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Abstract

The visual question localized-answering (VQLA) system has garnered increasing attention due to its potential
as a knowledgeable assistant in surgical education. Apart from providing text-based answers, VQLA can also
pinpoint the specific region of interest for better surgical scene understanding. Although recent Transformer-based
models for VQLA have obtained promising results, they (1) conduct vanilla text-to-image cross attention, leading
to unidirectional and coarse-grained alignment; (2) ignore exploiting the semantics of answers to further boost
performance. In this paper, we propose a novel model termed OTAS, which first introduces optimal transport
to achieve bidirectional and fine-grained alignment between images and questions, enabling more precise
localization. Besides, OTAS incorporates a set of learnable candidate answer embeddings to query the probability
of each answer class for a given image-question pair. Through Transformer attention, the candidate answer
embeddings interact with the fused features of the image-question pair to make the answer decision. Extensive experi-
ments on two widely-used benchmark datasets demonstrate the superiority of our model over state-of-the-art methods.
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1. Introduction

Recorded surgical videos are a useful tool for med-
ical students to learn the procedure (Sharma et al.,
2021). However, students often have various ques-
tions regarding the surgical instruments, human
tissues, and workflows shown in the video. As
such, an automatic deep learning-based surgical
visual question-answering (VQA) system (Seeni-
vasan et al., 2022a) has been developed as a vital
training and educational tool for junior surgeons,
medical students, and patients (Hsieh and Lin,
2017; Lin et al., 2006). However, while such VQA
systems can provide answers to learners (Li et al.,
2019), they lack the ability to relate these answers
to their localization at an instance level (Bai et al.,
2023b). Surgical scenarios with various similar
instruments and actions may further confuse the
learners, whereas answers with localization can fur-
ther assist learners in dealing with confusion (Seeni-
vasan et al., 2022b). To this end, a surgical visual
question localized-answering (VQLA) system has
been proposed to improve surgical training and en-
hance scene understanding effectively. A typical
example of the VQLA system is shown in Figure 1.

With the recent advent of the attention mecha-
nism, the VQLA architecture’s capability is greatly
improved. Therein, Bai et al. (2023a) developed
a detection-free Transformer-based VQLA model,
enabling end-to-end real-time applications. Based
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Figure 1: A typical example of the visual question
localized-answer (VQLA) system, which takes an
image and a question as input, and outputs both
bounding box predictions and classification results.

on this, Bai et al. (2023c) introduced a gated vision-
language embedding mechanism for effective fu-
sion of heterogeneous features, obtaining state-of-
the-art results. Despite the promising progress that
existing VQLA models have achieved, we discover
that they still suffer from two main issues:

(1) Existing VQLA models mostly conduct vanilla
one-way attention in robotic surgery scenarios. To
be specific, they focus solely on text-to-image atten-
tion while neglecting image-to-text attention. Intu-
itively, text and image information benefit from each
other. Therefore, simply conducting unidirectional
attention in VQLA is suboptimal. Besides, they lack
the fine-grained correspondence between instru-
ments/actions and questions, which is crucial for
the localization task. Further efforts are needed to
refine this coarse-grained interaction.

(2) In existing methods, where answers are con-
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strained to specific categories, the labels are trans-
formed into one-hot vectors. As a result, these
vectors are orthogonal in the embedding space,
neglecting the rich semantic information among
answers. One main premise of our work is that
answers are themselves words that may appear in
various contexts and are thus semantically related
to other words that appear in questions, and this
relatedness can be leveraged. For example, in Fig-
ure 1, the word “located” in the question will have
stronger semantic relevance to the orientation infor-
mation “right-bottom” in the answer set compared
to other answers (e.g., “tool manipulation”).

