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Abstract

Compositional Natural Language Inference
(NLI) has been explored to assess the true
abilities of neural models to perform NLI. Yet,
current evaluations assume models to have
full access to all primitive inferences in ad-
vance, in contrast to humans that continuously
acquire inference knowledge. In this paper,
we introduce the Continual Compositional
Generalization in Inference (C>Gen NLI) chal-
lenge, where a model continuously acquires
knowledge of constituting primitive infer-
ence tasks as a basis for compositional in-
ferences. We explore how continual learning
affects compositional generalization in NLI,
by designing a continual learning setup for
compositional NLI inference tasks. Our ex-
periments demonstrate that models fail to
compositionally generalize in a continual sce-
nario. To address this problem, we first
benchmark various continual learning algo-
rithms and verify their efficacy. We then
further analyze C2Gen, focusing on how to
order primitives and compositional inference
types, and examining correlations between
subtasks. Our analyses show that by learn-
ing subtasks continuously while observing
their dependencies and increasing degrees
of difficulty, continual learning can enhance
composition generalization ability.!

1 Introduction

Natural Language Inference (NLI) determines the
inferential relation between pairs of sentences,
by classifying the hypothesis as being true (entail-
ment), undecided (neutral), or false (contradiction)
given the premise (Dagan et al., 2013; Bowman
et al., 2015; Williams et al., 2018). The task has
been researched for decades and has been shown to
facilitate downstream NLU tasks such as text sum-
marization (Laban et al., 2022; Utama et al., 2022),

'Data and code can be found in https://github
.com/Heidelberg—-NLP/C2Gen.
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question answering (Chenetal.,2021), or dialogue
generation (Stasaski and Hearst, 2022).

Recently, large pre-trained models (PLMs) have
achieved results on par with human performance
by fitting NLI training data (Wang et al., 2019a;
Raffel et al., 2020; Chowdhery et al., 2023).
Despite the success of state-of-the-art PLMs, it
remains unclear to what extent neural models
have the ability to generalize when performing
NLI. To better assess the true abilities of PLMs
to perform NLI, Compositional Generalization
(Fodor and Pylyshyn, 1988; Hupkes et al., 2020)
evaluation has been proposed for NLI (Yanaka
et al. 2020; Geiger et al., 2020; Fu and Frank,
2023). This novel task aims to evaluate whether
models are able to predict unseen compositional
inferences if they have seen their constituting
primitive inferences in training. The left part of
Table 1 (Compositional Generalization for NLI )
shows an unseen compositional NLI test instance
for which we expect a model to make the correct
prediction ‘He
his pet’, by relying on the primitive inferences ‘try
to S -+ S and ‘catch his dog — catch his pet’.

However, existing work evaluating Composi-
tional Generalization for NLI (CGen NLI) relies
on offline training, which crucially differs from the
way humans acquire knowledge, i.e., by continual
learning (Ring, 1997; Parisi et al., 2019). Real
communication scenarios require the understand-
ing and induction of compositional inferences
relative to dynamically updated knowledge. For
example, an agent should be able to compose some
newly acquired inferential knowledge buy an ap-
ple vision pro (S) — digital content is blended
with physical space (S’) with previously learned

toS -+ S, toinduce 77y to S -+ S’. In Section 9,
we present a promising application of continual
compositional inference in a dialogue setting.

To better align with the compositional general-
ization ability in real-world situations, and to pre-
pare applying compositional NLI to dynamically

to catch his dog - He catches
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Compositional Generalization for NLI (CGen)

Continual Compositional Generalization for NLI (C2Gen)

A man fails to make a snowball -+ A man plays with a ball S A girl to do a stunt - A girl performs a bicycle trick
= A girl to do a stunt = A girl performs a bicycle trick ' Aman to do a stunt -+ A man performs a bicycle trick
'3
= A man fails to — - A man S A man fails to — - Aman

A man to do a stunt -» A man performs a bicycle trick 2 A man fails to make a snowball - A man plays with a ball
test A man to - A man A man to -+ A man

Table 1: NLI train and test instances for Compositional Generalization in a non-continual (CGen) and

continual learning (C?>Gen) setting. Test instances are unseen compositions, while

and NLI

inferences have been seen as primitives during training for compositional inference. C?Gen simulates
human learning via a continual learning stream, where one primitive task (S;) is learned before the
other (Ss). In contrast, CGen assumes that all data is accessible in advance and randomly shuffled

for training.

evolving information states, we introduce a new
task: Continual Compositional Generalization for
NLI (C?Gen NLI), which aims to explore the com-
positional generalization ability of a model when
performing NLI in a continual learning scenario.
We simulate a continuous learning process by ma-
nipulating the order in which specific primitive
NLI inferences are encountered during training.
The right part of Table 1 shows an example.
To solve the unseen compositional inference test
sample, a model needs to learn, in the first place,
the primitive inference try to S - S (S1), and then
catch his dog — catch his pet (Sy). The C*Gen
NLI task challenges models in two ways: it tests 1)
their ability to perform compositional generaliza-
tion, by combining learned primitive inferences
to solve unseen compositional inferences, and ii)
doing this in a continual learning scenario that
requires models to memorize and re-use primitive
inferential knowledge they continually acquired.
Unlike the existing CGen NLI task, C>Gen NLI
allows us to evaluate whether models can learn
primitive inferences continuously and efficiently.

To facilitate research on C2Gen NLI, we es-
tablish an evaluation setup and task dataset for
systematic analysis of the effect that continual
learning has on the compositional generalization
capabilities of models to perform NLI. We design
two sub-tasks to perform fine-grained composi-
tional generalization analysis: 1) compositional
inference (Taskcy) to explore how well a model
performs compositional inference; and ii) prim-
itive recognition (Taskp), to evaluate a model’s
ability to resolve constituting primitive inferences.
With our evaluation datasets and tasks, we con-
duct experiments in CGen and C?Gen NLI set-
tings using a multi-task model for the different
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inference tasks. Initial results show that with con-
tinual learning, models show inferior performance
in compositional NLI inference, which we show
to be due to forgetting.

To combat the forgetting issue, we benchmark
a set of continual learning algorithms targeted
at memorization. Our results validate their effec-
tiveness, but also show that memorization alone
cannot solve the compositional inference task. To
gain deeper understanding of the challenges in-
volved in a continual scenario, we investigate the
effect of learning primitive inferences in different
orders, analyze correlations between primitive and
compositional NLI tasks, and the impact of order-
ing compositional inference types by difficulty.
Our findings highlight the importance of ordering
inference types in continual learning according to
dependencies and intrinsic difficulty.

Our main contributions are as follows:

i) We motivate and introduce the C?Gen NLI
(Continual Compositional Generalization for
Natural Language Inference) task, which to
our knowledge is the first challenge to ex-
plore the compositional generalization abil-
ity of NLI in a continual learning scenario.

ii) We construct a compositional NLI dataset

and rearrange its partitions for C?Gen NLI.

