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Abstract

This paper summarizes the participation of
the L3i laboratory of La Rochelle University
(L3i++) in SemEval-2024 Task 8: Multigenera-
tor, Multidomain, and Multilingual Black-Box
Machine-Generated Text Detection. In this task,
we aim to solve two over three Subtasks: (1)
Monolingual and Multilingual Binary Human-
Written vs. Machine-Generated Text Classifi-
cation; and (2) Multi-Way Machine-Generated
Text Classification. We propose a comparative
study among three groups of methods to trigger
the detection: (1) Using metric-based models;
(2) Using a fine-tuned sequence-labeling lan-
guage model (LM); and (3) Using a fine-tuned
large-scale language model (LLM). Our find-
ings show that LLM surpassed the performance
of traditional sequence-labeling LM as the
benchmark and metric-based approaches. We
ranked 5" /62 in Multilingual Binary Human-
Written vs. Machine-Generated Text Clas-
sification and 6'"/70 Multi-Way Machine-
Generated Text Classification on the leader-
board. Our code is publicly available at
https://github.com/honghanhh/semeval8.

1 Introduction

The rise of large language models (LLMs) has
led to a significant step forward in producing re-
markably controllable, fluent, and grammatical text,
triggering a surge in machine-generated content
across diverse platforms such as news, social me-
dia, question-answering forums, educational, and
even academic contexts. Notably, recent LLMs
like ChatGPT' and GPT-4 (OpenAl, 2023) exhibit
a remarkable ability to generate coherent and con-
textually appropriate responses to a wide array of
user queries.

Unfortunately, use and abuse come hand in hand.
Although the fluency of these generated texts po-
sitions LLMs as potential candidates for replacing
human labor in numerous applications, this has

"https://chat.openai.com/
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also raised concerns about their potential for mis-
use, particularly in spreading misinformation and
causing disruptions within the education system.
Given that humans struggle to distinguish between
machine-generated and human-written text, it be-
comes imperative to develop automated systems
capable of identifying machine-generated text to
curb the risks associated with its misuse.

In this paper, as the participants in SemEval-
2024 Task 8: Multigenerator, Multidomain, and
Multilingual Black-Box Machine-Generated Text
Detection (Wang et al., 2024), we investigate the
feasibility of training a classifier that can reliably
differentiate between text generated by humans
and text that appears human-like but is generated
by machines in two paradigms:

e Subtask A: Given a full text, determine
whether it is human-written or machine-
generated in monolingual (only English
sources) and multilingual versions.

e Subtask B: Given a full text, determine who
generated it (human-written or generated by a
specific language model).

To address these problems, we explore the per-
formance of diverse methodologies, which can be
divided into three categories, including:

* Five different metric-based methods: Log-
Likelihood, Rank, Log-Rank, Entropy, and
DetectGPT (He et al., 2023).

* Two traditional sequence-labeling language
models: monolingual ROBERTay,,.¢.” (Liu
et al., 2019) and multilingual XLM-R;4.¢¢
(Conneau et al., 2020).

* A large language model (LLM): LLaM A —
2 — 7b — hf* (LLaMA-2) (Touvron et al.,
2023).

*FacebookAl/roberta-large

*FacebookAl/xIm-roberta-large
*NousResearch/Llama-2-7b-hf
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This paper is organized as follows. We present
related work in Section 2, followed by Section 3,
where we introduce the data used to solve this chal-
lenge. Our proposed methods are described in
Section 4 before we present our findings and an
error analysis in Section 5. Finally, in Section 6
we present our conclusions, and future work and
discuss the limitations of the proposed methods.

2 Related Work

The success of LLMs in various downstream NLP
tasks (Perez et al., 2021; Vilar et al., 2022; Hegsel-
mann et al., 2023) leads to the overuse and abuse of
the information generated by LLMs. However, it is
essential to acknowledge that the outputs generated
by LLMs are not always accurate, giving rise to the
issue of hallucination (Azamfirei et al., 2023). Con-
sequently, there is a need for clear differentiation
in addressing this concern.

To address these issues, researchers have de-
veloped several automatic detection methods
(Badaskar et al., 2008; Zellers et al., 2019; Ippolito
et al., 2020; Uchendu et al., 2021) that can identify
the machine-generated text from the human-written
text, which initially can be divided into two cate-
gories, i.e., metric-based methods and model-based
methods.