To solve the aforementioned issues, we propose
a novel model via Optimal Transport and Answer
Semantics (OTAS) for VQLA. To solve the first is-
sue, we introduce optimal transport (Kantorovich,
2006) to model the bidirectional and fine-grained
alignment between images and questions. In detail,
the alignment between images and questions is re-
garded as a transportation plan, where the distance
between images and questions is measured by the
transportation cost. By minimizing the transporta-
tion cost, the model could achieve bidirectional and
fine-grained alignment between images and ques-
tions. The subsequent visualization studies fur-
ther confirm our model’s superiority in VQLA, espe-
cially in the localization task. To solve the second
issue, we introduce a set of learnable candidate
answer embeddings and let the image-question
feature interact with the candidate answer embed-
dings by sending them through a Transformer de-
coder (Vaswani et al., 2017). In the decoder, the
candidate answer embeddings work as a query to
calculate their relationships with the fused image-
question features to choose the final answer from a
set of candidates. In this manner, our classification
considers the interaction of answer semantics and
the fused image-question features, which is differ-
ent from existing VQLA methods. Experiment re-
sults show that our OTAS significantly outperforms
previous models, and comprehensive analysis fur-
ther verifies the advantages of our model.

The contributions of our work are three-fold: (1)
We propose a novel model termed OTAS, which
leverages optimal transport to achieve bidirectional
and fine-grained alignment between questions and
images. To the best of our knowledge, we make the
first attempt to employ optimal transport in VQLA.
(2) We propose to incorporate answer semantics
to leverage its correlation with questions, which is
achieved by a designed mechanism to learn and
make use of candidate answer embedding through
a Transformer decoder. (3) Extensive experiments
show that our model achieves new state-of-the-
art (SOTA) performance, which demonstrates the
potential of AI-based VQLA systems in surgical
training and surgical scene understanding.

2. Related Work

Surgical Visual Question Localized-Answering.
Due to the overwhelming burden of academic and
clinical work, expert surgeons find it challenging to
address the myriad questions posed by learners re-
garding surgical procedures (Sharma et al., 2021;
Seenivasan et al., 2022a). As a partial solution,
recorded surgical videos are shared with students,
enabling them to learn through observation. How-
ever, this approach still falls short in addressing
specific queries students may have. Recently, Med-
FuseNet (Sharma et al., 2021) was introduced to
tackle medical visual question answering (VQA), ex-
panding the realm of possibilities for developing re-
liable VQA models capable of assisting medical ex-
perts in addressing queries from learners. Surgical-
VQA (Seenivasan et al., 2022a) was proposed to
answer questionnaires on surgical tools, tool-tissue
interactions and surgical phase based on the visual
input. More recently, Bai et al. (2023a,c) introduced
the Visual Question Localized-Answering (VQLA)
model in the surgical domain, which can predict
localized-answer based on a given input question
and surgical scene, showcasing the application
potential of AI-driven VQLA systems in surgical
training and surgical scene understanding.

Optimal Transport. Optimal transport (Kan-
torovich, 2006) is a classic mathematical problem
and was initially introduced to solve the problem
of minimizing the cost when moving multiple items
simultaneously. To reduce the computational com-
plexity, Kusner et al. (2015) proposed a relaxed
form of optimal transport. With the development
of machine learning (Chen et al., 2024; Huang
et al., 2024), optimal transport is widely applied
to compare different distributions, such as struc-
tural matching (Chen et al., 2018; Marchisio et al.,
2022; Zhu et al., 2023a), generative models (Li-
utkus et al., 2019; Rout et al., 2021), image match-
ing (Zhang et al., 2020a; Qian et al., 2023), and
cross-modal alignment (Chen et al., 2020; Zhou
et al., 2023). In this paper, we use the optimal trans-
port to achieve the bidirectional and fine-grained
alignment between questions and images.

Label Semantics. Label semantics has been
leveraged in many settings and tasks to improve
performance and robustness (Zhu et al., 2024,
2023c,b; Xu et al., 2024). Mullenbach et al. (2018)
proposed label-wise attention networks for datasets
with very large structured label spaces. Rios and
Kavuluru (2018) extended the attention mechanism
for zero-shot settings. Chalkidis et al. (2020) used
BERT to embed the labels. In this paper, we intro-
duce a set of answer embeddings to capture the
rich semantic information between answers and
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Figure 2: The architecture of proposed OTAS. “Attn” represents “Attention”, “OTAM” and “ASAM” represent
“Optimal Transport-based Alignment Module” and “Answer Semantics-aware Module”, respectively.

questions, with a flatter and smaller label space.