Experiments indicate that forgetting is a
major challenge for C2Gen NLI. To com-
bat this issue, we benchmark a set of con-
tinual learning algorithms and verify their
effectiveness.

iii)

iv) Further analyses highlight the impact of

guiding the order of continual learning by



observing dependencies and degrees of diffi-
culty of primitive and compositional inference
types, for compositional NLI performance.

v) By controlling for data leakage using pseudo
data, we demonstrate that the C2Gen NLI
challenge persists for LLMs such as Llama.

2 Related Work

NLI determines the inferential relation between
a hypothesis and a premise (Dagan et al., 2013;
Bowman et al., 2015; Lai et al., 2017; Williams
et al., 2018; Welleck et al., 2019). Prior work
aimed to improve NLI performance with various
neural model types (Parikh etal.,2016; Gongetal.,
2018; Chen et al., 2018; Bauer et al., 2021). Re-
cently, large PLMs perform well on the NLI task,
often achieving human performance (Wang et al.,
2019a; Liu et al., 2019). Despite the success of
state-of-the-art LLLMs, it remains unclear if mod-
els are able to generalize when performing NLI.
To better assess their inference abilities, research
has started to explore to what extent they per-
form generalization when performing NLI. This
includes cross-genre (Williams et al., 2018) and
cross-lingual (Conneau et al., 2018) generalization
or investigating the impact of heuristics (McCoy
et al., 2019; Bhargava et al., 2021). In this work,
we evaluate the generalization ability in NLI fo-
cusing on compositional generalization. That is,
we test a model’s capability of predicting unseen
compositional inferences if constituting primitive
inferences have been learned.

Early work evaluates compositional general-
ization for NLI targeting novel compositions
involving specific linguistic phenomena, e.g.,
composing predicate replacements and embed-
ding quantifiers (Yanaka et al., 2020), focusing
on lexical entailment and negation (Geiger et al.,
2020; Goodwin et al., 2020). Recently, Yanaka
et al. (2021) and Fu and Frank (2023) extended
the scope of compositional generalization evalu-
ation to composition of veridical inference with
customary NLI, finding that PLMs are limited
in compositionality. Despite promising findings
of the above studies, they all assume that models
have full access to all training data in advance. This
is in contrast with humans acquiring knowledge
in a continuous fashion.

To simulate human learning processes, con-
tinual learning has been proposed (McCloskey
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and Cohen, 1989; Wu et al.,, 2022), enabling
models to learn from a continuous data stream
over time. Robins (1995) and French (1999)
identified catastrophic forgetting being the main
challenge in continual learning. To address this
issue, various continual learning strategies have
been proposed. Among others, data-based algo-
rithms (Chaudhry et al., 2019b,a; Aguilar et al.,
2020) are well-known. They use small memories
to store seen training data, to be reused in later
training steps. Using such strategies, later work
designed elaborate models to enhance the perfor-
mance of tasks such as relation extraction (Wang
etal.,2019b), multilingual learning (Berard, 2021;
M’hamdi et al., 2023), or dialogue (Madotto et al.,
2021). By contrast, we use such continual strate-
gies to analyze the impact of continual learning
on compositional generalization ability in NLI.

Both compositional and continual learning are
pivotal aspects for evaluating the genuine capa-
bilities of large PLMs. Existing work (Dziri et al.,
2023; Berglund et al., 2024; Mitchell et al., 2023)
indicates that although LLMs are pre-trained on
large amounts of data, they still struggle in novel
tasks and situations. Thus, LLMs are expected to
learn compositionally and continuously. Some re-
cent work aims to combine continual learning and
compositionality. Li et al. (2020) focus on con-
tinual learning in a sequence-to-sequence task.
They propose to represent syntactic and semantic
knowledge separately which allows to leverage
compositionality for knowledge transfer. Jin et al.
(2020) introduce a challenging benchmark that
aims at continual learning of compositional se-
mantics from visually grounded text. Unlike them,
we introduce a new task that focuses on Contin-
ual Learning of Compositional Generalization in
NLI. With this task, we 1) analyze the challenge of
compositional generalization in NLI in a continual
learning setup; ii) identify the effect of ordering
primitive and compositional inference types ac-
cording to their dependencies and difficulty; and
iii) finally, in §9 we showcase the relevance of con-
tinual learning in NLI in a concrete application,
namely, Persona Dialogue.

Our finding ii), which highlights the impact
of ordering primitive and compositional inference
types based on their difficulty, is close to another
machine learning paradigm, known as curricu-
lum learning (Elman, 1993; Krueger and Dayan,
2009; Bengio et al., 2009; Soviany et al., 2022).
This learning paradigm is inspired by the human



classroom, and refers to training a model with a
curriculum of increasing difficulty. Existing work
first focuses on assessing the difficulty of training
samples. According to their difficulty, they further
weight data samples and bias the model towards
them (Kumar et al., 2010; Huang and Du, 2019),
or organize data into subgroups and commence
learning from the easiest batch (Xu et al., 2020;
Jia et al., 2023; Ranaldi et al., 2023). Curriculum
learning differs from continual learning in two
respects:” i) learning schema. Curriculum learn-
ing remains an offline learning method. It focuses
on structuring the learning process to facilitate
faster and more robust learning, instead, continual
learning aims to adapt to new data over time while
preserving past knowledge. ii) training atoms.
Curriculum learning concentrates on data points,
instead, continual learning focuses on tasks or
knowledge levels. Despite these distinctions, cur-
riculum learning and continual learning interact,
such as adopting the ordering principle from cur-
riculum learning to enhance continual learning.
Our findings, derived from the analysis of learn-
ing sequences in continual learning, could serve
as empirical evidence supporting the principles of
curriculum learning.

3 Task Setup: C>Generalization in NLI

In this section, we provide an overview of contin-
ual learning (§3.1) and describe the construction
of our Compositional NLI dataset (§3.2). Building
upon this foundation, we rearrange partitions of
the dataset to establish Compositional general-
ization tests with standard training (CGen) and a
Continual learning (C*Gen) setup (§3.3).

3.1 Continual Learning Preliminary

Continual learning (McCloskey and Cohen, 1989;
Wu et al., 2022) is proposed to simulate human
learning processes, enabling models to learn from
a continuous and non in-distribution data stream
over time. The objective is to enable a model
to continuously learn a set of instances sequen-
tially ordered with respect to a set of n tasks
{T1,T2,...,Tn}, following a given order. The
model is trained on examples from 77, progresses
to 72, and so on until 7,. Notably, during the
learning process for each task 7;, the model is

2We refer to Table 2 in Biesialska et al. (2020) for a more
comprehensive comparison.

915

not allowed to access training data from previous
tasks 7—; or future tasks 7~;. Within each task 7,
instances are trained in a random order. In con-
trast, conventional training involves full access to
all data in advance, meaning the model is trained
simultaneously on examples randomly sampled
from the set of tasks 7.

3.2 Compositional NLI

We model Compositional Inference (CI) build-
ing on customary NLI samples. Both customary
and compositional NLI involve the relation be-
tween premise and hypothesis, but compositional
inference involves at least two different primitive
inference types (Table 1).> To master compo-
sitional inference, a model must i) resolve the
involved primitive NLI inferences and ii) compose
the inferred results, using a suitable composition
function.