2.1 Metric-based methods

Metric-based methods leverage pre-trained LLMs
to process the text and extract distinguishable fea-
tures from it, e.g., the rank or entropy of each
word in a text conditioned on the previous context.
Then, predicted distribution entropy determines
whether a text belongs to machine-generated or
human-written texts. Some metric-based detection
methods include Log-Likelihood, Rank, Entropy,
GLTR, Log-Rank, and DetectGPT (He et al., 2023),
to cite a few.

2.2 Model-based methods

In the model-based methods (Zellers et al., 2019;
Habibzadeh, 2023; Guo et al., 2023), the classifica-
tion models are trained using a corpus that contains
both machine-generated or human-written texts to
make predictions, for example, ChatGPT Detector
(Guo et al., 2023), GPTZero (Habibzadeh, 2023),
LM Detector (Ippolito et al., 2020), to mention a
few.

Regarding SemEval-2024 Task 8: Multigener-
ator, Multidomain, and Multilingual Black-Box
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Machine-Generated Text Detection (Wang et al.,
2024), RoBERTa (Liu et al., 2019) and XLM-R
(Conneau et al., 2020) are two language models
that can be considered as the baseline for these
specific tasks.

2.3 Challenges

Yet, there is currently no existing framework capa-
ble of automatically distinguishing between human-
written and machine-generated texts at both binary
and multi-way paradigms outlined in the described
tasks as well as no existing free available archi-
tecture taking advantage of recent open-sourced
LLMs to tackle the issue.

3 Data

We work on two datasets provided by SemEval-
2024 Task 8: Multigenerator, Multidomain, and
Multilingual Black-Box Machine-Generated Text
Detection (Wang et al., 2024), whose statistics cov-
ering the number of examples for each source and
each label are presented in Tables 1 and 2 for Sub-
task A and B, respectively.

Labels ‘ Human ‘ Machine
Source Monolingual Multilingual | Monolingual Multilingual
Train Dev | Train Dev | Train Dev | Train Dev
arxiv 15,498 500 | 15,998 - | 11,999 500 | 14,999
peerread 2,357 500 | 2,857 9,374 500 | 11,708
reddit 15,500 500 | 16,000 - | 12,000 500 | 14,999
wikihow | 15,499 500 | 15,999 - | 12,000 500 | 15,000
Wikipedia | 14,497 500 | 14,997 - | 11,033 500 | 14,032
bulgarian - 6,000 - - 6,000
chinese 6,000 5,934
urdu 3,000 2,899
indonesian 2,995 - 3,000 -
russian - 1,000 - 1,000
arabic 500 500
german - - 500 - - 500
Total 63,351 2,500 ‘ 83,846 2,000 ‘ 56,406 2,500 | 88,571 2,000

Table 1: Subtask A

In Subtask A of the monolingual version, both
the training and development sets are sourced from
the same data group for both labels. However, in
the multilingual version of Subtask A and Subtask
B, the development set is sourced from different
places compared to the training set.

For both versions of Subtask A, data were col-
lected from diverse sources, leading to label imbal-
ances. For example, in the monolingual Subtask
A training set, there is a notable scarcity of sam-
ples from peerread compared to the other sources.
Conversely, in Subtask B, the dataset is balanced.



Labels Source Train Dev | Labels Source Train Dev
Human arxiv 2,998 - | davinci arxiv 2,999
reddit 3,000 reddit 2,999
wikihow 2,999 wikihow 3,000
Wikipedia | 3,000 - Wikipedia | 3,000 -
peerread - 500 peerread - 500
total 11,997 500
chatGPT arxiv 3,000 - | bloomz arxiv 3,000
reddit 3,000 reddit 2,999
wikihow 3,000 wikihow 3,000
Wikipedia | 2,995 - Wikipedia | 2,999 -
peerread - 500 peerread - 500
total 11,995 500 total 11,998 500
cohere arxiv 3,000 dolly arxiv 3,000
reddit 3,000 reddit 3,000
wikihow 3,000 wikihow 3,000
Wikipedia | 2,336 - Wikipedia | 2,702 -
peerread - 500 peerread - 500

total 11,336 500‘ total 11,702 500

Table 2: Subtask B

4 Methodology

This section tackles the problem by formulating it
as supervised classification tasks. We then intro-
duce our proposed solution architecture for each
task, covering the models used, and present how
we fine-tuned them with hyperparameter configura-
tions, and how we assessed their performance.

4.1 Problem Statements
4.1.1 Subtask A

We formulate the problem at hand as a binary super-
vised classification task, whose objective is to learn
a mapping between a representation of the text and
a binary variable, which is 1 if the text is machine-
generated, and O otherwise. Mathematically, we
learn a function f that, given an input text ¢;, rep-
resented as a set of features [f, ..., fi], outputs an
estimated label [; € {0,1}, i.e., [; = f(t;). Note
that Subtask A covers two versions: monolingual
and multilingual versions.