3. Methodology

This section details our proposed OTAS, whose
architecture is shown in Figure 2. OTAS consists of
a visual-question encoder (§3.1), a coarse-grained
alignment module (§3.2), an optimal transport-
based alignment module (OTAM) (§3.3), a standard
DeiT module (§3.4), and prediction heads (§3.5)
including answer semantics-aware module (ASAM)
and localization head. Finally, we introduce the
training objective (§3.6) of our proposed OTAS.

3.1. Visual-Question Encoder

Following Bai et al. (2023a,c), to ensure a fair com-
parison, we adopt ResNet18 (He et al., 2016) as
our visual feature extractor to obtain visual embed-
dings. The question embeddings are obtained us-
ing a specialized pre-trained tokenizer (Seenivasan
et al., 2022a). Note that both visual and question
dimensions are reduced to Rn×d for subsequent
interaction, where n denotes the length of tokens
(i.e., sub-words for text or patches for an image),
and d denotes the dimension of hidden states.

3.2. Coarse-grained Alignment Module

We keep the vanilla N -layer one-way attention
module following Bai et al. (2023a) to facilitate
coarse-grained alignment between images and
questions. Concretely, each co-attention layer con-
sists of self-attention for question embeddings, and
self-attention followed by cross-attention for im-
age embeddings. The self-attention comprises
a multi-head attention layer, a feed-forward layer,
and ReLU activation. Given image/question em-
beddings from the previous layer, the self-attention
leverages it to generate query q ∈ Rdq , key K ∈
RdK and value V ∈ RdV matrices. Formally, the

attention of each head hi is calculated as:

hi = A(W
(q)
i q,W

(K)
i K,W

(V )
i V), (1)

where W
(q)
i ∈ Rpq×dq , W

(K)
i ∈ RpK×dK and

W
(V )
i ∈ RpV ×dV are learnable parameters, and

A(·) represents single-head attention aggregation.
A linear conversion is then applied for the at-
tention aggregation from multiple heads: h =
MA(Wo[h1|| · · · ||hM ]), where Wo ∈ Rpo×MpV is a
learnable parameter, MA(·) represents multi-head
attention aggregation, M is the number of heads in
the current layer, and || represents concatenation.

The cross-attention module also contains the
above components, but its input is from both two
modalities, in which q is from visual embeddings
and K, V are from question embeddings:

hi = A(W
(q)
i qv,W

(K)
i Kq,W

(V )
i Vq). (2)

By this, visual embeddings are guided by question
embeddings, thus enabling text-to-image attention.

3.3. Optimal Transport-based Alignment
Module

Although §3.1 establishes an initial alignment be-
tween text and visual embeddings, it is unidirec-
tional and coarse-grained. In this work, we present
an innovative perspective to apply optimal trans-
port (Kantorovich, 2006) to achieve bidirectional
and fine-grained alignment. Next, we detail the Op-
timal Transport-based Alignment Module (OTAM).

Optimal transport is a classic mathematical prob-
lem, which considers both the position and weight
of each element in a distribution, thereby captur-
ing subtle changes and local structures between
distributions (Peyré et al., 2019). Given an initial
state α = {α1, · · · , αp} before transportation, a fi-
nal state β = {β1, · · · , βq} after transportation, and
the unit cost function C(αi, βj) representing the
unit transport cost from i-th position in α to the j-th
position in β, the objective of optimal transport is
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to develop a transport plan T to minimize the total
transport cost D(α, β), where each element Ti,j

denotes the amount of mass transported from αi to
βj . The total cost D(α, β) is calculated as follows:

D(α, β) = min
T≥0

p∑
i=1

q∑
j=1

Ti,j · C(αi, βj),

s.t.

q∑
j=1

Ti,j = mi,∀i ∈ {1, . . . , p},

p∑
i=1

Ti,j = m̂j ,∀j ∈ {1, . . . , q},

(3)

where each point αi ∈ Rd (resp. βj ∈ Rd) has a
weight mi ∈ [0,∞) (resp. m̂j ∈ [0,∞)).