We construct compositional inferences by se-
lecting veridical inference as a special primitive
inference type, and combine it with customary NLI
inference samples as a second primitive inference
(cf. Table 1). Given that veridical inference in-
volves an embedded sentence, it can be flexibly
combined and scaled to compositional inference
datasets (Yanaka et al., 2021). Veridical infer-
ence (Karttunen, 1971; Ross and Pavlick, 2019) is
strongly determined by the lexical meaning of sen-
tence embedding verbs. In the context of a factive
veridical verb, we can infer that the proposition it
embeds can be held to be true, e.g., He manages to
S — S. For a non-veridical verb, we cannot infer
the truth or falsity of a proposition, e.g., He tries
to S - §; while for non-factive veridical verbs,
we can infer the negation of the complement, e.g.,
He refuses to S — — S. For customary NLI we
distinguish three classes: e(ntailment): S — S’,
n(eutral): S - S’ and c(ontradiction): S — —S’.

To construct compositional NLI samples, we
ensure that the hypothesis of a (non-)veridical
inference pair (x verb S, S) matches the premise of
a customary NLI pair (.5, S’), to derive a transitive
inference pair that may be entailed, neutral, or
contradictory. For example, He tries to do S -
S &S — S = He tries to do S - S’. We use
the composition rules listed in Table 2 to define
the compositional inference labels. For example, A
man to catch his dog - A man catches his pet
is a (non-entailing) compositional inference. Here,

3We restrict ourselves to two primitive components.



index PV PN CcI

1 positive entailment entailment
1 positive neutral neutral

L1 positive contradiction contradiction
L1 neutral entailment neutral

1 neutral neutral neutral

1 neutral contradiction neutral

1 negative entailment contradiction
L1 negative neutral neutral

L1 negative contradiction entailment

Table 2: Composition rules for compositional in-
ferences. PV, PN, and CT indicate veridi-
cal, customary and compositional inference,
respectively.

represents a non-veridical (neutral)
inference sample, and catch his dog — catch his
pet an entailing inference sample. Composing the
above primitive inference results determines the
label for the compositional inference, i.e., neutral

(rule D1

3.3 Compositional Generalization Testing

Compositional Generalization (CGen) in NLI
Compositional generalization tests are designed
to evaluate whether a model can generalize to un-
seen compositional inferences whose constituting
primitives have been observed in training. For ex-
ample, we can evaluate a model’s compositional
generalization ability by testing it on an unseen
compositional sample A man to catch his dog
-+ A man catches his pet, where its constituting
primitive inferences tries to S - S and catch his
dog — catch his pet have been seen in training.
We denote the set of possible veridical inference
types with ), the set of customary inference types
with NV, and the set of all possible compositional
inference types with C = V x A. The domain
of all instances of the respective types is given
as D = {(v,n)|lv € V,n € N,(v,n) € C}. In
all our compositional generalization experiments,
we guarantee there is no intersection between the
compositional types used in training and test, i.e.,
Ctrain N Ciest = (), while primitive inferences in-
volved in test instances are ensured to have been
seen in training: Viest € Virain, Niest © Nirain-

Continual Compositional  Generalization
(C2Gen) in NLI  Unlike standard compositional
generalization evaluation that relies on offline
learning, requiring all training data to be pro-
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Figure 1: Training and testing setup for compositional
inference for continual stages S;, in C2Gen. In S; we
feed various veridicality samples and a few primitive
NLI samples. S; works analogously.

cessed in advance, the continual compositional
generalization test (C>Gen) extends the evaluation
to a continual learning setup. Here, a model is
fed with a non-stationary data stream, i.e., the
training process follows a controlled learning
order, simulating how humans acquire knowledge
from their environment. Following the standard
CGen setup, we evaluate a model’s generalization
ability in compositional NLI by testing unseen
composition types, e.g., A man to catch his
dog - A man catches his pet. During training, we
separate the training stream into sequential stages
S; (i € {1,2}), where i) in one stage the model
learns to categorize veridical inference based on
the embedding verb (e.g., the neutral verb 77v);
ii) in the other it learns to categorize a customary
NLI pair (e.g., the entailment pair carch his dog
— catch his pet). Hence, the model first learns
one primitive (e.g., V) to solve compositional
inference and then the other (), or vice versa.
We construct the above continual scenario by
controlling irrelevant variables. When exploring
veridical inference in &7, we use a small number
of primitive NLI samples and feed various veridi-
cality samples. Similarly, in S», we fix a restricted
number of samples from veridical inference and
feed various primitive NLI instances. Parallel to
training primitives, compositional instances are
presented, where the used primitives have been
seen in training of the corresponding stage S;.
Different stages are trained sequentially, while
samples are randomly trained within each stage.
This process enables models to learn incremen-
tally from new data. Figure 1 shows the process.
Compared to customary offline training, C>?Gen
NLI is more challenging and innovative. Because
models need to learn how to compose primitive in-
ferences, and need to preserve previously acquired
knowledge of constituting primitive inferences.



/ neutral / contradiction

entailment / neutral / contradiction / negative

positive /

{ Classification ¢, } { Classification ¢, ] [ Classification ¢, J

A

Taske; Taskp
[ Pre-trained LM ]
He to He to catch his dog He
-+ He + He catches his dog - He

Figure 2: Multi-task architecture for compositional gen-
eralization evaluation in CGen & C2Gen NLI. Taskcr
and Taskp are jointly optimized.

4 Analyzing C>Gen NLI as a Multi-Task

4.1 Decomposing Compositional NLI

To prepare a deep analysis of the generalization
capabilities in C*Gen NLI, i.e., compositional NLI
in a continual learning training regime, we decom-
pose the CGen task into two constituting subtasks:
prediction of primitive inferences (Taskp), and
prediction of compositional NLI (Taskcy) as the
main task. We apply multi-task learning to jointly
learn the two tasks.* Figure 2 gives an overview.

Taskc;: Compositional Inference In the NLI
CI task, a model is tasked to predict the inferential
relationship instantiated in a given compositional
NLI sample. For example, the model is expected
to predict the value ‘neutral’ for A man fo
catch his dog - A man catches his pet.’

Taskp: Primitives Recognition Taskp eval-
uvates whether a model correctly predicts the
primitive inferences from which a given com-
positional sample is built. That is, for A man

to catch his dog - A man catches his pet we test
the model predictions for its constituting primitive
inferences, expecting i) for A man fo
S -» S and i1) entailment for the entailed inference
A man catches his dog — A man catches his pet.

4.2 Model

The Compositional Inference (Taskc;) is de-
fined as a classification task. The model receives

“While we expect that task performance will generally
profit from MTL with the decomposed subtasks, our main
interest is the ability to analyze the effect of continual learning
in more detail.

STable 2 shows how the CI NLI value is semantically
determined from its constituting NLI primitives.

as input the concatenation of the premise and the
hypothesis of a compositional NLI sample. The
model encodes the sequence to a representation z,
and we adopt a softmax classifier on top of the
classification token of the last layer to predict one
of the NLI classes, based on the encoded input
representation. We use the cross entropy function
to calculate the compositional reasoning loss L.,

Lo = Lop(pe(x),c) ()
(

z,c)

where x is the input representation and c the
ground truth label. ¢, is the softmax classifier for
compositional natural language inference. (o is
the cross-entropy function.

