SRIB-NMT’s Submission to the Indic MT Shared Task in WMT 2024
Pranamya Patil, Raghavendra Hr, Aditya Raghuwanshi, Kushal Verma
Abstract
In the context of the Indic Low Resource Ma-chine Translation (MT) challenge at WMT-24, we participated in four language pairs:English-Assamese (en-as), English-Mizo (en-mz), English-Khasi (en-kh), and English-Manipuri (en-mn). To address these tasks,we employed a transformer-based sequence-to-sequence architecture (Vaswani et al., 2017).In the PRIMARY system, which did not uti-lize external data, we first pretrained languagemodels (low resource languages) using avail-able monolingual data before finetuning themon small parallel datasets for translation. Forthe CONTRASTIVE submission approach, weutilized pretrained translation models like In-dic Trans2 (Gala et al., 2023) and appliedLoRA Fine-tuning (Hu et al., 2021) to adaptthem to smaller, low-resource languages, aim-ing to leverage cross-lingual language transfercapabilities (CONNEAU and Lample, 2019).These approaches resulted in significant im-provements in SacreBLEU scores(Post, 2018)for low-resource languages.- Anthology ID:
- 2024.wmt-1.64
- Volume:
- Proceedings of the Ninth Conference on Machine Translation
- Month:
- November
- Year:
- 2024
- Address:
- Miami, Florida, USA
- Editors:
- Barry Haddow, Tom Kocmi, Philipp Koehn, Christof Monz
- Venue:
- WMT
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 747–750
- Language:
- URL:
- https://preview.aclanthology.org/add-emnlp-2024-awards/2024.wmt-1.64/
- DOI:
- 10.18653/v1/2024.wmt-1.64
- Cite (ACL):
- Pranamya Patil, Raghavendra Hr, Aditya Raghuwanshi, and Kushal Verma. 2024. SRIB-NMT’s Submission to the Indic MT Shared Task in WMT 2024. In Proceedings of the Ninth Conference on Machine Translation, pages 747–750, Miami, Florida, USA. Association for Computational Linguistics.
- Cite (Informal):
- SRIB-NMT’s Submission to the Indic MT Shared Task in WMT 2024 (Patil et al., WMT 2024)
- PDF:
- https://preview.aclanthology.org/add-emnlp-2024-awards/2024.wmt-1.64.pdf