For the visual and question embeddings Fv and
Fq, we further employ optimal transport to measure
the distance between them. The corresponding
transport cost D(Fv,Fq) is calculated as follows:

D(Fv,Fq) = min
T≥0

n∑
i=1

n∑
j=1

Ti,j · C(Fv,i,Fq,j),

s.t.

n∑
j=1

Ti,j = mv,i,∀i ∈ {1, . . . , n},

n∑
i=1

Ti,j = mq,j ,∀j ∈ {1, . . . , n}.

(4)

Here we leverage cosine similarity to define the
unit cost function C(Fv,i,Fq,j):

C(Fv,i,Fq,j) = 1− cos(Fv,i,Fq,j), (5)

as the cosine similarity between Fv,i and Fq,j in-
creases, the corresponding unit cost decreases.

We then define the initial states of these two em-
beddings as all-one vectors normalized by their
lengths. For the optimal transport problem, sev-
eral solutions including Sinkhorn (Cuturi, 2013) and
IPOT (Xie et al., 2020) incur great time complexity,
we follow Kusner et al. (2015) to calculate the re-
lated moving distance which removes the second
constraint to obtain the lower bound of the accurate
solution. Then the optimal solution for each Fv,i

is to move all its mass to the closest Fq,j , and the
transportation matrix becomes:

Ti,j =

{
1
n , if j = argmin

j′
C(Fv,i,Fq,j′),

0, otherwise.
(6)

Now the transport cost D(Fv,Fq) becomes:

D(Fv,Fq) =

n∑
i=1

n∑
j=1

Ti,j · C(Fv,i,Fq,j)

=
1

n

n∑
i=1

min
j

C(Fv,i,Fq,j).

(7)

Similarly, the transport cost D(Fq,Fv) from Fq

to Fv can be derived like Eq. 7:

D(Fq,Fv) =
1

n

n∑
j=1

min
i

C(Fv,i,Fq,j). (8)

The final transport loss LOT is defined as follows:

LOT =
D(Fv,Fq) +D(Fq,Fv)

2
. (9)

By this, visual and question embeddings interact
deeply in a bidirectional and fine-grained manner.

3.4. Standard DeiT Module
Following previous works, DeiT (Touvron et al.,
2021) serves as the backbone of our OTAS. Be-
fore feeding into the DeiT, we follow Zhang et al.
(2020b); Wu et al. (2021); Bai et al. (2023a,c);
Cheng et al. (2023) to generate a gating matrix
Λ to regulate the fusion of Fv and Fq:

Λ = sigmoid(W1
ΛFv +W2

ΛFq), (10)

where W1
Λ and W2

Λ are two learnable matrices.
After fusion, the output F is computed as follows:

F = Fv + ΛFq. (11)

Subsequently, the fused embeddings F are fed
into the pre-trained DeiT-Base module before the
final prediction heads. The pre-trained DeiT-Base
can learn fused representations and resolve am-
biguous groundings from multimodal information.

3.5. Prediction Heads
Classification Head. Given an input image-
question pair and a set of candidate answers,
our classification head, also denoted as answer
semantics-aware module (ASAM), predicts whether
each candidate answer matches the correspond-
ing image-question pair. The candidate with the
highest probability is selected as the final answer.
Specifically, we adopt a two-layer Transformer de-
coder followed by a linear projector as our classifier
head, and introduce a set of learnable candidate
answer embeddings together with the fused image-
question embedding F as the input.

