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Abstract

Despite their strong ability to retrieve knowl-
edge in English, current large language models
show imbalance abilities in different languages.
Two approaches are proposed to address this,
i.e., multilingual pretraining and multilingual
instruction tuning. However, whether and how
do such methods contribute to the cross-lingual
knowledge alignment inside the models is un-
known. In this paper, we propose CLiKA, a sys-
tematic framework to assess the cross-lingual
knowledge alignment of LLMs in the Perfor-
mance, Consistency and Conductivity levels,
and explored the effect of multilingual pretrain-
ing and instruction tuning on the degree of
alignment. Results show that: while both mul-
tilingual pretraining and instruction tuning are
beneficial for cross-lingual knowledge align-
ment, the training strategy needs to be carefully
designed. Namely, continued pretraining im-
proves the alignment of the target language at
the cost of other languages, while mixed pre-
training affect other languages less. Also, the
overall cross-lingual knowledge alignment, es-
pecially in the conductivity level, is unsatis-
factory for all tested LLMs, and neither multi-
lingual pretraining nor instruction tuning can
substantially improve the cross-lingual knowl-
edge conductivity. !

1 Introduction

The language imbalance of modern NLP systems
has long been discussed (Hupkes et al., 2023).
Many studies have shown that the performance
of current LLMs on English tasks is much higher
than non-English tasks (Wang et al., 2023; Zhang
et al., 2023c). One possible explanation is that the
knowledge required for completing tasks are learnt
mainly from English text. So it could be better
retrieved with English than with other languages.
Recent studies suggest that cross-lingual consis-
tency may be a possible way to narrow the gap
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between languages (Qi et al., 2023). Ideally, if the
knowledge of a fact could be aligned to a “true”
representation regardless of the language it is de-
scribed with, it may be retrieved in any required
language, helping the model to generalize across
languages. In this paper, we refer to this internal
mechanism as cross-lingual knowledge alignment.

To improve LLMs’ performance in non-English
languages, two approaches are proposed. The first
is multilingual pretraining, which add non-English
data in the pretraining corpus. The second is multi-
lingual instruction tuning, i.e., using tasks in differ-
ent languages or translation-related tasks, to fine-
tune a foundation model (Zhang et al., 2023a; Zhu
et al., 2023). Although these methods do improve
LLMs’ non-English performance, whether they can
bring real cross-lingual knowledge alignment is not
well investigated.

Therefore, the aim of this study is to evaluate the
effect of multilingual pretraining and instruction
tuning on the cross-lingual knowledge alignment
mechanism. However, the evaluation is challeng-
ing, because the improvement of performance may
come from the improvement of language ability in a
specific language or the improvement of knowledge
alignment. It is hard to discriminate the effects of
the two by performance as the single clue. Fur-
thermore, even if LLMs show higher consistency
between two languages, there is still possibility that
the knowledge in the two languages are learned cor-
rectly but separately.

To meet this challenge, we propose to assess
cross-lingual knowledge alignment systematically,
by using 3 deepening levels of measurement:

* Performance (PF): achieving similar perfor-
mance for tasks in different languages;

* Consistency (CT): generating the same output
for the same input in different languages;

* Conductivity (CD): retrieving knowledge
learned in one language with another.
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Most previous evaluations of the multilingualism
only focus on the PF level (Kassner et al., 2021; Yin
et al., 2022) and the CT level (Qi et al., 2023), but
the CD level is closer to the nature of knowledge
alignment.

The evaluation for the CD level is non-trivial,
because the successful retrieval of a factual knowl-
edge learned in another language depends not only
on the alignment of the knowledge, but also on the
basic language ability in the current language. For
example, even if the alignment is correct, retrieving
this knowledge in non-English languages such as
Japanese is harder than doing it in English, because
the model’s basic ability is not as good.

In this regard, we propose a systematic frame-
work, CLiKA (standing for Cross-Lingual Knowl-
edge Alignment), to reveal the effects of different
multilingualism. CLiKA considers all three levels
of the alignment, with specific metrics for each
level. CLiKA includes three comparative settings:
Factual, Basic, and Fictional, to further discrimi-
nate the effects of language abilities and knowledge
alignment in knowledge retrieval.

We apply CLiKA to popular LLMs, including
BLOOM (Workshop et al., 2023), LLaMA (Tou-
vron et al., 2023a,b), ChatGPT and their multilin-
gual variants (Cui et al., 2023; Zhang et al., 2023a).
Our results indicate that:

* The general cross-lingual knowledge align-
ment of current multilingual LLMs is unsatis-
factory. They show imbalanced basic abilities
and knowledge PF in English and non-English,
and their high knowledge CT comes with low
CD, suggesting low cross-lingual knowledge
conduction.

* Mixed multilingual pretraining improves the
basic ability, knowledge PF and CT in mul-
tiple languages, while continued pretraining
can only improve the knowledge PF in the
target language at the cost of other languages.
However, both of them cannot improve the
knowledge CD of LLMs.

* Multilingual instruction tuning improves the
basic ability in the target language, and can
lower the knowledge PF drop brought by in-
struction tuning. However, it can hardly im-
prove the knowledge CT and CD.

2 Related Work

Multilingualism of language models. Due to the
“incident bilingualism” (Briakou et al., 2023) and
cross-lingual data sharing (Choenni et al., 2023) in
the training corpus, pretrained models, including
those English-centered ones, will have multilingual
ability and cross-lingual alignment of representa-
tions to some extent. On that basis, multilingualism
can be further strengthened by adding monolingual
data in different languages in the pretraining corpus,
resulting in multilingual PLMs such as mBERT
(Devlin et al., 2019), mBART (Liu et al., 2020),
mT5 (Xue et al., 2021). However, because the
multilingual data is not parallel in these models,
their language balance and cross-lingual knowl-
edge alignment is much limited (Pires et al., 2019).
To address this issue, some work uses supervised
parallel data in the pretraining stage to enhance
the model’s multilingualism, e.g. XLM (Conneau
and Lample, 2019) and BLOOM (Workshop et al.,
2023). Such method is also used nowadays to train
LLMs with better multilingualism, bringing models
such as PaLM 2 (Anil et al., 2023) on multiple lan-
guages; and ChatGLM (Du et al., 2022; Zeng et al.,
2022) and Baichuan 2 (Yang et al., 2023a) mainly
focusing on English and Chinese. Also, another
popular practise is to fine-tune an English-centered
foundation model with translation and instruction
data in English and other languages (Cahyawi-
jaya et al., 2023), resulting in models with better
translation ability and instruction-following abil-
ity in those languages, such as BigTranslate(Yang
et al., 2023b), BayLing (Zhang et al., 2023a), x-
LLaMA/m-LLaMA (Zhu et al., 2023), and mFTI
(Li et al., 2023). However, despite the performance
gain on multilingual benchmarks, the effect of
these training methods on cross-lingual knowledge
alignment is still to be examined.

