
Proceedings of the 1st Workshop on Uncertainty-Aware NLP (UncertaiNLP 2024), pages 15–22
March 22, 2024 ©2024 Association for Computational Linguistics

Context Tuning for Retrieval Augmented Generation

Raviteja Anantha, Tharun Bethi, Danil Vodianik, Srinivas Chappidi
Apple

Abstract

Large language models (LLMs) have the re-
markable ability to solve new tasks with just a
few examples, but they need access to the right
tools. Retrieval Augmented Generation (RAG)
addresses this problem by retrieving a list of
relevant tools for a given task. However, RAG’s
tool retrieval step requires all the required in-
formation to be explicitly present in the query.
This is a limitation, as semantic search, the
widely adopted tool retrieval method, can fail
when the query is incomplete or lacks context.
To address this limitation, we propose Context
Tuning for RAG, which employs a smart con-
text retrieval system to fetch relevant informa-
tion that improves both tool retrieval and plan
generation. Our lightweight context retrieval
model uses numerical, categorical, and habitual
usage signals to retrieve and rank context items.
Our empirical results demonstrate that context
tuning significantly enhances semantic search,
achieving a 3.5-fold and 1.5-fold improvement
in Recall@K for context retrieval and tool re-
trieval tasks respectively, and resulting in an
11.6% increase in LLM-based planner accu-
racy. Additionally, we show that our proposed
lightweight model using Reciprocal Rank Fu-
sion (RRF) with LambdaMART outperforms
GPT-4 based retrieval. Moreover, we observe
context augmentation at plan generation, even
after tool retrieval, reduces hallucination.

1 Introduction

Large language models (LLMs) excel in a variety
of tasks ranging from response generation and log-
ical reasoning to program synthesis. One of the
important active areas of LLM research is to uti-
lize them as planning agents (Huang et al., 2022).
Planning is an essential functionality for processing
complex natural language instructions. A planner
should possess the ability to select the appropriate
tools to complete each sub-task. While LLMs ex-
hibit exceptional generation capabilities, they have
inherent limitations, such as lacking up-to-date in-

formation and exhibiting a tendency to hallucinate
tools. By providing LLMs with a relevant set of
tools based on the given task (Schick et al., 2023;
Lu et al., 2023), one can alleviate the issue of out-
dated information. The set of methods to augment
LLM input with retrieved information, such as rel-
evant tools, is referred to as Retrieval Augmented
Generation (RAG) (Guu et al., 2020; Lewis et al.,
2020). RAG consists of three primary components:
Tool Retrieval, Plan Generation, and Execution.1

In this study, we focus on enhancing tool retrieval,
with the goal of achieving subsequent improve-
ments in plan generation.

Existing RAG methodologies rely heavily on se-
mantic search for tool retrieval, but this approach
has limitations, especially when queries lack speci-
ficity or context. To this end, we present Context
Tuning, a component in RAG that precedes tool
retrieval, to provide contextual understanding and
context seeking abilities to improve tool retrieval
and plan generation. Our contribution can be sum-
marized as follows:

1. We empirically show that traditional RAG
is inadequate for implicit/context-seeking
queries and present context tuning as a viable
solution;

2. We provide a systematic comparison of vari-
ous context retrieval methods applied on both
lightweight models and LLMs;

3. We share empirically the insight that Chain of
Thought (CoT) augmentation improves con-
text retrieval when no fine-tuning is applied,
whereas fine-tuning the retrieval model re-
moves the need for CoT augmentation;

4. We propose a lightweight model using Re-
ciprocal Rank Fusion (RRF) (Cormack et al.,

1Typically, the query along with retrieved tools undergo
dynamic prompt construction before presented to an LLM.
This process is called Query Decoration/Transformation. We
omit that in this work for the sake of simplicity.

15

2009) with LambdaMART (Burges, 2010),
which outperforms GPT-4 (OpenAI, 2023)
system, and finally;

5. We show that context augmentation at plan
generation reduces hallucinations.

2 Related Work

Using retrieval to incorporate tools into plan gen-
eration with LLMs has emerged as a burgeoning
area of research, with ongoing investigations aimed
at enhancing both the retrieval component and the
LLMs themselves. Our work falls within the for-
mer category, placing a particular emphasis on
refining retrieval methodologies to enhance con-
textual understanding of implicit and ambiguous
queries that demand context-seeking capabilities.