Let us first denote A ∈ RC×d as the candidate
answer embedding matrix, where C is the number
of answer classes and d is the dimension of hidden
states. Similar to §3.2, A is randomly initialized
and will be updated during training through a self-
attention module, a cross-attention module, and a
feed-forward network in order. The self-attention
computes the relationships between different an-
swer embeddings by using A to construct all the
query, key, and value matrices. The cross-attention
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cares about the relationships between the answer
embeddings A and the fused image-question em-
beddings F. It thus utilizes A as the query and
F as the key and value to compute the attention
and further updates the answer embeddings by
combining the attended image-question features.
Mathematically, denoting the answer embeddings
at the l-th layer as Al, it will be updated from the
output of the previous layer Al−1:

Al = MA(Al−1,Al−1,Al−1),

Al = MA(Al,F,F),

Al = FFN(Al),

(12)

where l = 1, · · · , L and L is the number of Trans-
former decoder layers.

In this manner, the image-question embeddings
are injected into the answer embeddings and used
to refine the latter. The refined C are fed into the
final linear projection layer followed by a softmax
function to predict the probabilities of preset answer
candidates, which is formulated as follows:

p = softmax(WAAL + b), (13)

where WA and b are learnable parameters, and
p consists of C probabilities corresponding to C
answer candidates. The answer with the highest
probability is chosen as the predicted answer.

Localization Head. For the localization head, we
adopt the Detection with Transformers (DETR) (Car-
ion et al., 2020). Concretely, we utilize a feed-
forward network comprising a 3-layer perceptron,
ReLU activation, and a linear projection layer to
model the coordinates of the bounding boxes.

3.6. Training Objective
For the classification task, we employ a straight-
forward cross-entropy loss LCE . For the detection
task, we combine L1 loss and GIoU (Rezatofighi
et al., 2019) loss to boost performance. The GIoU
loss focuses on both overlapping regions and non-
overlapping regions, defined as follows:

LGIoU = 1−
(
|bg ∩ bp|
|bg ∪ bp|

− |B(bg, bp) \ bg ∪ bp|
|B(bg, bp)|

)
,

(14)
where bg represents the ground truth bounding box,
bp represents the predicted bounding box, | · | indi-
cates the area, and B represents the operation of
finding the largest box containing both bg and bp.

The overall training objective is formulated as:

L = LCE + (LGIoU + L1) + λLOT , (15)

where λ is a trade-off hyper-parameter.

4. Experiments

4.1. Datasets and Metrics
Following previous works, EndoVis-18 (Allan et al.,
2020) and EndoVis-17 (Allan et al., 2019) are taken
as testbeds.1 EndoVis-18 includes 1,560 frames
and 9,014 QA pairs for training, 447 frames and
2,769 QA pairs for testing. To further prove the
generalization ability of our model, we follow Bai
et al. (2023c) and Bai et al. (2023a) to directly apply
the model trained on EndoVis-18 to EndoVis-17,
which includes 97 frames with 472 QA pairs. For
metrics, we adopt accuracy (Acc), F-Score, and
mean intersection over union (mIoU) (Rezatofighi
et al., 2019) to evaluate the model performance.

4.2. Implementation Details
Following previous works, the dimensions of visual
embedding, question embedding, and candidate
answer embedding are 768 on both datasets. Our
model is trained using the Adam optimizer (Kingma
and Ba, 2014) for 80 epochs with a learning rate
of 1× 10−5 and a batch size of 64. For the hyper-
parameter λ in Eq. 15, we set it to 0.5. All the ex-
periments are conducted on an Nvidia V100 GPU.
The experimental results are averaged over five
runs with different random seeds to keep statisti-
cally stable. Codes are based on PyTorch (Paszke
et al., 2019) and Transformers2 (Wolf et al., 2020).

4.3. Main Results
We compare our OTAS with nine state-of-the-art
(SOTA) baselines, including MUTAN (Ben-Younes
et al., 2017), MFH (Yu et al., 2018), VisualBERT (Li
et al., 2019), MCAN (Yu et al., 2019), Block-
Tucker (Ben-Younes et al., 2019), VQA-DeiT (Tou-
vron et al., 2021), VisualBERT ResMLP (Seeni-
vasan et al., 2022a), GVLE-LViT (Bai et al., 2023c),
and CAT-ViL DeiT (Bai et al., 2023a). Additionally,
we conduct a robustness experiment compared to
GVLE-LViT and CAT-ViL DeiT to assess the model’s
stability when the test data is corrupted. We ap-
ply 18 types of corruption to the test data, with the
severity level ranging in severity levels from 1 to 5
following Hendrycks and Dietterich (2019).