Multilingual benchmarks and evaluations.
Evaluation work is rapidly updating in the field
of cross-lingual knowledge alignment. In the PLM
era, many cross-lingual NLP benchmark datasets
were proposed to test the models’ performance
on certain aspects in different languages, such as
XCOPA (Ponti et al., 2020) and X-CSQA (Lin
et al., 2021) for commonsense reasoning, and X-
FACTR (Jiang et al., 2020) and multilingual ver-
sions of LAMA (Kassner et al., 2021; Yin et al.,
2022; Qi et al., 2023) for factual knowledge. Some
work also tested LLMs’ multilingual performance
on different NLP tasks (Lai et al., 2023; Zhang
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Knowledge Dataset

Example

Basic XCSQA

Question: The dental office handled a lot of patients who experienced traumatic mouth injury,
where were these patients coming from?

A. town B. michigan C. hospital D. schools E. office building

Answer: C. hospital

xCOPA

Premise: The item was packaged in bubble wrap.
Question: What was the cause of this?

A. It was fragile. B. It was small.

Answer: A. It was fragile.

Factual xGeo

Question: What administrative division of Egypt is Alexandria in?
A. Red Sea Governorate B. Alexandria Governorate C. Cairo Governorate D. Emirate of Dubai
Answer: B. Alexandria Governorate

xPeo

Question: In what year was Houari Boumediene born?
A. 1820 B. 1828 C. 1838 D. 1932

Answer: D. 1932

Translation

Fictional Answer: Sturmhain

Question: Could you convert the upcoming English text to German? Tempest Hollow

QA

Answer: Vividora

Question: Which continent is Tempest Hollow located in?

Table 1: Example of questions used in each of the testing datasets.

et al., 2023b; Ahuja et al., 2023).

Knowledge misalignment of language models.
Previous work have pointed out the imbalance of
multilingual pretrained language models (PLMs)
(Pires et al., 2019; Qi et al., 2023). However, since
the “incident multilingualism” in pertraining in-
creased a lot for LLMs, this conclusion needs to be
reevaluated. Zhang et al. (2023c) found that Chat-
GPT does not perform consistently on tasks in dif-
ferent languages, while exhibiting a translation-like
thinking mode. Wang et al. (2023) concluded that
multilingually-trained models have not attained
“balanced multilingual” capabilities, especially on
commonsense or factual knowledge. However, they
did not differentiate between the two sources of
language misalignment. Qi et al. (2023) further
evaluated the cross-lingual consistency of PLMs
and the factors affecting it using a rank-based met-
ric. However, an evaluation with all three levels of
cross-lingual knowledge alignment considered is
yet to be done.

3 Methods

Because the cross-lingual knowledge retrieval is
affected by both the basic language ability and
the three levels of cross-lingual knowledge align-
ment, our CLiKA framework adopts special testing
datasets and metrics to evaluate them separately.

3.1 Constructing testing data

We constructed three testing datasets: Basic, Fac-
tual, and Fictional. The datasets are all in the mul-
tiple choice format for easier evaluation. Also, the
data is parallel in the same 10 chosen languages:

en, de, fr, it, ru, pl, ar, he, zh, ja (Details are
listed in Table 13 in Appendix A). These languages
are chosen because they are widely used, and they
enable comparison between and within language
families.” Table 1 shows the example questions.

Basic knowledge. We consider commonsense as
Basic knowledge to measure the basic language
ability of models in the selected languages. There
are two reasons for this. Firstly, commonsense
is indispensable for LLMs to generate meaning-
ful answers, so if a model lacks commonsense in
some languages, it will be very likely to show poor
overall ability in these languages. Secondly, be-
cause commonsense is so elementary, that they are
unlikely to be explicitly stated in any text in any
language (Lenat, 1995), it is difficult to be learned
through short-cuts such as remembering training
samples. The two parts of this dataset are:

* XCOPA (500 samples per language). COPA
(Roemmele et al., 2011) is an English dataset
focusing on commonsense causality, where
each question is a 1-out-of-2 choice. Al-
though there is already a cross-lingual version
of COPA, i.e. XCOPA (Ponti et al., 2020), it
does not cover the languages considered in
this study. Instead, we use DeepL and Google
Translate to translate the COPA test set into
the other 9 languages.

* XxCSQA (1000 samples per language). CSQA
(Talmor et al., 2019) is a challenging English
dataset focusing on the semantic relation of

’The datasets will be publicly available along with the
publication of this paper.
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common concepts, where each question is a 1-
out-of-5 choice. There is also a cross-lingual
version of this dataset, i.e. X-CSQA (Linetal.,
2021). However, we still use the updated trans-
lation of the val set for higher quality.

Factual knowledge. This represents the real-life
knowledge retrieval scenario, and is deliberately
balanced among the tested languages, i.e., the
knowledge originates evenly from the 10 languages,
and is presented parallelly in all of them. Currently,
there is no off-the-shelf dataset that meets the re-
quirements. The dataset contains two parts origi-
nating from Wikidata:

* xGeo (200 samples per language), about cities
and the administrative division they belong.
For each of the 10 languages, we choose 20
cities in the major countries speaking this lan-
guage (see Table 13 in Appendix A), and col-
lect their names, and their administrative divi-
sions’ names in the 10 languages with Wiki-
Data. Then, we construct a 1-out-of-4 choice
for each city-division with 3 randomly picked
wrong options. After that, we use templates
in the 10 languages (see Appendix C) to write
the questions. There are thus 200 samples pre-
sented in each language in total, 20 for each
original language.

* xPeo (180 samples per language), about fa-
mous people and their years of birth/death
(YOBs/YODs). For each language, we choose
10 famous historical figures from the major
countries speaking this language. 3 Then,
we collect their YOBs, DOBs, and names in
the 10 languages from WikiData. We again
construct a 1-out-of-4 choice for each person-
year with 3 randomly picked wrong options,
and then use templates in the 10 languages
(see Appendix C for all templates) to write the
questions. Specially, the xPeo dataset does
not contain historical figures originating from
Hebrew, because they are either with multiple
nationalities, or are contemporary.