We define the Primitive Inferences Recogni-
tion task (Taskp) as a joint classification task,
where each classifier is in charge of a primitive
inference. For each primitive inference, we form
an input sequence by concatenating premise and
hypothesis, and process it in the same way as de-
tailed for the compositional inference task. For the
classification, we adopt two softmax classifiers,
one for each of the respective tasks. In training
we use the cross-entropy function to calculate
each primitive’s loss. The two primitive losses are
jointly considered to train the model for the joint
multi-task for primitives recognition £pim,

Eprim = Z ECE((bv(xv)a'U)"i_ECE((bn(mn)yn)
(z,(v;n))
@)

where x,, z,, are the respective input representa-
tions, (v, n) the corresponding veridical and NLI
instances’ ground truth labels. ¢,,, ¢,, are the soft-
max classifiers for veridical and natural language
inference, and {¢f is the cross-entropy function.
In the end, we use the multi-task training strat-
egy to train two tasks, Taskp and Taskcy. Their
objectives Ly im and L, are jointly optimized
during training, using loss £ = Lpim + Ler.

4.3 Training Settings

Compositional Generalization (CGen). The
standard compositional generalization test in NLI
relies on offline training, where models have
full access to all training data in advance. This
setup serves as an upper-bound baseline for
our experiments. All training data in CGen is
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mixed in a random order. We denote this as
Dtrain = D51+Sz~

Continual Compositional Generalization
(C’Gen). This new training setup evaluates
the compositional generalization capability in
NLI in a continual learning scenario. The model
is restricted to follow a non-stationary data
stream, i.e., all compositional NLI training data is
presented in a specific order (Dyyqin, = Ds,, Dg,).

4.4 Continual Learning Strategies

In order to deeply analyze the challenges of the
C?Gen NLI task, we first benchmark well-known
continual learning strategies, designed to com-
bat forgetting. All methods introduce a small,
fixed-size so-called episodic memory. It consists
of samples selected from a previous learning stage,
and is used, in a next training stage, in different
ways:

Experience Replay (ER). Chaudhry et al.
(2019b) utilize samples from a memory directly
for re-training in future stages. They distinguish
three variants: a) ER-res(ervoir) applies a sam-
pling technique that ensures that each sample has
an equal chance of being selected; b) ER-buff
guarantees that the size of the memory at each
training stage S; is the same; and c) ER-mir
(Aljundi et al., 2019) selects re-training data that
is most likely to be forgotten in the next training
stage.

Averaged Gradient Episodic Memory
(A-GEM). Chaudhry et al. (2019a) constrain
the direction of the updated gradient. They
calculate the gradient ¢’ of the previous training
stage on memory data and project the updated
gradient to a direction that is close to ¢'.

Knowledge Distillation (KD). Aguilar et al.
(2020) apply memory samples to distill and pre-
serve knowledge learned in previous stages, by
minimizing the difference between the output pre-
dictions from the previous stage and the current
stage over memory data.

S Experimental Setup

5.1 Dataset Construction and Verification

We construct datasets with instances chosen from
established NLI datasets. i) For primitive veridical
inference, we select 21 verbs from the dataset of
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Signature Instantiations

positive (+)
neutral (o)
negative (—)

manage, begin, serve, start, dare, use, get, come
hope, wish, expect, try, plan, want, intend, appear
forget, fail, refuse, decline, remain

Table 3: Instantiation of verbs in different signa-
tures used for constructing veridical inference.

type #num type #num type #num
Leele 5976 [neln 5976 Lcele 3735
Lenln 5544 [onln 5544 Lenln 3465
Leclc 5520 [ncln 5520 Lccle 3450

Table 4: Distribution of the nine compositional in-
ference types in testing. ‘xy_z’ specifies the values
of the respective primitive inferences types, where
‘x’ stands for veridical, ‘y’ for customary NLI, ‘z’
for compositional inference, with ‘x’, ‘y’, ‘2’ €
{entailment(e) / neutral(n) / contradiction(c)}.*

Ross and Pavlick (2019). We restricted our choice
to verbs with infinitive complements to ease the
construction of compositional samples. Table 3
shows the selected verbs for each class label. ii)
For primitive customary NLI we extract 2130 in-
stances (e: 747; n: 693; ¢: 690) from SICK (Marelli
et al., 2014), focusing on instances where the in-
ference is based on specific semantic relations
including synonymy, hyponymy, active-passive
diathesis, etc. For compositional inference, we
compose samples from these primitive veridical
and customary NLI data points, as described in
§3.2. All compositional inferences are categorized
into nine groups using the composition rules in
Table 2. Table 4 shows the class distribution.® The
distribution of target class labels (e:n:c) is roughly
1:2:1.

As the dataset is automatically constructed from
existing datasets, we perform manual human veri-
fication to ensure their validity, following Keysers
et al. (2020); Liu et al. (2022, 2024). For cost con-
siderations we restricted manual verification to
200 randomly sampled instances. Two annotators
specialized in computational linguistics performed
this task. They underwent training in practice
sessions with direct feedback before starting the
annotation process. Their task was to annotate the
correct class (entailment, neutral, or contradiction)
for each premise-hypothesis pair, for all three
inference types. The inter-annotator agreement

“Here, we use {e /n/c} to denote the veridical inference
types, instead of{positive(p) / neutral(n) / negative(n)}.



calculated by Cohen’s kappa was 0.961, 0.954,
and 0.917 for the respective inference types.

After the annotation, we computed the consis-
tency between the human-labeled and automat-
ically constructed data for each inference type.
Among incorrect veridical inference samples (15
cases)’, 87% of instances are susceptible of a
systematic veridicality bias among humans (Ross
and Pavlick, 2019). That is, some verbs with neu-
tral signature are often perceived to have positive
signature, while our construction follows the se-
mantic definition (cf. Table 2). The remaining
13% are due to a range of different annotation
errors. For customary inference (based on SICK),
we follow the taxonomy of Kalouli et al. (2023)
to categorize error samples (24 cases). Applied to
our data, the errors are attributed to the follow-
ing sources: ambiguous (55%), looseness (25%),
phrasal verbs (10%), and annotation error (10%).
Note that NLI labeling consistency, in general, is
still an open issue, relating to factors such as ambi-
guity and uncertainty (Pavlick and Kwiatkowski,
2019; Nie et al., 2020; Jiang and de Marneffe,
2022). For incorrect compositional inferences (25
instances), we note that incorrect primitive infer-
ences cause accumulated errors, accounting for
approx. 91.5% of the incorrect compositional
inferences. The remaining ones are annotation
errors. Still, the consistency for each inference
type exceeds 90%, indicating a high quality of
our benchmark dataset, which can be a valuable
resource for future work.