The performance comparison and robustness
experiments are shown in Table 1 and Figure 3,
from which we have the following observations:

(1) OTAS gains significant and consistent im-
provements on all metrics and datasets. Specif-
ically, on EndoVis-18, it overpasses the previous
SOTA GVLE-LViT by 2.84%, 4.62% and 2.39% on

1The VQLA annotations are availabe at https://
github.com/longbai1006/Surgical-VQLA.

2https://github.com/huggingface/
transformers

https://github.com/longbai1006/Surgical-VQLA
https://github.com/longbai1006/Surgical-VQLA
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Model EndoVis-18 EndoVis-17

Acc ↑ F-Score ↑ mIoU ↑ Acc ↑ F-Score ↑ mIoU ↑

MUTAN (Ben-Younes et al., 2017) 62.83 33.95 76.39 42.42 34.82 72.18
MFH (Yu et al., 2018) 62.83 32.54 75.92 41.03 35.00 72.16
VisualBERT (Li et al., 2019) 62.68 33.29 73.91 40.05 33.81 70.73
MCAN (Yu et al., 2019) 62.85 33.38 75.26 41.37 29.32 70.29
BlockTucker (Ben-Younes et al., 2019) 62.01 32.86 76.53 42.21 35.15 72.88
VQA-DeiT (Touvron et al., 2021) 61.04 31.56 73.41 37.97 28.58 69.09
VisualBERT R (Seenivasan et al., 2022a) 63.01 33.90 73.52 41.90 33.70 71.37
GVLE-LViT (Bai et al., 2023c) 66.59 36.14 76.25 45.76 24.89 72.75
CAT-ViL DeiT (Bai et al., 2023a) 64.52 33.21 77.05 44.91 36.22 73.22

OTAS (Ours) 68.48 37.81 78.89 48.62 37.50 75.83

Table 1: Comparisons with state-of-the-art methods on EndoVis-18 and EndoVis-17 datasets. The best
results and the second-best results are highlighted in bold and in underline, respectively.
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Figure 3: Robustness experiments on the EndoVis-18 dataset. (a) Acc on the classification (question-
answering) task. (b) mIoU on the localization task.

Acc, F-Score and mIoU, respectively; on EndoVis-
17, it overpasses CAT-ViL DeiT by 6.25%, 3.53%
and 3.56% on Acc, F-Score and mIoU, respec-
tively. This is because our model leverages the
bidirectional and fine-grained alignment between
images and questions, allowing the two modalities
to provide crucial and subtle clues for each other.
Besides, our designed answer semantics-aware
module can effectively capture the semantics be-
tween questions and candidate answers, providing
indicative clues for the final answer prediction.

(2) From Figure 3, we can observe that as the
severity of image corruption increases, the perfor-
mance of all models degrades. Notably, our pro-
posed OTAS demonstrates remarkable stability in
the face of corruption, consistently outperforming
other models across all severity levels. The out-
standing robustness of our model shows great po-
tential for real-world applications.

4.4. Model Analysis
To understand our OTAS in more depth, we perform
comprehensive studies to answer the following re-
search questions (RQs): (1) Does each proposed
module contribute to the overall performance of the

model? (2) How do different OT solutions influence
performance? (3) Should the OT-based alignment
module precede or follow the coarse-grained align-
ment module? (4) Is bidirectional cross-modal infor-
mation interaction in the OT-based alignment mod-
ule necessary? (5) Is there an impact of answer
embedding size in the answer semantics-aware
module on performance? (6) How do pre-trained
models impact the initialization of question and
answer embeddings? (7) Qualitatively, does our
method truly stand out in the VQLA systems?