This Factual dataset can be used to evaluate the PF
and CT level of cross-lingual knowledge alignment,
but it cannot accurately measure the CD level, be-
cause even though we have identified the language
origins of the factual knowledge, which language

3Cases of multiple nationalities and unclear YOBs/YODs
are ruled out.

is the knowledge first learned in a model, i.e. the
source of conductivity, is unknown. To help mea-
sure CD, we then construct the Fictional knowl-
edge dataset to test the knowledge conductivity
from English to other languages.

Fictional knowledge. This dataset consists of
artificial entity-relation knowledge, which do not
exist in the training of LLMs, making it possible to
observe the learning and transferring of knowledge
in different languages. While the entity names
and their translations in all the 10 languages are
provided for training, the tested relations between
entities are only presented in English. Therefore, to
answer the non-English relations, the models need
to conduct knowledge from English to non-English.
The dataset is built by the following steps:

1. Names of 400 fictional places and 20 fictional
continents are generated in English and trans-
lated into the other 9 languages by ChatGPT
as the entities. Then, 10 translation tem-
plates (see Appendix C) are used to construct
the translation training data from English to
the other 9 languages (4200 samples per lan-

guage).

2. Each place is randomly assigned to a conti-
nent to build relations between the entities
(20 x 20 = 400 relations). Then, all the re-
lations are filled in 10 English QA templates
(see Appendix C) and used as the first part
of the training data (4000 samples, English
only); Meanwhile, half of the relations are
filled in the QA templates in the other 9 lan-
guages and respectively used as the second
part of the training data (2000 samples per
language). Note that in each conductivity ex-
periment, only one non-English presents in
the training data.

3. The other half of the relations excluded in
the non-English training data are filled in the
first template ("Which continent is {PLACE}
located in?") and used as the testing data (200
samples per language).

The tested models will be tuned with LoRA (Hu
et al., 2021) on the two instruction sets, and the
performance on the test set is collected.

3.2 CLiKA measurements

The basic ability is measured with the Basic knowl-
edge, while the PF and CT alignments are mea-
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sured with the Factual knowledge, and the CD alig-
ment is measured on the Fictional knowledge. We
design three measurements to score these aspects.

PF: Re-scaled accuracy (RA). The raw accu-
racy is affected by the question difficulty, and
there exists a random baseline for multiple choice
questions, making it hard to compare the perfor-
mance across languages and aspects of model abil-
ity. Thus, to focus on the difference across lan-
guages and models, we re-scale the accuracy. Sup-
pose the raw accuracy of a model in one language
is A, we use the accuracy of ChatGPT in English
(noted A,) as a reference for difficulty, and the ex-
pected accuracy of random choice A, = 1/n¢hoice
as the baseline. The re-scaled accuracy (RA) is
calculated as:

max{A — A,, 0}

A =
R max{A, — A,,0}

Note that RA can exceed 1 as long as the raw ac-
curacy is higher than that of ChatGPT in English.
Also, since ChatGPT performs better than random
on almost all tested tasks, the denominator is larger
than 0. More balanced RAs in English and non-
English means better PF alignment.

CT: Correct prediction overlap with English (en-
CO). Similar to Jiang et al. (2020), we use the
ratio of consistent and correct predictions between
English and another language to measure their CT.
Suppose the model gives nx correct answers in
language X, and among them, ne, x are consistent
with its answers in English, the en-CO is:

CO(en, X) = ”;“X
X

The en-CO ranges from O to 1, higher value mean-
ing better CT with English.

CD: Cross-retrieval ratio (XRR). Suppose 7en
is the number of correct answers in English and
Nenx 18 correct in both English and language X on
Fictional knowledge, and A, is the random accu-
racy baseline (0.05 for the Fictional dataset). The
cross-retrieval ratio (XRR) is then calculated as:

XRR(X) = max { BenX 4, 0}
Nen
XRR is non-negative and can exceed 1, higher
value meaning better CD from English to another
language.

Mixed Cont’ Model
N N LLaMA
N Y Chinese-LLaMA
Y N Baichuan2-base, LLaMA2
Y Y Chinese-LLaMA2

Table 2: List of foundation models used in the Chinese case
study. "Mixed" stands for mixed pretraining in Chinese, and
"Cont’" stands for continued pretraining in Chinese.

PT FT Model
N N Alpaca
N Y BayLing
Y N  LLaMA2-Chat
Y Y Vicuna v1.5

Table 3: List of instruction-tuned LLMs used in the Chinese
case study. "PT" stands for whether the model has Chinese
pretraining, and "FT" stands for whether the model has Chi-
nese instruction tuning.

4 Experiment Settings

4.1 Models

Our CLiKA analysis of cross-lingual knowledge
alignment is two-fold. First, we assess the ba-
sic language ability and cross-lingual knowledge
alignment of popular multilingual LLMs among
all tested languages; then, we examine the effect
of multilingual pretraining and instruction tuning
on their basic language ability and cross-lingual
knowledge alignment, taking Chinese as a repre-
sentative for high-resource, non-English language.

The popular multilingual LLMs we selected
are ChatGPT (called with the OpenAl API
gpt-3.5-turbo in Octorber, 2023), LLaMA 2-
Chat 70B and 13B (Touvron et al., 2023b), Vicuna
v1.5 13B (Chiang et al., 2023) and BLOOMZ-7B1-
MT (Workshop et al., 2023).

The models for the Chinese case study include
foundation models (Table 2) and LLMs (Table 3)
that allows comparison of having or not having
continued/mixed pretraining and instruction tuning
in Chinese (See their information in Appendix E).

4.2 Assisted inference

Because some of the models tested are not instruc-
tion tuned, directly given the question and options,
they may not provide a valid choice. To help them
inference, we: (1) use an in-context demonstration
for every question to inform them the correct an-
swering format (Figure 2); (2) force the models to
generate only the options (e.g. from A to E).

4.3 Tuning strategy

Instruction tuning is needed in the CD evalua-
tion, where instruction templates are required. For
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—— ChatGPT
LLaMA2-Chat 708
—— LLaMA2-Chat 138
—— Vicuna v1.5 13B
~—— BLOOMZ-MT

—— ChatGPT
LLaMA2-Chat 70B

—— ChatGPT
LLaMA2-Chat 708
—— LLaMA2-Chat 13B
—— Vicuna v1.5 138
~—— BLOOMZ-MT

—— LLaMA2-Chat 138
—— Vicuna v1.5 138
—— BLOOMZ-MT

it — _fr

(a)

Figure 1: Results of the general cross-lingual knowledge alignment evaluation. The outer circle of the radar graphs is 1.0 and
the center is 0.0, and each circle represents a 0.2 span. a) The RA scores on the Basic knowledge (the mean of xCSQA and
xCOPA scores; b) The RA scores on the Factual knowledge (the mean of xGeo and xPeo scores); ¢) The en-CO scores on the
Factual knowledge (the mean of xGeo and xPeo scores).