5.2 Dataset Split

The compositional inference data D¢ is prepared
for the Compositional Generalization in NLI
(CGen) evaluation as follows: Given nine com-
positional inference types, we conduct nine-fold
cross-validation experiments, reporting averaged
results. Specifically, each type will once serve as
a test dataset DY, (e.g., [, While the remaining
eight types are used as training set DY . (e.g.,
[=TD."As outlined in §3.3, we guarantee that the
primitive inferences used in a given test instance
have been seen in training. For Taskc; we train on
DE .. and test on D, . For Taskp we decom-
pose the instances of DS . and D, into their
primitive inferences DS, . = DV & Dgzm

train train

"We provide the aggregate count of incorrect samples
annotated by two annotators for analysis.
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for primitive recognition training, and test with
unseen primitive inferences DLV, ..., DPN.

In the Continual Compositional Generaliza-
tionin NLI (C>Gen) setting (cf. §3.3) we maintain
the evaluation protocol for both tasks as detailed
above for CGen, but split the train set DtCr ain
into DS and DY s.th. D/, = {D§ UDE }, and
present this data in a continual training stream. For
each stage S;, ¢ € {1,2}: 1) If it serves to train the
model to learn veridical inference, we use a small
number of NLI samples and feed various veridi-
cality samples. For example, we select data from
[T I T Iwlhere for the pair [ T thk model needs
to distinguish the effect of positive and neutral
veridicality and similarly for [ Twhere it needs
to distinguish the effect of positive and negative
veridicality. ii) If the model is tasked to learn nat-
ural language inference, we use a small number of
veridical verbs, selecting data from [T T T [fbr
similar reasons as in i). We experiment with alter-
native data streams, with reversed order in which
specific phenomena are trained, once setting S; to
process training data targeted to V and Sy to N,
and once choose the opposite assignment to S;
and S;. In each stage, we uniformly sample 3200
instances for training.

5.3 Evaluation Metric

We adopt two metrics: i) Acc(uracy) reports the
percentage of correctly predicted labels for a given
task after training on all stages. ii) Forget is a
commonly used metric in continual learning. It
measures to what extent knowledge that a model
has learned in S is preserved after training in
S,. For a given task T, Forget is calculated as
(ACCSI (Dtj;st) - Accsh& (D%’;st)) / ACCSl (Dt];st)'

5.4 Implementation Details

Backbone. Weuse RoBERTa-Large® (Liuetal.,
2019) given its superior NLI performance’ and
training efficiency, following Yanaka et al. (2021)
and Fu and Frank (2023). We train using Adam
Optimizer with a learning rate le-5 and batch
size 8.

Continual Learning Strategies. For all evalu-
ations using continual learning strategies, we set
the memory size to 100. Following Chaudhry et al.
(2019b) and Aljundi et al. (2019), we set the num-
ber of replay samples in each step to the batch size

8https://huggingface.co/roberta-large.
https://gluebenchmark.com/leaderboard.
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https://gluebenchmark.com/leaderboard

for ER-based strategies, including ER-reservoir,
ER-buff, and ER-mir. In practice, we add the
memory batch to the current batch in training.
For fair comparison to other strategies, we set the
sample size to be equal to the batch size used
for controlling the gradient in AGEM (Chaudhry
et al., 2019a) and for distilling knowledge in KD
(Aguilar et al., 2020). For each experiment, we
perform three runs with different seeds, as in Jin
et al. (2020) and Madotto et al. (2021). We report
the mean performance with standard deviations in
the following experiments.

Hyperparameter Settings. We determine suit-
able hyperparameters by empirical assessment in
a grid search. To assess the impact of the learn-
ing rate, we run experiments across a range of
learning rates [1e-5, 2e-5, 3e-5] using Adam opti-
mizer.'? Results indicate that the gap (A) between
CGen and C?Gen increases monotonically with
increasing learning rate, achieving accuracies of
[18.11, 19.05, 19.88] for Taskp and [7.44, 8.39,
9.26] for Taskcy for the respective choices. We
select 1e-5 as the learning rate because its gap is
the most negligible compared to the other rates.
Moreover, the similarity in gap values between
Taskp and Taskq; implies that adjusting hyper-
parameters alone does not significantly impact the
subsequent conclusions. We similarly evaluate the
impact of memory capacity on continual strate-
gies, for ranges from 2% to 5% of the one-stage
training data, corresponding to memory sizes of
50, 100, 150, and 200. Again, the results for the
two tasks exhibit a unimodal distribution, with a
peak occurring at 100. Therefore, we opt to utilize
a memory size of 100.

6 Results and Analysis

6.1 How Does a Model Perform in C2Gen?

We start by analyzing the effects of the different
training settings, CGen and C>Gen, on model
performance in the compositional generalization
test for NLI (Taskc). Table 5 shows the results.
In the CGen setting, the model shows decent
performance in compositional inference (Taskcr)
with an accuracy of 46.67. Compared to CGen,
C?Gen NLI shows a decline for both continual
order variants ver — nat and nat — ver, with

10We follow Liu et al. (2019) in the selection of potential
learning rates, as excessively large or small values can impede
convergence in ROBERTa.
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Settings Taskp Tasker
v N V+N

CGen 99.960.12 94.36057 94.36041 46.67)26
ver — nat

C2Gen (S1)  100.000.00 - - -
C2Gen (Sy)  80.72039 94.25076 76.31p50 39.40043
nat — ver

C2Gen (S)) - 93.94.65 - -
C2Gen (S;)  99.58014 71.15075 70.73049 37.360.57

Table 5: Results for Taskp (incl. individual prim-
itives) and Taskc in different training settings.
Subscripts are the standard deviation.

reductions of 7.27 and 9.31 points, respectively.
This suggests that compositional generalization
in NLI in a continual learning scenario is more
challenging.

Why is C?’Gen More Challenging? To inves-
tigate this question, we examine the accuracy of
primitive inference (Taskp) in different continual
learning stages. This is because Taskcy is depen-
dent on Taskp, requiring correct predictions for
the constituting elements of the composition. For
C2Gen in order ver — nat, we find that the initially
learned veridical primitive inference achieves high
accuracy of 100% in stage S;, showing that the
model has achieved perfect knowledge of veridi-
cal inference after S;. However, the accuracy for
veridicality drops to 80.72 ({19.18) after learning
primitive NLI in S,. This suggests that the model
forgets the primitive knowledge learned during
S;. We find a similar trend in the C>Gen setting
nat — ver, where the accuracy of the initially
learned NLI primitive inference drops from 93.94
to 71.15 (422.79). While in each order only one
primitive is affected by forgetting, the joint ac-
curacy for Taskp drops to 70-76 points in both
settings. From these observations we conclude that
catastrophic forgetting is a major challenge in
C?Gen.

