GAN exhibit higher quality and more diverse
styles.

5 Conclusion

In this paper, we propose a novel network GL-
GAN for handwritten text generation, which effec-
tively integrates multilevel styles. We propose a
Hybrid Style Encoder (HSE) that leverages long-
range dependency handling capabilities and repre-
sentational power to extract global and local styles.
Subsequently, we propose the Dynamic Feature En-
hancement Module (DFEM) to integrate the hand-
writing style by adaptively modeling the entangled
relationships between multilevel styles and remov-
ing redundant information. Extensive experimen-
tal results on the mainstream benchmark dataset
demonstrate that the proposed model outperforms
other state-of-the-art methods.
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Limitations

Appreciating the advantages of parallel architec-
ture, our model achieves a faster training speed
(approximately four-sevenths of other models), yet
the overall architecture is redundant. Despite the
optimal performance of our model, the exploration
of HTR augment experiments has not been thor-
oughly examined and discussed. In fact, this will
be a pivotal aspect of future work.
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A Appendix

We provide more details of the proposed methods
and additional experimental results to help better
understand our paper. In summary, this appendix
includes the following contents:

• User study.

• Loss ablation study.

• Design of Hybrid Style Encoder.

A.1 User Study
In this section, we present the results of two user
studies to evaluate the handwriting imitation capa-
bilities of the proposed GL-GAN.

Research on selection preferences. Participants
were first shown a real image, followed by four syn-
thetic samples generated by HWT, VATr, VATr++,
and GL-GAN. They were asked to identify which
synthetic sample most closely resembled the real
one. The real images were selected from the un-
seen portion of the IAM dataset, and the text was
sourced from the IAM lexicon. A total of 200 re-
sponses were collected. The experiments indicate
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Method FID ↓ HWD↓ KID↓
w/o LR 202.182 2.1407 17.068

w/o LW 47.29 1.0339 4.929

w/o LC 16.78 0.7602 1.303

GL-GAN (Ours) 14.32 0.3498 0.595

Table 4: Quantitative evaluation for loss ablation studies
on IAM test set. KID score stands for the actual value
multiplied by 102. "↓" indicates that smaller is better.
The best results are highlighted in bold fonts.

Style Samples

GL-GAN (Ours)

w/o LW

w/o LR

w/o LC

Figure 6: Qualitative comparison for loss ablation stud-
ies the generation of the word "the" in two different
styles.

that our GL-GAN outperformed the other meth-
ods, and participants picked ours 66.68%, 52.75%
and 14.55% more frequently than HWT, VATr, and
VATr++, respectively.

Research on distinctions. Participants were
shown two images Imga and Imgb, Imga one was
a real image of the IAM training set, and Imgb
was a fake image generated by GL-GAN. They
were asked to classify the real image. A total of
220 responses were collected, with participants
correctly identifying the real image 47.27%. These
results indicate that the images generated by GL-
GAN are nearly indistinguishable from the real
ones.

A.2 Loss Ablation Study
In order to verify the effectiveness of each key loss,
we designed an ablation experiment, as shown in
Table 4 and Figure 6. Experimental results show
that missing LR leads to mode collapse, rendering
it incapable of generating the right text images.
The absence of LW leads to similar styles in the
generated samples, thus weakening the diversity.
LC is used to constrain synthetic samples to remain
similar to style samples.

A.3 Design of Hybrid Style Encoder
As discussed in Sec. 3.2, we use a Hybrid Style
Encoder (HSE) that combines residual and VSS

Ver. Layers Channels FID ↓
No.1 [2, 2, 9, 2] [96, 192, 384, 768] 19.03

No.2 [2, 2, 9, 2] [96, 192, 384, 512] 18.57

No.3 [2, 2, 2, 2] [96, 192, 384, 512] 17.37

No.4 [2, 2, 2, 2] [64, 128, 256, 512] 15.57

Table 5: Quantitative evaluation for architecture setup
for HSE on IAM test set. "↓" indicates that smaller is
better. The best results are highlighted in bold fonts.

blocks to capture handwriting styles at various lev-
els. This section details the hyperparameter selec-
tion for the VSS branch. We designed four experi-
ments, as shown in Table 5.

In No.1, we used the original Visual Mamba
backbone, incorporating VSS blocks without sig-
nificant performance improvement. The failure was
due to a mismatch in channel numbers between
the VSS blocks and the residual branches, which
could hinder the effective integration of style fea-
tures. Then, we adjusted the channel number of
the fourth VSS block to 512 in No.2. Although the
adjustment has better performance, it remained sub-
optimal. Consequently, No.3 reduced the number
of layers in the VSS blocks to [2, 2, 2, 2] to align
with the other branch. This change led to further
performance improvements. Finally, in No.4, we
refined the channel numbers to [64, 128, 256, 512],
resulting in the best performance. We conclude
that matching the network architecture across both
branches enhances the perception of style features
and integration.
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