Model de fr it p! ru ar he ja zh
LLaMA2-Chat 13B .0800 .1200 .0900 .1050 .0050  .0003  .0000 .0000  .0000
Vicuna v1.5 13B 1309 .0200 .0050  .0000 .0800 .0800 .0000 .0800 .0000
BLOOMZ-7B1-MT .0200 .1350 .0350 .0656 .0050 .0000 .0000 .0100 .0000

Table 4: The XRR scores of representative LLMs on the Fictional knowledge. Scores below 0.01 (less than 1% above-random-

accuracy) are colored red.

instruction-tuned LLMs, we use their own instruc-
tion templates; and for foundation models, we use
the Alpaca template. Also, we use LoRA (Hu et al.,
2021) on the attention blocks to lower the training
cost.* The hyper-parameters and computational
resource used in the experiments are listed in Ap-
pendix D.

5 Main Results

5.1 General cross-lingual knowledge
alignment of multilingual LLMs

In this part, we assess the basic ability and the
cross-lingual knowledge alignment of representa-
tive multilingual LLMs among the 10 tested lan-
gauges. The findings are:

Basic abilities: imbalanced. Figure 1a shows
the models’ RA scores on the Basic knowledge,
which reflects the imbalance of basic abilities
across different languages, which could be affected
by language similarity and resources. For instance,
en, de, fr, it, pl and ru belong to the Indo-
European family, and they also witness better cross-
lingual knowledge alignment with English; On the
other hand, ar , he, ja and zh belong to other fam-
ilies, and are non-Latin. Among them, ar and he

“We use the recommended setting in the LLaMA-Factory
repository (see Appendix D).

are also lower-resourced, so it is not surprising that
the models show the worst performance on ar and
he. Compared with ChatGPT, the LLaMA models
and BLOOMZ show larger imbalance.

Factual knowledge alignment: imbalanced PF,
but high CT. Figure 1b and 1c show the RA and
en-CO on the Factual knowledge, corresponding
to the PF and CT levels of cross-lingual knowl-
edge alignment. One can see the RA scores are
also imbalanced, especially in zh, where the fac-
tual knowledge performance is too low to match
the basic ability. However, the en-CO scores are
quite high in all languages, suggesting that the right
answers given in non-English languages are very
likely the same as English answers.

Factual knowledge alignment: low CD. There
are two possible causes of the high CT: A. The
knowledge is conducted from English to non-
English; B. The non-English training data is a trans-
lated subset of the English training data. Here, our
XRR results (Table 4) supports the latter. It shows
the XRR scores are low across all non-English lan-
guages, especially in non-Latin languages. This
result suggests that, the high English-CT revealed
by the models are more likely an outcome of over-
lapping training data, instead of knowledge con-
ductivity.
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Model mixed cont’ en zh (/en) others (/en)
LLaMA N N 5036 15.98(0.32) 17.95(0.36)
Chinese-LLaMA N Y 2938 21.12(0.72) 5.88 (0.20)
LLaMA2 Y N 73.29 43.57(0.59) 35.78 (0.49)
Chinese-LLaMA2 Y Y 60.93  32.32(0.53) 22.59(0.37)
LLaMA N N 50.36 1598 (0.32) 17.95(0.36)
LLaMA2 Y N 73.29 43.57(0.59) 35.78 (0.49)
Baichuan2-base Y N 87.58 59.30(0.68) 38.61(0.44)
Chinese-LLaMA N Y 29.38  21.12(0.72)  5.88 (0.20)
Chinese-LLaMA2 Y Y 60.93 32.32(0.53) 22.59(0.37)

Table 5: The comparison of the selected models’ RA scores on the Basic knowledge (the mean of xCSQA and xCOPA scores),

sn

where "mixed" and "cont

means having Chinese mixed or continued pretraining, "/en" means the ratio to the English scores,

and "others" refers to the mean scores in the other 8 languages. The first lines in each division (LLaMA, LLaMA?2, LLaMA and
Chinese-LLaMA) are the baseline values (in black). The green values are higher than baseline, and the red ones are lower than

baseline. (Same notations in below.)

Model mixed cont’ en zh (/en) others (/en)
LLaMA N N 79.28  7.49(0.09) 42.19(0.53)
Chinese-LLaMA N Y 44.23 13.01 (0.29) 15.44 (0.35)
LLaMA2 Y N 91.58 40.39 (0.44) 56.00 (0.61)
Chinese-LLaMA2 Y Y 79.84 4592 (0.58) 43.70 (0.55)
LLaMA N N 79.28  7.49(0.09) 42.19(0.53)
LLaMA2 Y N 91.58 40.39 (0.44) 56.00 (0.61)
Baichuan2-base Y N 86.34  65.81(0.76) 50.51 (0.59)
Chinese-LLaMA N Y 4423 13.01(0.29) 15.44(0.35)
Chinese-LLaMA2 Y Y 79.84 4592 (0.58) 43.70 (0.55)

Table 6: The comparison of the selected models’ RA scores on the Factual knowledge (the mean of xGeo and xPeo scores).

Model mixed cont’ zh others Model mixed cont’ zh others
LLaMA N N .8327  .8975 LLaMA N N .0000 .0443
Chinese-LLaMA N Y 8597 7764 Chinese-LLaMA N Y .0204  .0436
LLaMA?2 Y N 9648 9498 LLaMA2 Y N .0153  .0570
Chinese-LLaMA2 Y Y 9536  .9276 Chinese-LLaMA2 Y Y .0050 .0337
LLaMA N N .8327  .8975 LLaMA N N .0000 .0443
LLaMA2 Y N 9648 9498 LLaMA2 Y N 0153 .0570
Baichuan2-base Y N 9410 .9453 Baichuan2-base Y N .0000 .0421
Chinese-LLaMA N Y 8597 7764 Chinese-LLaMA N Y 0204  .0436
Chinese-LLaMA2 Y Y 9536 .9276 Chinese-LLaMA2 Y Y .0050 .0337

Table 7: The comparison of the selected models’ en-CO
scores on the Factual knowledge (the mean of xGeo and xPeo
scores).