6.2 Can Continual Learning
Strategies Help?

Next, we apply existing continual learning strate-
gies that are designed to address the problem of
forgetting, and analyze their effect on the preser-
vation of knowledge of primitives (Taskp) and on
compositional generalization (Taskc ;) in C*Gen,
for both learning orders. Table 6 shows the results.



ver — nat nat — ver

Settings Taskp Tasko 1 Task p Taskcr

Accy (1) Acen() Accyyn(1) Forgety(l) ACC(H)  Acey(t)  Acen(f)  Accyn() Forgety(l) ACC(T)
C2Gen (S2) 80.72939 9425076 76.31¢.59 19.18p39  39.400.43 99.580.14 71.15072 70.730.49 24.26.48 37.36¢.57
ER - Res 99.89001 94.14¢ 56 94.040.53 0.119.01 44.89068 100.00000 87.43 967 87.43¢.67 7.64053 4234071
ER - Buff 99.780.01 94.25034 93.910.28 0.15¢.01 4434956 100.00000 87.380.59 87.38¢.59 6.910.42 41.680.42
ER - Mir 99.92000 94.87029  94.04¢.19 0.08000 44.73072 100.00000 87.550.71 87.550.71 6. 71060  42.01046
AGEM 99.860.02 9491937 93.780.75 0.14903 42.10091  99.610903 81.70112 81.350.04 13.25¢.86 41.600.81
KD 99.800.03 94.560.63 90.130.44 0.20003  42.37977 97.860.04 82.690.99 81.90¢ .87 11.57.68 41.780.74

Table 6: Results of compositional primitive recognition (Taskp) and inference (Taskcr) in C2Gen NLI
across different continual learning strategies. Subscripts are the standard deviation.

Compared to vanilla C2Gen, all continual strate-
gies yield improved accuracy for both tasks and
reduce the forgetting value of learned primitive
inference. C2Genyer—snat» yields a significant im-
provement in the accuracy of the initially learned
primitive (Accy ), with an increase from approx.
80 to 100. Accordingly, the forgetting value asso-
ciated with this primitive decreases by the same
amount to almost 0. A similar trend is seen in
C?Genyqiver Where the accuracy of the initially
learned primitive (Accy) increases from 71 to
83, while its forget value drops from 24 to 10.
This shows that continual learning strategies al-
leviate forgetting, helping the model to regain
substantive performance (+5 points for Taskc).

We then analyze the effect of different con-
tinual strategies. Table 6 shows that Experience
Replay strategies (ER-Res/Buff/Mir) achieve su-
perior results with two tasks in different learning
orders. For example, in C%Genyer—snat ER-based
strategies achieve a Taskc accuracy of 44 (as op-
posed to 42 for AGEM and KD). With the reverse
order C2Gen,gt—sper the performance is lower
for both tasks: Tasks; achieves 42 (ER) vs. 41
(non-ER); Taskp yields 87 (ER) vs. 81 (non-ER).
The only exception is Taskp,, in C2Genyer—mnat
where all continual strategies show comparable
performance, at almost 100%. This is likely due
to the ease of learning highly lexicalized veridi-
cality classes, to which continual strategies cannot
contribute much (cf. also Table 5).

7 Establishing Learning Order
for C°Gen

As shown in §6.2, continual strategies can
greatly improve the performance of primitive
and compositional NLI in C2Gen NLI. However,
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the continual learning results still lag behind non-
continual training. To gain deeper understanding
of the challenges involved in the continual learn-
ing process for compositional generalization in-
ference, we perform further analysis of the C>Gen
setting.!!

7.1 Effects of Primitive Learning Orders

While it seems evident that primitive tasks must
be learned prior to compositional tasks they are
constitutive for, the order among primitive tasks
is more difficult to establish. To explore how
different orders of learning primitives in continual
learning affect compositional generalization, we
compare the performance of Tasks P and C'I with
alternating orders of learning veridical inference
(ver) and customary NLI inference (nat), i.e., ver
— nat vs. nat — ver. Table 6 shows that ver — nat
consistently outperforms nat — ver. For ER-Res,
e.g., 1) for Taskp, Accy v differs by 6.61 points
(94.04 vs. 87.43); ii) for Accoy in Taskey the
difference is smaller, but still considerable (2.55
points). These differences indicate that the order
of learning constituting primitive inferences is
relevant for compositional NLI inferences.

In order to investigate why ver — nat per-
forms better than nat — ver, we examine the
representation changes of the initially learned
primitives for the respective learning orders at
different timesteps: i) by the end of S;, where
the model has just completed learning the initial
primitive, and ii) after So, when the model has
completed learning of the other primitive. For Sy
we compare two settings: pure continual learning

"n this section we select ER-Res as continual learning

strategy for our experiments, given its superior performance
(cf. Table 4). The remaining strategies show similar trends.



ver — nat

nat — ver

S S w/o continual strategy S, w/ continual strategy

Figure 3: Changes of learned primitive representations
from S; to Sy with different learning orders.

(S; wlo continual strategy) and continual learn-
ing using the ER-Res strategy (S, w/ continual
strategy).

Figure 3 visualizes the results. For both orders,
we observe similar changes between & and Ss:
The three categories within each primitive infer-
ence type are clearly grouped in S;. In &, the
shapes of the three clusters get looser in So w/o
continual strategy, while with continual strategy
in Ss (rightmost images), the density of each clus-
ter can be recovered. When comparing the density
of the individual clusters for the different orders
(ver — nat vs. nat — ver), it becomes evident that
the clusters in ver — nat exhibit a higher level of
density in both stages. This suggests that veridical
inference is easier to learn than customary NLI,
leading to reduced likelihood of forgetting. This
finding highlights the importance of considering
the inherent difficulty of learning a primitive, and
to order primitives that are easier to learn first.

7.2 Continual Learning of Dependent Tasks

To better understand the challenges of composi-
tional NLI in the different learning frameworks,
we further analyze the correlation between Task p
and Taskcr. We decompose the compositional
inference testing data into its primitive inferences
D¢, = Di‘gt & Dtlzg’t for primitive recogni-
tion. We then categorize all test instances into
four groups: i) P(DCI( D, Iwhere both tasks
yield correct predictions. ii) P( DCI( D, 1where
seen primitive inferences are correctly classified,
but predicting unseen compositions fails. This we
identify as lacking generalization capability. iii)
P(DAI( D) _rbcords unseen compositions that are
correctly predicted without accurately recognizing
their primitives. Given that Task p is a prerequisite
for Task¢y, this scenario indicates a shortcut. iv)
For P(DAI(D,Iwhere both tasks are incorrectly
predicted, the model fails the complete task.
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Setting P(OC(D P(OA(D] P(DAI(O P(DAa1(0
Indicates: correct no generalization shortcut wrong
CGen 46.05 52.41 0.62 0.92

C2Gen 37.98(A8.07) 46.71(A5.70) 1.42(A0.80) 13.89(A12.97)
ER-Res 44.33(A1.72) 54.38(A1.97) 0.56(A0.06) 0.73(A0.19)

Table 7: Distribution of class performance across
Taskp.cy for different settings (all: ver — nat).
A indicates the gap compared to CGen.

Table 7 displays the distribution of these cases.
For CGen, we find an exceedingly low percentage
of instances in the P(DQI( D chtegory, indicating
a scarcity of model shortcuts. Since P( YCI( [) 1
and P( DCI( Djbointly cover the remaining proba-
bility mass, we conclude that the model meets the
preconditions for solving Taskcoy by being able
to solve Taskp. But, about half of these cases
fail to perform compositional NLI inference in
Taskc . This suggests that evaluated models lack
compositionality. In contrast, human annotation
evaluations (§5.1) show that incorrect composi-
tional inferences mainly stem from accumulated
errors in primitive inferences. That is, P(DAI( D]
is more predominant compared to P( DCI( D Trhis
indicates that humans show greater proficiency in
handling compositionality compared to models.

