@inproceedings{cafiero-etal-2024-harnessing,
title = "Harnessing Linguistic Analysis for {ADHD} Diagnosis Support: A Stylometric Approach to Self-Defining Memories",
author = {Cafiero, Florian Rapha{\"e}l and
Barrios Rudloff, Juan and
Gabay, Simon},
editor = "Kokkinakis, Dimitrios and
Fraser, Kathleen C. and
Themistocleous, Charalambos K. and
Fors, Kristina Lundholm and
Tsanas, Athanasios and
Ohman, Fredrik",
booktitle = "Proceedings of the Fifth Workshop on Resources and ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people with various forms of cognitive/psychiatric/developmental impairments @LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://preview.aclanthology.org/add-emnlp-2024-awards/2024.rapid-1.10/",
pages = "87--94",
abstract = "This study explores the potential of stylometric analysis in identifying Self-Defining Memories (SDMs) authored by individuals with Attention-Deficit/Hyperactivity Disorder (ADHD) versus a control group. A sample of 198 SDMs were written by 66 adolescents and were then analysed using Support Vector Classifiers (SVC). The analysis included a variety of linguistic features such as character 3-grams, function words, sentence length, or lexical richness among others. It also included metadata about the participants (gender, age) and their SDMs (self-reported sentiment after recalling their memories). The results reveal a promising ability of linguistic analysis to accurately classify SDMs, with perfect prediction (F1=1.0) in the contextually simpler setup of text-by-text prediction, and satisfactory levels of precision (F1 = 0.77) when predicting individual by individual. Such results highlight the significant role that linguistic characteristics play in reflecting the distinctive cognitive patterns associated with ADHD. While not a substitute for professional diagnosis, textual analysis offers a supportive avenue for early detection and a deeper understanding of ADHD."
}
Markdown (Informal)
[Harnessing Linguistic Analysis for ADHD Diagnosis Support: A Stylometric Approach to Self-Defining Memories](https://preview.aclanthology.org/add-emnlp-2024-awards/2024.rapid-1.10/) (Cafiero et al., RaPID 2024)
ACL