5.2 Chinese case study on the effect of
multilingual pretraining and finetuning

In this part, we show the effect of multilingual
pretraining and instruction tuning by comparing
the basic ability and the cross-lingual knowledge
alignment of several selected models in Chinese.

5.2.1 Effect of multilingual pretraining

Mixed pretraining improves basic abilities,
while continued pretraining does not. Table
5 shows the RA scores on the Basic knowledge.
Comparing models with and without continued and
mixed Chinese pretraining, one can see that mixed
pretraining improves the models’ basic language
abilities in all languages, while continued pretrain-
ing has negative effect on them (even in Chinese).

Table 8: The comparison of the selected models’ XRR scores
on the Fictional knowledge.

This suggest that continued pretraining in a cer-
tain language may not be as useful as adding the
language in the mixed pretraining process, in or-
der to enhance the model’s overall basic language
abilities.

Mixed pretraining improves PF and CT align-
ment. Table 6 and 7 show the RA and en-CO
scores on the Factual knowledge. Similar to the
Basic results, mixed pretraining improves the per-
formance in all languages, as well as enhancing
the English consistency of non-English languages.
However, continued pretraining in Chinese only
improves the Chinese performance, at the cost of
lowering performance in other languages. Also,
continued pretraining contributes little to the En-
glish consistency of non-English languages, includ-
ing Chinese. This result suggests that, for mixed
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Model pre tune en zh others Model pre  tune zh others
Alpaca N N +25.47  +6.70 +9.19 Alpaca N N +.0800 +.0338
BayLing N Y +2524 +22.37  +8.01 BayLing N Y +.0456  -.0376
LLaMA2 Chat Y N -4.04 -1897  -10.17 LLaMA2-Chat Y N -.0203  +.0081
Vicuna v1.5 Y Y +12.51  +8.24  +10.17 Vicuna v1.5 Y Y +.0116  +.0054

Table 9: The change in RA scores on the Basic knowledge
(the mean of XCSQA and xCOPA scores) after instruction
tuning, compared with their foundation models (LLaMA and
LLaMA?2). "pre" and "tune" means whether the model has
Chinese pretraining or instruction tuning, and "others" refers
to the mean scores in the other 8 languages. (Same notations
in below.)

Model pre  tune en zh others
Alpaca N N 200 298  +3.13
BayLing N Y -13.67 +2.07 -9.70
LLaMA2-Chat Y N -1090 -15.13 -6.63
Vicuna v1.5 Y Y -794  -11.11  -2.30

Table 10: The change in RA scores on the Factual knowledge
(the mean of xGeo and xPeo scores) after instruction tuning.

pretraining, the performance gain is spread in all
languages, and the improvement of cross-lingual
knowledge alignment is down to the consistency
level; However, for continued pretraining, despite
the surfacial performance gain in the trained lan-
guage, it is risky of harming performance in other
languages, and does not improve the cross-lingual
knowledge alignment in deeper levels.

Multilingual pretraining hardly improves CD
alignment. Table 8 shows the XRR scores on
the Fictional knowledge. One can see that neither
continued nor mixed pretraining can bring stable
and significant increase to the XRR scores, mean-
ing the knowledge conductivity from English to
Chinese is still near zero after Chinese pretraining.
This result suggest that current multilingual pre-
training methods cannot improve the cross-lingual
knowledge alignment in the CD level, which again
supported the hypothesis that the high consistency
between non-English and English found in current
LLM:s is an outcome of overlapping training data,
not knowldege transfer from English.

5.2.2 Effect of multilingual finetuning

Multilingual finetuning improves basic abilities.
Table 9 shows the RA scores of instruction-tuned
LLMs on the Basic knowledge. Compared with
English-only instruction tuning, adding Chinese
data in the tuning process significantly improves
the RA scores in Chinese, while not hurting the En-
glish performance. This results suggests that multi-
lingual instruction tuning is suitable for fostering
basic language abilities in non-English languages.

Table 11: The change in en-CO scores on the Factual knowl-
edge (the mean of xGeo and xPeo scores) after instruction
tuning.

Model pre tune zh others
Alpaca N N  +.0000 -.0034
BayLing N Y +.0003  -.0078
LLaMA2-Chat Y N -0153  -.0070
Vicuna v1.5 Y Y -.0153  -.0076

Table 12: The change in XRR scores on the Fictional knowl-
edge after instruction tuning.

Multilingual finetuning lowers performance
drop in factual knowledge. Table 10 shows the
RA scores of instruction-tuned LLMs on the Fac-
tual knowledge. Surprisingly, both English-only
and multilingual instruction tuning causes drop in
the RA scores, which indicates a performance drop
in factual knowledge after the tuning. Since this
phenomenon is not observed on the Basic knowl-
edge, this cannot be explained by the "chat bot"
preference, but may suggest a shared disadvantage
of current instruction tuning strategies. However,
compared with English-only tuning, multilingual
tuning causes less damage to the factual knowl-
edge performance, contributing to the PF level of
cross-lingual knowledge alignment.

Multilingual finetuning can hardly improve CT
or CD alignment. Table 11 and 12 shows the
en-CO scores on the Factual knowledge and the
XRR scores on the Fictional knowledge. One can
see that the changes in the two scores brought by
English-only and multilingual instructiong tuning
are both minor, and multilingual instruction tuning
shows no significant advantage over English-only
tuning. This result suggests that instruction tuning
cannot improve cross-lingual knowledge alignment
deeper than the PF level.

6 Supplement Experiments

The main results of this paper has shown that the
PF and CD Ilevels of current open source LLMs are
unsatisfactory, and the CT and CD of them cannot
be substantially enhanced by multilingual pretrain-
ing or finetuning. However, the result of low CD
from English to Chinese can also be due to the lin-
guistic (e.g. lexical, morphological) difference be-
tween Chinese and English, or the deficiency of our
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LoRA finetuning. Thus, adding CD experiments on
another Indo-European language and using other
finetuning strategies will make our findings more
grounded.

6.1 German case study

To avoid the effect of low resource on CD, we
choose German as a high-resource, Indo-European
(Germanic) language to test the models’ conductiv-
ity to it from English. We adopt a trending German
LLM, LeoLM? (13B, base version), which is based
on LLaMA?2 and has gone through continued pre-
training in German. Also, we compare LLaMA?2
and Vicuna v1.5 for having or not having German
instruction tuning. (See Appendix F.)