Continual learning in C2Gen shows a reduction
in the proportions of P( DCI( ) ahd P( DCI(D,]
with the majority of erroneous predictions tran-
sitioning to P( DAI( D IThis shows that continual
learning has a clear impact on primitive recogni-
tion, with or without generalization ability. En-
hancing the model with strategy ER-Res yields a
reduction for P(D)AI( D _4nd a corresponding in-
crease of the P( )CI( [)_and P( DCI( D) _tlasses.
However, the increase is more pronounced for the
no generalization class (+3.7). That is, ER-Res
proves more effective for primitives compared
to compositional generalization. This may be
due to the complexity of two tasks, making it
relatively easier for primitives to recover from
forgetting. Overall, we show that memorization
methods can alleviate the forgetting effect for
primitives, while compositional inference remains
challenging, with a small decrease compared to
CGen.

7.3 C?Gen by Increasing Difficulty of Tasks

As the above analysis shows, C?Gen remains
challenging with a gap of A1.78 for CTEE- tes

ver—nat

compared to CGen (Table 6). We aim to explore
how to relieve this issue. Inspired from our insights



N, N, N. | Avg.CIy | Function Types
Ve 19.50 73.86 13.91 35.76 fy, (ve,X) =X
\ 100 100 57.21 85.74 fy,, (Un,-) =n
Ve 13.99 26.50 15.03 18.51 fo.(Ve,X) =X
Avg. CIn | 4450 66.79 28.72 46.67

Table 8: Taskcy accuracy (CGen) for all infer-
ence types. V, N denote veridical and customary
inference. Avg. states average results for different
function types. Color indicates the CI target labels:
(entailment), m(neutral), = (contradiction).

into ordering effects for primitive inference types
(§7.1) and the curriculum learning paradigm, we
investigate the effect of ordering the continual
learning stream for the complete compositional
task along the degree of difficulty for all involved
NLI types.

Table 8 shows that the 9 compositional infer-
ence types can be grouped into 3 function types
based on veridicality:'? i) for positive verbs v,,
the compositional inference label is consistent
with the label of the NLI primitive; ii) for neutral
verbs v,, compositional inference remains neu-
tral regardless of the NLI inference type; iii) for
negative verbs v., the compositional inference la-
bel is the inverse of the customary NLI label.
The respective function types f,, are defined in
Table 8. We determine the difficulty of the indi-
vidual functions by averaging the results of the
individual inferences pertaining to each veridi-
cality label = in the CGen setup. Table 8 shows
that the performance of the 3 functions varies
considerably: f,, , for neutral veridicality, exhibits
significantly higher accuracy (85.74) compared to
the other ones; f,, for positive veridicality per-
forms much worse (35.76) but still better than f,,,
for negative veridicality, with 18.51 points. We
hence define two compositional function learning
orders (cfo) for Taskcy: easy — hard: fo, fo. 1o,
and hard — easy: t, f, f,, .

Following S of the learning process as of §7.2,
we add a stage S that only presents compositional
inference training data, controlled by a continual
data stream where the functions f,_, f,, , f,_ are
arranged by degree of difficulty. S3 .f, in Table 9
shows the results of C?Gen in the two opposing
orders. For fair comparison, CGen is also trained
with this data, yet in random order, achieving
48.64 accuracy. Indeed, applying the easy — hard
learning order narrows the gap to CGen up to a

12We take veridicality as example; NLI works analogously.

C2Gen C2Gen
CGen
easy— hard: f,,, f,, f,, hard— easy: f, f, fo,
Sovn  46.67 44.89 (A 1.78)
83, cfo 48.64 48.22 (A0.42) 46.06 (A2.58)
spleere 4719 45.45 (A174) 44.63(5256)

Table 9: C2Gen Taskc; accuracy with composi-
tional function ordering in two Ss settings (row
2-3). A shows the gap to CGen for respective
stages S;.

words replacement ( : artifical word)

ver : blicke, : dmaop, : lugi,
fepo, : kikioa, - mfkd, : qneopl
nat : nlnx-walhra, : fibgpe-qpj,
: sxaokpw-zssgjuk, :
ozf-yqj, 1 noquz-srv, : Xiw-vcs,

Table 10: Examples of pseudo words for veridical
verbs and semantically related terms for nat.

small margin of A0.42, outperforming hard —
easy considerably (A2.58). This finding indicates
that further training with a favorable function
learning order benefits C*Gen, aligning with our
insight from §7.2, that learning easy components
first enhances learning performance.

To further consolidate the above finding we

conduct a complementary experiment 83p | ces °.
Here, we construct a learning scheme that follows
easy before hard but strictly orders primitive be-
fore compositional inference. That is, the model
is forced to learn independent primitive inference
first, and later compositional inferences ordered
by function difficulty. Row 4 in Table 9 indicates
that easy — hard still improves over the reverse
order, confirming the easy before hard scheme.
We also note that 83p | cefo yields a larger gap
compared to 83 .f, (1.74 vs. 0.42). This suggests
learning C'/ in parallel to P in S;, Sy is beneficial.

8 Controlling Model Size & Data Leakage

PLMs (Devlin et al., 2019; Liu et al., 2019) have
demonstrated impressive performance on many
NLP tasks through pre-training on extensive data.
Recent advancements in large PLMs (Chowdhery
et al., 2023; Touvron et al., 2023) have achieved
even more substantial improvements by further
scaling models and data. However, this raises
concerns regarding the reliability of generalization
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original pseudo
Settings
Taskp Taskco 1 Taskp Taskc
\% N V+N \Y% N V+N

CGen 100.00 92.92 92.92 46.15 91.76 83.55 81.37 39.34
? C2Gen (S1) 100.00 - - - 90.14 - - -
. C2Gen(Sy) 81.29(A18.71) 92.48 78.83 37.98(A8.17)  76.29 (A13.85) 81.57 73.82  36.62(A2.72)
; C2Gen (Sy) - 93.15 - - - 82.19 - -
< C2Gen (Sy) 99.87 73.91(A19.24) 7242 34.64 (A11.51) 89.72 59.42 (A22.77) 56.72 33.91 (A5.43)

Table 11: Performance of Taskp and Taskc on original vs. pseudo dataset in different training settings.

evaluations: 1) re. data: whether evaluation data
might have been encountered during pre-training;
1) re. model scale: whether a scaled PLM could
show emerging compositional generalization abil-
ity. We address these concerns in two experiments.

8.1 Controlling for Data Leakage

Following Lake and Baroni (2023), we construct
a pseudo-compositional inference dataset by re-
placing all relevant knowledge-bearing natural
language terms with pseudo-words. For veridical
inference we replace veridical verbs with pseudo
words, e.g., — blicke. Table 10 shows
examples. Irrespective of these applied changes,
we leave the signatures of the original verbs un-
touched. For customary NLI, we replace pairs of
semantically related words that are crucial for de-
ciding the NLI class with a pair of pseudo words.
For example, in ‘A man catches his — A
man catches his pet’ we replace — ozf and

— ygj. Given the difficulty of identifying cru-
cial semantic relations in the NLI data, we select
438 relation pairs covering 813 NLI instances
(again examples in Table 10). Like veridical in-
ference, we preserve the original inference labels.
Using these pseudo primitive inference indica-
tors, we build a pseudo Taskcr dataset following
the process in §3.2.