The integration of tools into generation has been
demonstrated to enhance the capabilities of LLM-
based planners in recent studies (Schick et al., 2023;
Lu et al., 2023). However, these works primarily fo-
cus on well-defined or unambiguous queries, where
retrieving supplementary information to augment
the query is not strictly required. For question an-
swering (QA) tasks, incorporating any off-the-shelf
document retriever has been shown to improve
LLM generation, with the addition of re-ranking
further boosting performance (Ram et al., 2023).
While re-ranking is preferred, employing any pre-
trained retriever, particularly a text-based retriever,
would be sub-optimal due to the inadequate in-
formation expected from ambiguous queries. Our
work demonstrates the inadequacy of text-based
retrievers for context retrieval and the necessity of
more advanced retrieval models.

To address the lack of context inherent in under-
specified queries, some studies have explored the
use of CoT (Wei et al., 2022) mechanisms to gener-
ate text that closely approximates the semantic sim-
ilarity of relevant context (Ma et al., 2023). While
CoT augmentation improves upon baseline meth-
ods, such as vanilla semantic search, CoT may
potentially increase the input length to the LLM,
which has a limited context window size. Addi-
tionally, studies have demonstrated that the place-
ment of relevant information impacts LLM gen-
eration (Liu et al., 2023). Therefore, it is prefer-
able to avoid increasing input sequence length if
the same or better results can be achieved with-
out query augmentation. Distillation-based query
augmentation approaches have been proposed to
address this problem (Srinivasan et al., 2023). Our

work unveils that fine-tuning semantic search ob-
viates the necessity for query augmentation while
achieving comparable performance.

Recent studies have shown LLMs can act as
zero-shot rankers through pairwise ranking prompt-
ing (Qin et al., 2023). While addition of rank-
ing for retrieval component has shown improve-
ment in QA tasks, direct use of LLMs for the
ranking task, in addition to plan generation, incurs
twice the inference cost. We empirically show that
our proposed lightweight context tuning method,
LambdaMART (Burges, 2010) based RRF (Cor-
mack et al., 2009), outperforms both fine-tuning
approach and GPT-4 (OpenAI, 2023) based CoT
Augmentation.

3 Methodology

Our experiments train and evaluate tool retrieval
and planning with and without context tuning. Fig-
ure 1 illustrates how a context-seeking query uses
context retrieval to enhance tool retrieval and plan
generation.

3.1 Data Generation

Our study employed a data generation methodology
using synthetic application data, aimed at simulat-
ing real-world scenarios for a digital assistant. The
data encompasses 7 commonly used applications:
mail, calendar, google, music, reminders, notes,
and phone call. We generated this data using GPT-
4, ensuring diversity in the dataset to reflect a wide
range of user personalities. The synthetic dataset
contained a diverse range of context items spanning
various applications. A total of 791 distinct per-
sonas were synthesized, yielding 4,338 unique im-
plicit queries for training and 936 implicit queries
for evaluation.

Additionally, we developed a toolbox containing
APIs for each of the applications we considered.
This toolbox was created using in-context learn-
ing with GPT-4 and contained a total of 59 APIs
distributed across the applications.

To simulate realistic user interaction with a vir-
tual assistant, we utilized GPT-4 to both derive
grounded queries from the application data and
subsequently choose the appropriate tool from the
generated toolbox. We further employed it to re-
solve the tool’s API with the correct parameters.
This methodology provided a comprehensive and
realistic dataset, essential for evaluating our context

16

Figure 1: Context-tuned RAG pipeline illustrating end-to-end processing of a complex request with progressive
plan generation.

tuning approach in RAG-based planning systems.2

Additionally, we generated CoT using GPT-4 to
guide the planner in resolving tool ambiguity. Ta-
ble 1 showcases examples of generated implicit
queries alongside their corresponding CoT, context,
and top-3 tools.

3.2 Context Tuning

To compare various context retrieval methods, we
employ both text-based and vector-based retrieval
baselines. We simulate different context stores by
structuring context data per persona and train mod-
els to perform federated search. We use query and
persona meta-signals, such as frequency, usage his-
tory, and correlation with geo-temporal features,
to perform retrieval. We evaluate context retrieval
using the Recall@K and Normalized Discounted
Cumulative Gain (NDCG@K) metrics.