German continued pretraining harms basic abil-
ity and knowledge alignment. Table 23 shows
the result of LLaMA2 and LeoLLM-base on the
Basic knowledge. Similar to the result of Chinese-
LLaMA2, the German continued pretraining of Le-
oLM leads to the overall decline of basic ability in
English, German and other languages. Also, from
Table 24, 15 and 16, we can see the PF, CT and
CD levels of cross-lingual knowledge alignment
drop for all the tested languages after the continued
pretraining. This is consistent with our findings in
the Chinese case study.

German finetuning can improve basic ability
and knowledge alignment. Table 17 shows the
result of LLaMA2-chat and Vicuna v1.5 on the Ba-
sic knowledge, where we can see the multilingual
(including German) instruction tuning of Vicuna
v1.5 improves the basic ability in German and other
languages. Then, from Table 18, 21 and 22, one can
see that it lowers the performance drop in factual
knowledge, slightly improves CT, and raises CD.
Interestingly, the increase in CD is above chance
level (+0.0709 XRR), which is not observed in
the Chinese case. This suggest that improving the
knowledge conductivity from English to a similar
language may be easier than to a less similar one.
However, the increased XRR score is only 0.13,
which is still not satisfactory for a language like
German.

6.2 Alternative finetuning strategies

Apart from LoRA tuning on attention blocks only,
we add two other experiments using LoRA on
all blocks on LLaMA-13B, and fully finetuning

5https://huggingface.co/LeoLM/
leo-hessianai-13b

on LLaMA 7B. Besides, another experiment that
adds extra translation data of the entities from non-
English to English is performed to see whether the
"reversal curse" (Berglund et al., 2023) of the uni-
directional translation data causes the low XRR
results. (See Appendix G.)

LoRA-all and fully finetuning cannot improve
overall CD. Table 19 shows the comparison of
LoRA-attention, LoRA-all and fully finetuning on
the LLaMA 13B and 7B models. Although the
XRR scores are improved in certain languages such
as French, Italian and Polish, the overall improve-
ment is minor, and the scores even drops in some
other languages. This result shows the low CD
results still hold with larger scale finetuning.

Adding reversed translation data cannot im-
prove overall CD. Table 20 shows the compari-
son of XRR scores between using unidirectional or
bidirectional translation data in the CD experiment
on LLaMA2-13B. The results show that adding
translation data from non-English to English does
not significantly improve the XRR scores, thus the
low CD results still hold.

7 Conclusion

In this paper, we evaluated the cross-lingual
knowledge alignment of representative multilin-
gual LL.Ms, and systematically assessed the effect
of multilingual pretraining and instruction tuning
on it, using the proposed CLiKA framework.

The first part of our results shows that the cross-
lingual knowledge alignment of current multilin-
gual LLMs is unsatisfactory, and even though they
show high cross-lingual consistency, it is more
likely to come from overlapping training data, in-
stead of knowledge conduction between languages.

The second part of our results demonstrates the
effect on basic language ability and knowledge
alignment of adding multilingualism in pretraining
and instruction tuning, which shows that mixed
multilingual pretraining and multilingual instruc-
tion tuning is beneficial. However, our results also
point out that neither of the two techniques can im-
prove the knowledge conductivity of LLMs, mean-
ing the cross-lingual alignment in current models
are still shallow and requires novel strategies for
improvement.
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Limitations

One key limitation of this paper is that the evalua-
tion 1s restricted to several selected models, which
may lead to over-simplification of models in a
wider range. Also, the assessment of the effect
of multilingual pretraining and instruction tuning
only takes English and Chinese into account (and
German for supplement), which only covers a nar-
row set of linguistic features (Littell et al., 2017)
and cannot represent the whole picture of multi-
lingual research. These two limitations are partly
due to our computational resources and the lack
of suitable models for comparison. With adequate
resources, our CLiKA framework can be applied
to more models and languages to further examine
our findings.

Another limitation is that the Fictional knowl-
edge requires 2-hop inference to conduct (one for
translating the city name, the other for translat-
ing the continent name), which is consistent with
questions in the xGeo dataset, but it may add too
much difficulty of CD alignment, leading to under-
estimation of the models’ knowledge conductivity.
To address this issue, we did a small-scale experi-
ment on LLaMA2-Chat using fictional city names
and their founding years. The result shows that
the XRR of de rises to 0.26, but that of zh is still
very low (around 0.01), which suggests that the low
conductivity issue is still existing in questions with
lower difficulty.
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A Language choice

Table 13 shows the languages tested in CLiKA.

ISO Countries Langauge Family
en US, UK Germanic
de  Germany, Austria
fr France, Canada
. Romance
it Italy
pl Poland .
ru Russia, Belarus Slavie
ar Egypt, Algeria Afro-Asiatic
he Israel
ja Japan Japonic

zh China (Mainland)  Chinese-Tibetan

Table 13: Correspondence between Languages, Countries,
and Language Families

choose the most reasonable one from the following options.
Example :

Question: 2+3=?

Al

Moo W
D LN

Answer: D. 5

Question: i ¥ #AFT 2 « 4T h & FTH—F2
( In what year was Houari Boumediene born? )
A. 1820

B. 1828

C. 1838

D. 1932

Answer:

-
Instruction : The following are multiple choice questions. Please

Figure 2: Example prompt for testing models on all our
datasets.

B Example Fictional knowledge

Figure 5 shows some example continents and
places in the Fictional dataset.

Language Question template

en What administrative division of [COUNTRY] is [CITY] in?

de In welchem Verwaltungsbezirk von [COUNTRY] liegt [CITY]?

fr Dans quelle division administrative de [COUNTRY] se trouve [CITY] ?
it In quale divisione amministrativa del [COUNTRY] si trova [CITY]?

pl W jakim podziale administracyjnym [COUNTRY ] znajduje si¢ [CITY]?
r B kakom ajimutnctpatusioM fesenun [COUNTRY | waxojurcs [CITY]?
ar ) j o= 55151 L [COUNTRY 2 [crry)¢

he WNI NN 2NN YW [COUNTRY] NNSN) [CITY]?

ja [CITY] {& [COUNTRY] @ ¥ DITEIXIZH D F3h7?

zh [CITY] ¥ " [COUNTRY ] MR TIBIX iI?

Figure 3: Question templates for the xGeo part of the Factual
dataset.

C Question templates

Figure 2 shows the example prompt for testing
models in all the datasets. Figure 3 and 4 show the
templates we use to construct the Factual dataset.
Table 14 shows the templates we use to construct
the Fictional dataset.