4.1.2 Subtask B

Similarly, we consider the task as a supervised
classification where we aim to learn a function
f that, given an input text ¢;, represented as a
set of features [f, ..., fi], outputs an estimated la-
bel I; € {0,1,2,3,4,5}, ie., l; = f(t;) where 0
refers to the human-written texts and the rests are
those generated by different machines, including
1-ChatGPT, 2-cohere, 3-davinci, 4-bloomz, and
5-dolly, respectively.

Furthermore, we are interested in gaining in-
sights from the classifier’s predictions that allow us
to understand which features contribute positively
to detecting machine-generated text.
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4.2 Our architecture

The overall architecture of our proposed approach
is demonstrated in Figure 1. The general idea is to
use a machine learning model trained to discrimi-
nate between text samples generated by a human
and text samples generated by LLMs. Different di-
rections could be pursued to extract useful features
from a text and perform text classification.

4.2.1

Inspired the works from He et al. (2023) and
Spiegel and Macko (2023), we capture the local in-
formation from the texts using the following meth-
ods: (1) Log-Likelihood, (2) Rank, (3) Log-Rank,
(4) Entropy, and (5) MFDMetric.

Metric-based models

* Log-Likelihood: Given a text, we average the
token-wise log probability of each word gen-
erated from a language model to generate a
score for this text.

* Rank: For each word in a text, given its previ-
ous context, we calculate the absolute rank of
this word. Then, for a given text, we compute
the score of the text by averaging the rank
value of each word.

* Log-Rank: Slightly different from the Rank
metric that uses the absolute rank, the Log-
Rank score is calculated by first applying the
log function to the rank value of each word.

* Entropy: Similar to the Rank score, the En-
tropy score of a text is calculated by averaging
the entropy value of each word conditioned
with its previous context.

* Multi-Feature Detection Metric or MFDMet-
ric: This is a two-step zero-shot method that
(1) considers four distributional information
(Log-Likelihood, Log-Rank, Entropy), and sta-
tistical information (LLM-Deviation) as input
features; and (2) classify the text using neural
networks.

In Log-Likelihood, a larger score denotes the
text is more likely to be machine-generated. Mean-
while, in Rank and Log-Rank, a smaller score
denotes the text is more likely to be machine-
generated. Similarly, the machine-generated text
is more likely to have a lower Entropy score. Note
that metric-based methods are only applied to Sub-
task A.
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Figure 1: Our general architecture for Subtask A (both blue and green boxes) and Subtask B (only blue box).

4.2.2 Model-based models

LMs Two Transformer-based models have
been fine-tuned as sequence classifiers, namely
RoBERTa (Liu et al., 2019) and XLM-R (Conneau
et al., 2020). RoBERTa is a Transformers model
pretrained on a large corpus of English data in a
self-supervised fashion using a masked language
modeling (MLM) objective. Meanwhile, XLM-R
is a multilingual version of RoOBERTa that was pre-
trained on 2.5TB of filtered CommonCrawl data
containing 100 languages. These models are also
suggested as the baseline methods from SemEval-
2024 Task 8 organizers.

LLMs Given the recent success of the LLMs
architectures for solving downstream NLP tasks,
we decided to follow the same vein to build our
classifier. As such, we start with LLaMA-2 (Tou-
vron et al., 2023), an LLM model pre-trained for
the sequence classification task, using its corre-
sponding tokenizer to preprocess data. We then
fine-tune the model on the training subset of col-
lected data. Consequently, the fine-tuned model is
used for inference on the testing subset. Finally, the
obtained classification scores are evaluated against
the ground truth.

4.3 Hyperparameters

Metric-based models We took advantage of
IMGTB® framework with default parameter set-

Shttps://github.com/michalspiegel/ IMGTB
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tings suggested from He et al. (2023) and Spiegel
and Macko (2023).

LMs We fine-tuned 2 LMs, namely RoBERTa
and XLM-R, using HuggingFace Transformers
Pytorch Trainer with the following configuration:
batch size = 16, learning rate = le-5, weight decay
= 0.01, number of epoch = 10.

LLaMA-2 To make the comparison comparable,
we fine-tuned LS-LLaMAS® (version: LLaMA-2-7b-
hf) using the HuggingFace Transformers PyTorch
Trainer class with the same configuration: batch
size = 16, learning rate = le-5, and the number of
epochs = 10 with max length = 256 and Lora = 12.