BM25 For text-based search, we use an improved
version of BM25, called BM25T (Trotman et al.,
2014).

Semantic Search For vector-based search, we
employ the widely adopted Semantic Search ap-
proach. We use GTR-T5-XL (Ni et al., 2021)
to generate query and context item embeddings,
which are then ranked using cosine similarity to se-
lect the top-K results. We evaluate both pre-trained
and fine-tuned variants of this method.

CoT Augmentation To enhance the likelihood
of semantic alignment with pertinent contextual
elements, we augment the under-specified or im-
plicit query with GPT-4 (OpenAI, 2023) generated
CoT.3 We evaluate both pre-trained and fine-tuned
semantic search versions utilizing CoT.

2Refer to Appendix A for more details on data generation.
3Please refer Appendix A.6 for the GPT-4 prompt used to

generate CoT.

LambdaMART with RRF Reciprocal Rank Fu-
sion (RRF) (Cormack et al., 2009) is shown to
outperform individual rank learning methods. To
leverage this advantage, we propose a lightweight
model that uses LambdaMART (Burges, 2010) for
initial ranking of data across context stores, fol-
lowed by re-ranking using RRF.

3.3 Tool Retrieval

While advanced ranking models can enhance the
recall of tool retrieval, we employ the pre-trained
GTR-T5-XL model for semantic search using co-
sine similarity to retrieve the top-K tools. Extend-
ing the tool retrieval process to incorporate ranking
should be a straightforward endeavor. We evaluate
tool retrieval performance with and without context
retrieval using Recall@K.

3.4 Planner

The planner’s objective is to select the most appro-
priate tool from the retrieved tool list and gener-
ate a well-formed plan. A plan comprises an API
call constructed using the chosen tool and parame-
ters extracted from the query and retrieved context.
We fine-tune OpenLLaMA-v2-7B (Touvron et al.,
2023) for plan generation. To assess the planner’s
performance, we employ the Abstract Syntax Tree
(AST) matching strategy to compute plan accuracy.
A hallucination is defined as a plan generated using
an imaginary tool.

4 Results

4.1 Context Retrieval

Consistent with expectations, vector-based search
surpasses text-based search, as shown in Table 2.
Nevertheless, both approaches struggle to retrieve
relevant context for under-specified queries. Fine-
tuned semantic search and CoT augmentation with

17

Table 1: A sample of context-seeking or under-specified queries along with CoT produced by GPT-4. The columns
for context and tools show labels for those retrieval tasks.

Implicit Query CoT Relevant Context Top-3 Relevant Tools

When is my next
guitar lesson?

Check the ’Calendar’ for any
upcoming guitar lessons.
If not there, check ’Reminders’
for any alerts set about the lesson.

The user has a reminder
titled “Guitar Class"

[’Reminders’, ’Calendar’,
’Notes’]

I need to check my
diet plan again.

I may have noted down the
diet plan in ’Notes’. If not
there, perhaps I saved a photo
of it in ’Photos’.

The user has a note titled
“Intermittent Fasting Plan."
The user also has an
image titled “Keto Diet."

[’Photos’, ’Notes’,
’Mail’]

I’m running late.

Check ’Calendar’ for any
scheduled meetings. If so, verify
’Maps’ or ’Google Maps’ to
gauge current traffic situation
and estimated time of arrival.
Use ’Messages’ or ’Messenger’
or ’Mail’ to inform the meeting
attendees that you are
“running late".

The user has an upcoming
meeting titled “LLM
Discussion" organized by
“John Doe."

[’Calendar’, ’Mail’,
’Messages’]

Table 2: A comparison of various Context Retrieval
methods using Recall@K and NDCG@K metrics. The
context-seeking query is used as input to perform a
federated search across different context stores, after
which semantic search or ranking is applied.