Answer 1: Each proposed module contributes
to improving the model performance. The core
contributions of this work are the optimal transport-
based alignment module (OTAM) and the answer
semantics-aware module (ASAM). From Table 2,
we observe that removing either module results in
a sharp decline in the model’s performance across
all metrics and datasets, which demonstrates the
effectiveness of our proposed modules. Interest-
ingly, OTAM has a greater impact on the localization
task, whereas ASAM significantly influences the
question-answering task. This further validates our
motivation for developing these two modules. Since
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Model EndoVis-18 EndoVis-17

Acc ↑ F-Score ↑ mIoU ↑ Acc ↑ F-Score ↑ mIoU ↑

OTAS (Ours) 68.48 37.81 78.89 48.62 37.50 75.83
w/o OTAM 67.65(↓0.83) 37.06(↓0.75) 77.68(↓1.21) 47.35(↓1.27) 36.94(↓0.56) 74.16(↓1.67)

+ More Parameters 67.76(↓0.72) 37.22(↓0.59) 77.81(↓1.08) 47.48(↓1.14) 37.02(↓0.48) 74.40(↓1.43)
w/o CAM 67.83(↓0.65) 37.28(↓0.53) 77.93(↓0.96) 47.54(↓1.08) 37.10(↓0.40) 74.44(↓1.39)
w/o ASAM 67.41(↓1.07) 36.91(↓0.90) 77.97(↓0.92) 47.10(↓1.52) 36.71(↓0.79) 74.25(↓1.58)

Table 2: Results of ablation experiments. “OTAM” and “ASAM” represents “Optimal Transport-based
Alignment Module” and “Answer Semantics-aware Module”, respectively.

Model EndoVis-18

Acc ↑ F-Score ↑ mIoU ↑ Speed ↓

Sinkhorn 65.57 35.95 76.56 567
IPOT 68.53 37.80 78.92 543
Ours 68.48 37.81 78.89 280

Table 3: Comparisons with different OT solutions
on the EndoVis-18 dataset. Speed denotes the
average training time (ms) for each batch.

OTAM introduces more parameters, a natural ques-
tion is whether the additional parameters involved
in OTAS contribute to the final performance. To this
end, we remove OTAM and expand the number of
layers of the co-attention module to six layers to
validate that the proposed OTAM rather than the ex-
tra parameters contribute to performance improve-
ment. We refer it to w/o OTAM + More Parameters
in Table 2. We observe that though more parame-
ters slightly improve the performance, there is still
a significant gap w.r.t. the proposed OTAS, which
verifies that the improvements indeed come from
OTAM rather than the involved parameters.

Answer 2: Our proposed OTAM achieves a nice
trade-off between model performance and train-
ing efficiency. Due to the higher time complexity
of Sinkhorn (Cuturi, 2013) and IPOT (Xie et al.,
2020) algorithms, in this paper, we utilize the re-
laxed moving distance to calculate the lower bound
of the original problem. To verify the effectiveness
of the relaxed moving distance, we replace it with
Sinkhorn and IPOT, respectively. The correspond-
ing results are shown in Table 3. We observe that
OTAM maintains a nearly comparable performance
to the exact solution IPOT and has a significant
speed advantage, which demonstrates the superi-
ority of the relaxed moving distance.

Answer 3: The transition of information from
coarse-grained to fine-grained is effective in
the VQLA system. As a plug-in module, OTAM
offers flexibility in its placement within the network.
Therefore, we aim to investigate the rationality and
effectiveness of its current design. From the results
in Table 4, we observe that putting coarse-grained

Model EndoVis-18

Acc ↑ F-Score ↑ mIoU ↑

OTAM -> CAM 67.90 37.28 77.56
CAM -> OTAM 68.48 37.81 78.89(Q->V + V->Q)

w/o Q->V 67.95 37.37 78.15
w/o V->Q 68.06 37.40 78.23

Table 4: Comparisons with different OT positions
and structures on the EndoVis-18 dataset. “CAM”
represents “Coarse-grained alignment module”. Q-
>V (resp. V->Q) represents executing OT from
question embeddings to visual embeddings (resp.
visual embeddings to question embeddings).

alignment module (CAM) after OTAM results in
performance deterioration. Specifically, the accu-
racy decreases by 0.58% in the question-answering
task, and the mIoU decreases by 1.33% in the lo-
calization task. The probable reason is that coarse
alignment in CAM may destroy the subtle cross-
modality information learned by the OTAM. It is also
interesting to explore a concurrent cross-modal at-
tention mechanism in the future.