All the experiments were implemented on an
NVIDIA RTX A6000 with CUDA Version of 12.0
and 49140MiB.

4.4 Evaluation metrics

For both Subtasks, we use Accuracy, macro-F1I,
and micro-F1 as the evaluation metrics to measure
our classifiers’ performance. These are also the
standard metrics in SemEval-2024 Task 8, which
makes our works more comparable with other par-
ticipants. We assess the performance of the devel-
opment sets first and apply the best models to the
test set. The final leaderboard reported results only
for Accuracy.

®https://github.com/4AT/LS-LLaMA
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Methods Subtask A - Mono Subtask A - Multi Subtask B
Accuracy Micro F1 Macro F1 | Accuracy Micro F1 Macro F1 | Accuracy Micro F1 Macro F1
Metric-based methods
Log-Likelihood 0.51880 0.40011 0.51880 0.49700 0.46172 0.49700 - - -
Rank 0.71760 0.71760 0.71262 0.51000 0.51000 0.47705 - - -
Log-Rank 0.51700 0.38751 0.51700 0.49675 0.49675 0.46197 - - -
Entropy 0.53880 0.43979 0.53880 0.49475 0.45385 0.49475 - - -
MFDMetric 0.65820 0.63645 0.65820 0.49450 0.45875 0.4945 - - -
Language model (LM)-based methods - Benchmarks from competition
RoBERTa 0.65920 0.65920 0.61629 0.49100 0.49100 0.48721 0.73167 0.73167 0.69539
XLM-R 0.75740 0.75740 0.75130 0.52275 0.52275 0.48949 0.60267 0.60267 0.56838
Large language model (LLM)-based methods
LS-LLaMAy_7,_p,y | 0.81500  0.81500  0.80862 | 0.87400  0.87400  0.87399 | 0.75500  0.75500  0.73165

Table 3: Performance of Subtask A (monolingual and multilingual versions) and Subtask B on development set
where the training set is split into training and validation set with the ratio of 8:2 for training progress.

5 Results and Discussion

Table 3 demonstrates the evaluation of different
methods on the development set before the test
set was released, while Table 4 reports our final
performance on the test set in comparison with the
baseline suggested by SemEval-2024 Task 8§ and
our approach ranking on the leaderboard.

Methods | A-Mono A-Multi B
Baseline 0.88466 0.80887  0.74605
LS—LLaMAQ,ﬂ,,hf 0.85840 0.92867 0.83117
Our ranking ‘ 25/125 5/62 6/70

Table 4: Our performance in Accuracy on the test set
with the same train-validation-test split of SemEval
TaskS.

5.1 General Observations

We first present different experiment results on
the development set in Table 3. We observed
that overall, LLM-based methods, such as LS-
LLaMA3_7,_py, tend to outperform other ap-
proaches across all sequence classification tasks,
suggesting the effectiveness of leveraging large pre-
trained language models for these tasks. Mean-
while, metric-based methods have varying per-
formance, with Rank showing some competitive-
ness, but generally, they are outperformed by LLM
and LM-based methods. Regarding LM-based ap-
proaches, XLM-R tends to surpass the performance
of RoBERTa in the monolingual version of Subtask
A despite RoOBERTa being specifically designed for
English only.

Based on the performance of the development
set, we applied LS-LLaMAy_7,_p, ¢, which yields

superior performance in these Subtasks compared
to other methods, to the test set. As shown in Table
4, despite not surpassing the baseline of Subtask
A’s monolingual version, our models significantly
outperform the baseline of Subtask A’s multilin-
gual version and Subtask B with approximately
10% gain on average. While we ranked only 255
over 125 participants in the monolingual version
of Subtask A, we demonstrate competitive perfor-
mance to be ranked 5 over 62 and 6" over 70
participants in the multilingual version of Subtask
A and Subtask B, respectively.

We conducted several analyses to investigate
how different factors would affect the detection
performance of our best classifier.

5.2 Effect of Text Length

We first present the distribution of the number of
words (# words) for predicted human-generated
and machine-generated texts (Predictions) and their
ground truth (G7T) in the dataset in each Subtask
(shown in Figure 2).

On ground-truth levels, Figure 2 highlights dis-
crepancies in word distribution between human-
written texts and those generated by different
LLMs. This is evident in Subtask A by the dif-
ference in word count distribution between human
and machine-generated labels and in Subtask B by
the varying generated performance of individual
LLMs compared to human-written ones. For in-
stance, davinci can generate long-context answers
(more than 2500 words) while others respond in
more concise ways (less than 1500 words).