D Experiment details

This section provides the details in our experiments
for replication.

Infrastructure We use PyTorch and Hugging-
Face Transformers to load and run the LLMs. For
the conductivity experiments, we use the LoRA
components in the LLaMA-Factory repository to
finetune the models.

Hyper-parameters For model inference, we set
temperature as O for ChatGPT and use forced de-
coding on all other models. For finetuning (in the
conductivity experiments), we set training batch
size to 32, gradient accumulation steps to 4, train-
ing epochs to 3, LoRA rank to 128, LoRA alpha
to 16, LoRA dropout to 0.1, and learning rate to
2e-4, which keeps the highest performance of the
majority of the models on the Basic and Factual
knowledge after the LoRA finetuning.

LoRA target The reported CD results in the
main body are derived from experiments using
LoRA on the attention blocks only. However, we
also conducted some experiments using fully fine-
tuning and LoRA on all blocks in the Supplement
Experiments.

Computational resources All the model infer-
ence can be done on 8 Nvidia Tesla v100 32 GB
GPUs. Each of the finetuning experiments of 13B
models on the Fictional knowledge can be done
within 2 hours on 4 of those GPUs.

6114


http://arxiv.org/abs/2306.10968
http://arxiv.org/abs/2306.10968
http://arxiv.org/abs/2306.10968
http://arxiv.org/abs/2306.05179
http://arxiv.org/abs/2306.05179
http://arxiv.org/abs/2306.05179
http://arxiv.org/abs/2305.16339
http://arxiv.org/abs/2305.16339
http://arxiv.org/abs/2305.16339
http://arxiv.org/abs/2308.04948
http://arxiv.org/abs/2308.04948
https://github.com/hiyouga/LLaMA-Factory

Type Templates

Could you convert the upcoming English text to {lang}? {ENTITY}

I’d appreciate it if you could transform the following English sentence into {lang}. {ENTITY }
Please change the following English expression into {lang}. {ENTITY}

Kindly rewrite the next English phrase in {lang}. {ENTITY}

Translation

Can you transmute the subsequent English words into {lang}? {ENTITY}

I need the ensuing English to be translated into {lang}, please. {ENTITY}

Would you mind translating the forthcoming English into {lang}? {ENTITY}

Can you render the English text that follows into {lang}? {ENTITY}

Please transform the subsequent English language into {lang}. {ENTITY}

I require a translation of the upcoming English sentence into {lang}, please. {ENTITY }

Which continent is {PLACE} located in?

What is the continent of {PLACE}?

Where is {PLACE}? Which continent?

In which continent can you find {PLACE}?
QA Tell me the continent where { PLACE} is located.
What continent does {PLACE} belong to?
Where can {PLACE} be found continent-wise?
What’s the continental location of {PLACE}?
Which part of the world is {PLACE} in, continent-wise?
Could you specify the continent for {PLACE}?

Table 14: Translation and QA templates used to construct the Fictional knowledge dataset.

Language Question template

en In what year was [PERSON] born?

de In welchem Jahr wurde [PERSON] geboren?
fr En quelle année est né [PERSON] ?

it In che anno & nato I'[PERSON]?

pl W ktorym roku urodzito si¢ [PERSON]?
ru B xakom rogy poauics [PERSON]?

ar & &l sl A5 [PERSON|¢

he NI MW 1213 [PERSON]?

ja [PERSON] i3 falsFIzf4: L & L7242
zh 1&Ir] [PERSON] ti4: TIfi—*7

Language Question template

en In what year did [PERSON] die?

de In welchem Jahr ist [PERSON] gestorben?
fr En quelle année [PERSON] est-il décédé ?
it In che anno & morto [PERSON]?

pl W ktoérym roku zmarto [PERSON]?

ru B kakom roxy ymep [PERSON]?

ar & i ¢l G5 [PERSON]S

he N2 M N [PERSON]?

ja [PERSON] 23T { # » = DI FT T2
zh i [A] [PERSON] it T-Hi—42

Figure 4: Question templates for the xPeo part of the Factual dataset.

Model mixed cont’ de others Model de-tune en de others
LLaMA2 Y N 9720 9498 LLaMAZ2-Chat N -4.04 -7.79 -11.57
LeolLM-base Y Y 9102 .8685 Vicuna v1.5 Y +12.51 +20.99  +8.57

Table 15: The en-CO scores of LLaMA?2 and LeoLM-base on
the Factual knowledge (the mean of xGeo and xPeo scores).

Model mixed cont’ de others
LLaMA2 Y N .0600 .0515
LeoLLM-base Y Y .0580 .0399

Table 16: The XRR scores of LLaMA?2 and LeoLLM-base on
the Fictional knowledge.

E Introduction of the tested models

This section introduces the models used in this
research. The model parameter sizes are all 13B
unless specified.

Foundation models.
dation models:

We use the following foun-

* LLaMA 1&2 (Touvron et al., 2023a,b). They

Table 17: The difference in RA scores after the instruction
tuning of LLaMA2-Chat and Vicuna v1.5 on the Basic knowl-
edge.

Model de-tune en de others
LLaMA2-Chat N -1090 -8.85 -7.42
Vicuna v1.5 Y =794 398  +4.23

Table 18: The difference in RA scores after the instruction tun-
ing of LLaMA2-Chat and Vicuna v1.5 on the Factual knowl-
edge.

are pretrained on mainly English data and
a small portion of non-English data. For
LLaMA 1, the multilingual pretraining data
is basically Wikipedia (4.5% of the total 1.4T
tokens) in 20 languages, including en, fr, it,
fr, po and ru. For LLaMA 2, the multilin-
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Language Example Continent Names Example Place Names
en Mythosia, Veridica, Chronostead Phoenixfire Ridge, Lunar Enclave, Titan’s Summit
de Mythosien, Veridika, Chronostitte Phonixfeuergrat, Lunarenklave, Titanengipfel
fr Mythosie, Véridique, Chronoséjour Créte de Phénixfeu, Enclave Lunaire, Sommet du Titan
it Mitosa, Veridica, Cronostallo Cresta di Phoenixfire, Enclave Lunare, Vetta del Titano
pl Mytozja, Veridyka, Chronostad Grzbiet Feniksowego Ognia, Enklawa Ksi¢zycowa, Szczyt Tytana
ru Mudocus, Bepuauka, XpoHocTay I'pebens @enukcosoro Orns, JyHHas AnknaBa, Bepumna Turana
ar bogr | Kass | aiesss LIPSO RV A O R ]
he POWYN | NPPTN | TOOIMNID AN PMHOOPNS | NIAVID NP | NV YOON
ja N7, VYT a4 A, 70/ ATy R T2=w A7 74 7K, NVF—2 VLA T, RA XA 3w b
zh FHIEZ M, HSR I, N RUBKCE, A5 CHl, 2T
Figure 5: Examples of the continents and places in the Fictional data.