Answer 4: The bidirectional cross-modal infor-
mation interaction in the OT-based alignment
module enables comprehensive information ex-
change between the two modalities. We also
investigate the impact of bidirectional information
interaction in the OT-based alignment module. As
observed from the last two rows of Table 4, both text-
to-image and image-to-text information exchanges
enhance the final performance, underscoring the
necessity of bidirectional information interaction.

Answer 5: The size of the answer embeddings
in answer semantics-aware module has a cer-
tain impact on performance. We also explore
the impact of answer embedding dimensions. Fig-
ure 5 illustrates that as the dimension of answer
embeddings increases, the model’s performance
improves while the best result is obtained when
the embedding size is approximately 1024. How-
ever, increasing the embedding size escalates com-
putational costs, while the performance saturates
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Figure 4: Two case studies on the VQLA task. Our OTAS (
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Figure 5: Experiments on the dimension of answer
embeddings on two benchmark datasets.

quickly. As a trade-off, our model adopts 768-
dimensional answer embeddings.

Answer 6: The incorporation of pre-trained
models can further improve the model per-
formance. One of our core contributions is the
answer semantics-aware module (ASAM), which
introduces a set of learnable answer embed-
dings. These embeddings effectively reveal the
rich semantic associations between questions and
answers through interaction with fused image-
question features. Here we investigate the power
of encoders pre-trained on the large medical cor-
pus. To maintain consistency in the embedding
space, we substitute both the question encoder
and the answer encoder. As shown in Table 5,
while comparing with the models that adopt Clinical-
BERT (Alsentzer et al., 2019) or PubMedBERT (Gu
et al., 2021) as question and answer encoders, we
observe that guiding fused image-question features
with domain knowledge generally works better, e.g.,
results of using ClinicalBERT or PubMedBERT out-
perform training with no answer semantics. Be-
sides, our proposed method achieves consistent im-

Model Initiation EndoVis-18

Acc ↑ F-Score ↑ mIoU ↑

OTAS w/o ASAM - 67.41 36.91 77.97
OTAS (Ours) Random 68.48 37.81 78.89

OTAS ClinicalBERT 70.72 40.65 79.54
OTAS PubMedBERT 71.62 39.06 79.60

Table 5: Comparisons with different initiation strate-
gies of question and answer embeddings.

provements over baselines while being lightweight.

Answer 7: Our model demonstrates qualita-
tive superiority over other state-of-the-art meth-
ods. To better understand the proposed model,
we show two cases in Figure 4. In the left case, our
model outperforms the other two competitive mod-
els by being closer to the ground truth bounding
box in the localization task. Moreover, GVLE-LViT
incorrectly predicts “Tissue_Manipulation” in the
question-answering task. Our model effectively
captures the semantic association between the an-
swer and the question, enabling accurate predic-
tions. In the right case, despite the simplicity of the
question-answering task, our method still achieves
competitive results in the localization task, show-
casing the superiority of our proposed model.

5. Conclusion

In this paper, we proposed a novel model termed
OTAS for VQLA tasks, which creatively introduced
optimal transport to achieve bidirectional and fine-
grained alignment between questions and images.
Moreover, we incorporated answer semantic infor-
mation into the answer class prediction process
to correlate the answering embeddings with the
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fused image-question features, which improved the
accuracy significantly. Experiment results on two
benchmark datasets showed that our model signifi-
cantly outperformed previous models.

Future Work. Future work will extend beyond
classification-based Question Answering (QA)
tasks and delve into generative QA tasks.
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