Retrieval Method Recall@K NDCG@K

K=3 K=5 K=10 K=3 K=5 K=10

BM25 11.35 13.47 14.92 56.45 52.33 50.91
Semantic Search 23.74 25.38 26.99 65.44 64.31 64.02
CoT Augmentation 71.77 85.61 94.41 93.67 91.78 88.40
Finetuned Semantic
Search

73.48 88.52 95.13 93.81 94.07 94.23

Finetuned w/ CoT
Augmentation

73.55 88.53 95.17 93.92 94.11 94.22

LambdaMART-
RRF

81.27 92.65 98.77 96.39 97.11 98.24

pre-trained semantic search both significantly en-
hance retrieval performance. Notably, when fine-
tuning is employed, CoT augmentation yields only
marginal gains, suggesting that comparable im-
provements could be achieved without augmenting
the input sequence with CoT.

Our proposed approach utilizing LambdaMART
with RRF outperforms both fine-tuned semantic
search and CoT augmentation. Additionally, we ob-
serve that for fine-tuned methods, both Recall@K
and NDCG@K increase with K, whereas for pre-
trained methods, NDCG@K decreases with an in-
crease in K and Recall@K.

Figure 2: Evaluation of tool retrieval using Recall@k,
with and without context tuning.

4.2 Tool Retrieval
Figure 2 illustrates the performance of tool retrieval
using semantic search. Incorporating relevant con-
text into tool retrieval consistently yields substan-
tial gains across various K-values.

4.3 Planner
To establish the planner’s lower bound, we remove
the retrieval step, while the upper bound is set by
directly utilizing context and/or tool labels, effec-
tively employing oracle retrievers. Table 3 encap-
sulates the end-to-end evaluation of the fine-tuned
planner, demonstrating that the context-tuned plan-

18

Table 3: End-to-end planner evaluation both with and
without context tuning. “Lower Bound" excludes re-
trieval and performs direct plan generation while “Upper
Bound" assumes perfect context and tool retrieval.

Setting AST-based
Plan Acc ↑

Exact Match ↑ Hallucination ↓

Lower Bound 43.77 39.45 2.59

RAG-based
Planner

76.39 58.12 1.76

Context-tuned
RAG Planner

85.24 67.33 0.93

Upper Bound 91.47 72.65 0.85
Context-tuned
Upper Bound

91.62 72.84 0.53

ner significantly outperforms the planner based on
traditional RAG using semantic search. Notably,
even when the correct tool is retrieved, incorpo-
rating relevant context in plan generation, as evi-
denced by the upper bound, helps in reducing hal-
lucination.

5 Conclusion

Our work introduces context tuning, a novel compo-
nent that enhances RAG-based planning by equip-
ping it with essential context-seeking capabilities
to address incomplete or under-specified queries.
Through a systematic comparison of various re-
trieval methods applied to both lightweight models
and LLMs, we demonstrate the effectiveness of
context tuning in improving contextual understand-
ing. Our empirical observations reveal that CoT
augmentation enhances context retrieval when fine-
tuning is not applied, while fine-tuning the retrieval
model eliminates the need for CoT augmentation.
Furthermore, we observe that context augmenta-
tion at the plan generation stage reduces halluci-
nations. Finally, we showcase the superiority of
our proposed lightweight model using RRF with
LambdaMART over the GPT-4-based system.

Limitations

The current work does not utilize conversation his-
tory, which is crucial for handling explicit multi-
turn instructions that contain anaphora or ellipsis.
This limitation also hinders the model’s ability to
effectively process and respond to complex tasks
that require multi-hop context retrieval. Addition-
ally, the absence of conversation history impedes
the model’s ability to adapt to topic shifts that may
occur throughout a dialogue.

Furthermore, the performance of the planner
model is constrained by the length of the context
window. While employing LLMs with longer con-
text windows can enhance performance, it also in-
creases model size and computational complexity.
To address this limitation, incorporating context
compression techniques could potentially improve
end-to-end performance without incurring signifi-
cant increases in model size.

Due to privacy constraints, we simulated real-
world data by generating synthetic user profiles
and personas that mirrored real-world use cases for
a digital assistant.

Ethics Statement

To safeguard privacy, this study exclusively utilizes
synthetically generated data, eliminating the use of
real user information under ethical considerations.

Acknowledgements

We would like to thank Stephen Pulman, Barry
Theobald and Joel Moniz for their valuable feed-
back.

References
Christopher J.C. Burges. 2010. From ranknet to lamb-

darank to lambdamart: An overview. Microsoft Re-
search Technical Report MSR-TR-2010-82.