With this pseudo dataset we re-evaluate the per-
formance of RoOBERTa under CGen and C>Gen.
The results in Table 11 align well with the trends
we have seen in Table 5, for the same data in
natural language. This shows that the results of
our generalization experiments are not affected
by data seen in pre-training. Indeed, compared
to CGen, C2Gen NLI shows a decline for both
continual order variants of primitives ver and nat,
in both datasets. This confirms that compositional
generalization in NLI is more challenging in a
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Task p

Settings Taskc 1
% N V4N
CGen 100.00 95.17 95.17 49.51
; C2Gen (S}) 100.00 - - -
L C2Gen(Sy)  82.89(Al17.11) 95.08 79.63  44.39(A5.12)
; C2Gen (S1) - 95.14 - -
< C%Gen(Sy) 99.43 7524(A19.90) 7482 42.63(A6.88)

Table 12: Results for Taskp and Taskq; in dif-
ferent training settings with Llama2-7b.

continual learning setup. Comparing Taskp and
Taskcy with alternating orders, we note that ver
— nat outperforms nat — ver in both datasets.

Finally, we observe that the absolute accuracies
obtained for Taskp and Taskc; on pseudo data
generally drop compared to the original data, and
substantially so for Taskp. As for the relative per-
formance of different continual orders regarding
ver and nat in Taskp, we note that the relative
drop for nat — ver compared to its opposite is
much more pronounced for pseudo vs. original
data.

8.2 Model Scale: Testing C’Gen with Llama

We next test the generalization ability for C?Gen
NLI for a large PLM such as Llama-2-7B
(Touvron et al., 2023). Table 12 shows the results.
To fine-tune this large PLM, we adopt standard
parameter-efficient fine-tuning (peft) with LoRA
(Hu et al., 2022). Compared to RoBERTa-Large,
its size increases by approx. 20 times from 0.355
to 7 billion parameters. This enhances the accu-
racy on the CGen test from 46.67 to 49.51% (A
2.84) for Taskcoy. While this marks a progress, a
large drop occurs for continual learning in C>Gen
(A 5.12/A 6.88). This suggests that compositional
generalization is still a challenge for LLMs. Be-
sides, the gain of 2.84 over RoBERTa on CGen
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Dialogue:

©. : Hi, do you like listening music?
: Yes, [ do. I have a blue ipod. V]
= : Cool, what music do you like?
@ : [ always listen to Elvis songs.
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Persona (Chit-Chat Model &)
- I have a ipod

— - My favorite color is blue

- I dislike country music
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Gen NLI

"

Dialogue:

@ : Hi, do you like playing the computer?
: Yes, [ do. I have a
= : Cool, what games do you like?

@ : ] always play Zelda.

C

Figure 4: Persona Dialogue application for C>Gen: NLI verifies the consistency of dialogue turns generated
from dynamically updated persona information. We show a profile with new information and compositional

inferences using it (in ).

is constrained, compared to the substantial re-
source cost. This finding is consistent with Qiu
et al. (2022), who found that fine-tuning LLMs
generally has a flat or negative scaling curve on
compositional generalization in semantic parsing.
Similar to RoBERTa, we observe that Llama-2
is affected by forgetting — but the amount of for-
getting in Llama-2 does not differ much, dropping
by 1.6 points in ver — nat but rising by 0.66 points
in nat — ver. Comparing different training orders
(ver — nat, nat — ver) confirms that Llama-2 also
benefits from an ‘easy to hard’ learning scheme.

9 Potential Applications

Our work introduces the new C2Gen NLI task
as a first step to explore the compositional gen-
eralization ability of models performing NLI in
a continual learning setup. Similar to existing
continual NLP-based tasks (Wang et al., 2019b;
Berard, 2021; Madotto et al., 2021; M’hamdi et al.,
2023), the continual learning setup inspires models
to learn new inference knowledge continuously,
to avoid costs for model retraining. Given such ca-
pabilities, the C2Gen NLI task setting can benefit
future applications that require the understanding
and induction of compositional inferences relative
to dynamically updated knowledge stores.

We use the widely researched task Personalized
Dialogue Agent (PDA) (Zhang et al., 2018) as an
example to show how the C2Gen NLI task could
apply in a dynamic setting. PDA proposes chit-
chat models that are conditioned on information
provided in a given personality profile. Figure 4
shows an illustration. Existing approaches suffer
from consistency issues when a chit-chat model

generates utterances that contradict their person-
ality profile. For example, I dislike Rock’n Roll
contradicts I always listen to Elvis songs. To solve
this issue, some studies (Welleck et al., 2019;
Utama et al., 2022) proposed to use NLI to eval-
uate and improve consistency. We can achieve
this by evaluating whether the persona informa-
tion entails or contradicts a dialogue utterance. In
dialogue, utterances show semantic composition
effects when combining primitive information to
form new and meaningful sentences. For example,
I have a blue iPod composes information from /
have an iPod and my favorite color is blue. This
scenario aligns with the CGen NLI setup.

But the persona profile of a chit-chat is dynamic
and gets updated over time. For example, Fig. 4
shows persona information that is updated with a
fact on a new product computer. The new primitive
can be composed with previously learned primi-
tives to generate novel compositional facts, e.g., [
have a blue computer from I bought a computer
and my favorite color is blue. Here, re-training the
model to update the profile’s information state is
expensive and time-consuming. By contrast, en-
abling the model to perform continual learning is a
more viable and economic solution. The model is
then deemed to evaluate compositional inferences
relative to the updated information state, aligning
with our new task C*Gen NLI.

10 Conclusions and Future Work

We propose C?Gen, a new challenge task for
compositional generalization in NLI, grounded
in a continual learning scenario. Our new task
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targets NLP applications that rely on composing
information from continuously updated sources.

By conducting rich analyses for this novel task,
on our new benchmark, we show that in contin-
ual learning, neural models fail to generalize to
unseen compositional inferences due to forget-
ting. With known continual learning strategies we
can combat forgetting, but our analyses show that
memorization alone cannot solve the composi-
tional inference challenge. Our in-depth analyses
of C2Gen show that the model benefits from learn-
ing primitive before compositional inference, and
learning easy before hard inference subtasks.

Our findings highlight the importance of ob-
serving differences of primitive and composi-
tional inference types, and establishing the relative
difficulties of diverse primitive and composi-
tional inference types. With this, we establish
recipes that can improve continual learning to
approach non-continual learning. New methods
can determine optimal learning orders for di-
verse inference types, while ensuring sufficient
diversity in the data stream. Our insights could
also benefit other compositional generalization
methods, e.g., by ordering demonstrations in
in-context learning along principles we estab-
lished to improve compositional generalization in
continual learning.
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