Model Strategy de fr it pl ru ar he ja zh
LLaMA-13B  LoRA-Attn  .0965 .0950 .1023 .0606 .0000 .0000 .0000 .0000 .0000
LLaMA-13B  LoRA-All  .0850 .1850 .1300 .0750 .0050 .0050 .0000 .0300 .0000

LLaMA-7B  LoRA-Attn .1250 .1450 .1500 .1250 .0150 .0050 .0250 .0000  .0000
LLaMA-7B Fully 0600 .1950 1700 1850  .0000  .0000  .0000  .0000 .0000

Table 19: The XRR scores measured by different tuning strategies on the Fictional knowledge, where "LoRA-Attn" means using
LoRA only on the attention blocks, "LoRA-All" means using LoRA on all blocks and "Fully" stands for fully finetuning.

Translation de fr it pl ru ar he ja zh
en-x 0600 .1268 .1100 .1350 .0000 .0000 .0000 .0245 .0153
en-x, x-en  .0806  .0800 .0950 .1350 .0000 .0000 .0000 .0050 .0000

Table 20: The XRR scores measured with LLaMA2-13B on the Fictional knowledge using different translation training, where
"en-x" means only translation pairs from English to other languages are provided, and "en-x, x-en" means a equal size of reversed
translation data being added using the same templates.

Model de-tune de others pecially English-Chinese bilingual data.
LLaMA2-Chat N -.0075  +.0065
Vicuna v1.5 Y +.0022  +.0066

* BLOOM (Workshop et al., 2023). It is a foun-
dation model pretrained on 46 languages and
13 programming languages, including en, fr,
zh and ar. We use the 7.1B version of it.

Table 21: The difference in en-CO scores after the instruction
tuning of LLaMA?2 and Vicuna v1.5 on the Factual knowledge.

Model de-tune de others
LLaMA2-Chat N +.0200 -.0114
Vicuna v1.5 Y +0709 -.0183 Instruction-tuned LLMs. We use the following

Table 22: The difference in XRR scores after the instruction instruction tuned models:

tuning of LLaMA?2 and Vicuna v1.5 on the Fictional knowl-

edge. » Stanford Alpaca (Taori et al., 2023). It is

LLaMA tuned with 52K English instruction
data, and shows improved performance on

gual data are extended both in quantity and several LLLM benchmarks such as MMLU.

language coverage (zh and ja are added). We
use the 70B and 13B versions of LLaMA 2. * Vicuna (Chiang et al., 2023). We use the v1.5
version of it, which is LLaMA 2 tuned with

¢ Chinese-LLaMA 1&2 (Cui et al., 2023). They 70K user conversations with ChatGPT, col-

are built on LLaMA 1 and 2 respectively, with
vocabularies and tokenizers adapted for Chi-
nese, and continued pretraining on 120GB
Chinese data. ¢

* Baichuan 2-Base (Yang et al., 2023a). It is
pretrained on 2.6T tokens of multilingual, es-

®We use the "plus" version of Chinese-LLaMA and the
"pro" version of Chinese-Alpaca since they are recommended
on the GitHub page.

lected from the ShareGPT website. Because
the data is shared by users worldwide, it con-
tains multilingual instructions in various lan-
guages.

* BayLing (Zhang et al., 2023a). It is LLaMA
tuned on interactive translation data and in-
struction data in en, de and zh. It is reported
to show high translation and instruction-
following performance on these languages.
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Model mixed cont’ en de (/en) others (/en)
LLaMA2 Y N 73.29  46.19 (0.63) 35.45(0.48)
LeoLM-base Y Y 61.10 41.44(0.68) 22.13(0.36)

Table 23: The RA scores of LLaMA2 and LeoLM-base on the Basic knowledge (the mean of XCSQA and xCOPA scores),
where "mixed" and "cont’" means having German mixed or continued pretraining, "/en" means the ratio to the English scores,

and "others" refers to the mean scores in the other 8 languages.

Model mixed cont’ en de (/en) others (/en)
LLaMA2 Y N 91.58 82.52(0.90) 50.73 (0.55)
LeoLM-base Y Y 48.56  41.91 (0.86) 18.68 (0.38)

Table 24: The RA scores of LLaMA?2 and LeoLM-base on the Factual knowledge (the mean of xGeo and xPeo scores).

* Chinese-Alpaca 1&2 (Cui et al., 2023). They
are the Chinese-LLLaMAs added Alpaca-style
(Taori et al., 2023) instruction tuning. The
tuning data is bilingual in English and Chinese.
They show much improved performance in
Chinese compared with the LLaMA models.

¢ LLaMA 2-Chat (Touvron et al., 2023b). It is
LLaMA 2 with instruction tuning and RLHF.
Although not clearly stated, the data used in
the finetuning process is inferred to be mainly
in English. It shows chatting ability in multi-
ple languages.

* Baichuan 2-Chat (Yang et al., 2023a). It is
Baichuan 2-Base undergone instruction tun-
ing and reinforcement learning. The training
is also multilingual, especially bilingual in
English and Chinese.

e BLOOMZ-MT (Workshop et al., 2023).
BLOOMZ-MT is BLOOM tuned on the xP3
instruction dataset (Muennighoff et al., 2023)
in 46 languages and translation data in 9 lan-
guages. The two datasets covers en, fr, zh,
ar, de and ru.

F Results of the German case study

For multilingual pretraining, Table 23 shows the
basic ability of LLaMA?2 and LeoLLM-base; Table
24 and 15 show their PF and CT alignment on the
Factual knowledge; and Table 16 shows their CD
alignment on the Fictional knowledge.

For multilingual finetuning, Tabel 17 shows the
basic ability of LLaMA2-Chat and Vicuna v1.5;
Table 18 and 21 show their PF and CT alignment
on the Factual knowledge; and Table 22 shows
their CD alignment on the Fictional knowledge.

G Results of the alternative finetuning
strategies

Table 19 shows the CD results of the LLaMA mod-
els using different tuning techniques; and Table
20 shows the comparison of adding or not adding

reversed translation data in the tuning process on
the LLaMA2 model.
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