Gordon V. Cormack, Charles L. A. Clarke, and Stefan
Buettcher. 2009. Reciprocal rank fusion outperforms
condorcet and individual rank learning methods. In
Proceedings of the 32nd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval., pages 758–759.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin
Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. 2023. Lost in the middle: How lan-
guage models use long contexts. arXiv preprint
arXiv:2307.03172.

19

https://www.microsoft.com/en-us/research/uploads/prod/2016/02/MSR-TR-2010-82.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/02/MSR-TR-2010-82.pdf
https://doi.org/10.1145/1571941.1572114
https://doi.org/10.1145/1571941.1572114
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jian-
feng Gao. 2023. Chameleon: Plug-and-play compo-
sitional reasoning with large language models. arXiv
preprint arXiv:2304.09842.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting for retrieval-
augmented large language models. arXiv preprint
arXiv:2305.14283.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernández Ábrego, Ji Ma, Vincent Y. Zhao,
Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yinfei
Yang. 2021. Large dual encoders are generalizable
retrievers.

OpenAI. 2023. Gpt-4 technical report.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu, Don-
ald Metzler, Xuanhui Wang, and Michael Bender-
sky. 2023. Large language models are effective text
rankers with pairwise ranking prompting. arXiv
preprint arXiv:2306.17563v1.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. arXiv preprint arXiv:2302.00083.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Krishna Srinivasan, Karthik Raman, Anupam Samanta,
Lingrui Liao, Luca Bertelli, and Mike Bendersky.
2023. Quill: Query intent with large language mod-
els using retrieval augmentation and multi-stage dis-
tillation. arXiv preprint arXiv:2210.15718v1.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Andrew Trotman, Antti Puurula, and Blake Burgess.
2014. Improvements to bm25 and language models
examined. In Proceedings of the 32nd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval., pages 58–65.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. arXiv
preprint arXiv:2201.11903.

A Data Generation Details

A.1 Implicit Query Dataset
For our experiments, we created a synthetic dataset
to simulate realistic interactions across various ap-
plications commonly found with digital assistants.
The dataset is structured to encompass a diverse
range of contexts, representing different synthetic
user activities and interactions.

Data Points: A total of 791 unique personas were
synthesized, covering seven key applications: Mail,
Calendar, Google, Music, Reminders, Notes, and
Phone Calls. The final dataset contained 4,338 train
and 936 test data points.

Generation Method: We utilized GPT-4 to gen-
erate the data. We ensured high diversity in the
dataset is met through manual inspection, this is
essential to accurately reflect a wide range of syn-
thetic user personalities and interaction patterns.

Data Representation: Each data point in the
dataset contains multiple contextual information
fields, relevant to the specific application and syn-
thetic user’s activity. An example of persona in
JSON format is shown in Figure 3.

Figure 3: Snippet of a persona

Table 4 shows the distribution of context items
per application in our dataset.

A.2 Persona Data Creation Example Prompt

I'm working on generating synthetic data
for a user (also known as persona)

and the persona 's

20

https://arxiv.org/abs/2112.07899
https://arxiv.org/abs/2112.07899
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2306.17563
https://arxiv.org/abs/2306.17563
https://arxiv.org/abs/2210.15718
https://arxiv.org/abs/2210.15718
https://arxiv.org/abs/2210.15718
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1145/2682862.2682863
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

Application Avg. Context Items
Mail 2.93
Calendar 5.63
Google 9.57
Notes 2.23
Music 4.38
Reminders 4.81
Phonecall 2.34

Table 4: Distribution of context items per application.

iPhone Data.

Here are the characteristics of the
persona that we would like to
generate the data for:

age: 22
favorite_music_genre: Pop
favorite_movie_genre: Romance
favorite_cuisine: Italian
favorite_sport: Tennis
profession: Software Developer
hobbies: ['Cooking ', 'Swimming ', '

Reading ']

I want to generate data for ios App
called Music with bundle id as com.
apple.music.

Can you generate around 5 recently
played songs

Instructions:
1. Today 's date is 2023 -12 -07

11:18:19.028759 , Please generate any
times or dates in the past 15 days.

2. 'played_time ' should be in yyyy -MM -dd
HH:mm:ss.SSS format

Use the following schema:
The output should be formatted as a JSON

instance that conforms to the JSON
schema below.