Despite these discrepancies, compared predic-
tions against ground truth, our classifier effectively
captures the distribution of generated texts per
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Figure 2: The distribution of words (#. words) for human-written and machine-generated texts of our predictions
(Pred) and the ground truth (GT) on different datasets of different tasks (Subtask A: 0-Human, 1-Machine; Subtask
B: 0-Human, 1-ChatGPT, 2-cohere, 3-davinci, 4-bloomz, and 5-dolly).

class, resulting in comparable word distributions
between predictions and ground truth except in
ChatGPT and dolly where most of the examples
we misclassified are outliers.

5.3 Class-wise Performance

To better investigate the detection performance of
different classes, we visualize the normalized con-
fusion matrix of different tasks when we used our
LLaMA-2 classifier as shown in Figure 3.

On one hand, in terms of Accuracy, unlike the
multilingual version of Subtask A where all the
classes can be well detected with up to 94% in
Accuracy, the monolingual version suffers signif-
icantly from misclassifying human-written texts
into machine-generated ones, which reduces the
performance of the overall classifier (the accuracy
of the human-written class falls into around 76%).
Most of the misclassified texts are human-written
that our classifier mistakenly took for the machine-
generated ones.

On the other hand, when it comes to multi-way
machine-generated text classification as Subtask B,
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the predictive performance of our classifier varies
depending on the type of LLMs used to gener-
ate texts. Although LLaMA-2 has a good perfor-
mance in identifying human-written and machine-
generated texts generated by ChatGPT, bloomz,
and dolly, the performance in attributing machine-
generated texts from other LLMs (e.g., cohere, and
davinci) is largely limited. For example, the pre-
diction accuracy of ChatGPT, bloomz is almost
perfect (99.53% and 99.70%, respectively). Mean-
while, that of cohere is just above the average
(around 60%) and its texts are often misclassified
as machine-generated texts from davinci, followed
by ChatGPT. This is expected due to potential over-
lap in the distribution of the metric among various
LLMs, which introduces extra challenges in attri-
bution.

Broadly speaking, our findings suggest that the
fine-tuned LLMs (e.g., LLaMA-2) excel in detect-
ing machine-generated multilingual texts and accu-
rately classifying machine-generated texts within a
specific category, (e.g., ChatGPT, bloomz, dolly).
However, they do exhibit challenges in detecting
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them in other categories (e.g., cohere, and davinci).
Further studies are needed to improve the lower-
performing classes.

6 Conclusions

In conclusion, this paper outlines our contribu-
tion to the first two Subtasks of SemEval-2024
Task 8: Multigenerator, Multidomain, and Mul-
tilingual Black-Box Machine-Generated Text De-
tection, namely Monolingual and Multilingual Bi-
nary Human-Written vs. Machine-Generated Text
Classification and Multi-Way Machine-Generated
Text Classification. We conducted a compre-
hensive comparative study across three method-
ological groups: Five metric-based models (Log-
Likelihood, Rank, Log-Rank, Entropy, and MFD-
Metric), two fine-tuned sequence-labeling language
models (ROBERTA and XLLM-R); and a fine-tuned
large-scale language model (LS-LLaMA).
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Our findings suggest that our LLM outperformed
both traditional sequence-labeling LM benchmarks
and metric-based approaches. Furthermore, our
fine-tuned classifier excelled in detecting machine-
generated multilingual texts and accurately clas-
sifying machine-generated texts within a specific
category, (e.g., ChatGPT, bloomz, dolly). How-
ever, they do exhibit challenges in detecting them
in other categories (e.g., cohere, and davinci). This
is due to potential overlap in the distribution of the
metric among various LLMs. Overall, we ranked
6'" in both Multilingual Binary Human-Written vs.
Machine-Generated Text Classification and Multi-
Way Machine-Generated Text Classification on the
leaderboard.

In future work, we would like to take a step
further to evaluate whether our classifier is robust
enough against adversarial attacks (e.g., paraphras-
ing, random spacing, adversarial perturbation) as



well as investigate how to make our model more in-
terpretable and explainable, which is important, but
insufficiently addressed when detecting machine-
generated contents.

Limitations

Regarding specificity and domain dependence, our
classifier might not effectively distinguish among
different types of machine-generated texts, such as
texts generated by different models, for different
purposes, or in specific domains (which can be seen
in the case of detecting texts generated by cohere
and davinci).
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