As an example , for the schema {"
properties ": {"foo": {" title": "Foo
", "description ": "a list of strings
", "type": "array", "items": {"type
": "string "}}}, "required ": ["foo"]}

the object {"foo": ["bar", "baz"]} is a
well -formatted instance of the
schema. The object {" properties ": {"
foo": ["bar", "baz "]}} is not well -
formatted.

Here is the output schema:
```
{"$defs": {" MusicAppData ": {" properties

": {" recent_songs ": {"items": {"$ref
": "#/ $defs/Song"}, "title": "Recent
Songs", "type": "array"}, "

current_playing ": {"$ref": "#/ $defs/
Song"}}, "required ": ["
current_playing "], "title": "

MusicAppData", "type": "object"}, "
Song": {" properties ": {" played_time
": {" default ": "", "title": "Played
Time", "type": "string"}, "
album_title ": {" default ": "", "title
": "Album Title", "type": "string"},
"artist ": {" default ": "", "title":

"Artist", "type": "string"}, "
song_name ": {" default ": "", "title":
"Song Name", "type": "string"}, "id

": {" default ": "", "title": "Id", "
type": "string "}}, "title": "Song",
"type": "object "}}, "properties ": {"
app_name ": {" default ": "", "title":
"App Name", "type": "string"}, "
app_bundle_id ": {" default ": "", "
title ": "App Bundle Id", "type": "
string"}, "app_data ": {"$ref": "#/
$defs/MusicAppData "}}, "required ":
[" app_data "]}

```

Do not include any explanations , only
provide a RFC8259 compliant JSON
response following this format
without deviation.

A.3 Synthetic Toolbox Generation

You are an intelligent AI assistant
tasked with generating APIs for iOS
that can be used to interact with
Applications. For example , if I ask
you to generate APIs for Messages
iOS Application , you would generate
a comprehensive set of APIs that can
perform any action on the app. Some
examples below are:

api: read_message
description: Messages App 's read_message

API is used to read messages from a
particular contact

arguments:
- contact: contact from which the

message was received

api: read_unread_messages
description: Messages App 's

read_unread_messages API is used to
read all unread messages on your
iPhone

arguments:
-

api: send_message
description: Messages App 's send_message

API is used to send message to a
particular contact

arguments:
- text: text to be sent to the

contact
- contact: contact information

api: send_group_message
description: Messages App 's

send_group_message API is used to
send a message to a list of contacts
.

21

arguments:
- text: text to be sent to the group
- contacts: list of contacts in the

group

api: search_messages
description: Messages App 's

search_messages API is used to
search messages by text , recipient ,
sender.

arguments:
- text: text to be searched.
- recipient: search messages by

recipient name
- sender: Search messages by sender

name

Similarly , can you generate the APIs for
the following Application: {

application }?
Do not include any explanations. Only

provide the APIs in YAML format as
above.

The following table represents the distribution
of APIs:

Application APIs Count
Music 11
Google 10
Notes 9
Mail 8
PhoneCall 8
Calendar 7
Reminders 6

Table 5: Distribution of APIs generated by Synthetic
Toolbox Generation

A.4 Tool Retrieval

I have the following toolbox defined
with the available APIs:

{tools}

For the following query:
{query}

Suggest the most appropriate api? If
there is no API available in the
toolbox , then output default.

Only output the API name without any
explanations

A.5 Plan Resolution

You are an intelligent AI Planner
helping me come up with a plan and
resolve the variables.

I have the following query:
{query}

I have selected the following tool to
perform the task:

{tool}

Can you come up with fully resolved plan
using the following schema?

{format_instructions}

A.6 Prompt to generate CoT

You are an expert in processing context -
seeking or under -specified queries
by finding missing context in the
query. As an expert , your task is to
generate concise chain of thought

which when used to augment the
context -seeking query , increases the
semantic similarity of the updated

query with relevant context items.
Please only use the following
context types: 'Mail ', 'Calendar ', '
Reminders ', 'Notes ', 'Photos ', '
PhoneCall ', 'Message ', 'Messenger ',
'Maps ', 'Google Maps ', 'Music ', '
Spotify ', 'Find My ', 'Workout '; and
do not create new context types.

Context -seeking Query: {query}

Your expert Chain of Thought:

22

