
LREC-COLING 2024, pages 7133–7140
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

7133

FastSpell: the LangId Magic Spell

Marta Bañón, Jaume Zaragoza-Bernabeu,
Gema Ramírez-Sánchez, Sergio Ortiz-Rojas

Prompsit Language Engineering, S.L., Spain
{mbanon, jzaragoza, gramirez, sortiz}@prompsit.com

Abstract
Language identification is a crucial component in the automated production of language resources, particularly in
multilingual and big data contexts. However, commonly used language identifiers struggle to differentiate between
similar or closely-related languages. This paper introduces FastSpell, a language identifier that combines fastText (a
pre-trained language identifier tool) and Hunspell (a spell checker) with the aim of having a refined second-opinion
before deciding which language should be assigned to a text. We provide a description of the FastSpell algorithm
along with an explanation on how to use and configure it. To that end, we motivate the need of such a tool and
present a benchmark including some popular language identifiers evaluated during the development of FastSpell.
We show how FastSpell is useful not only to improve identification of similar languages, but also to identify new ones
ignored by other tools.

Keywords: Language identification, Language resource creation, Multilingual content

1. Introduction

Language identification is at the core of many NLP
pipelines and an essential component in the au-
tomatic production of language resources. A bad
choice of the technology used to perform language
identification may have a crucial impact on the rest
of the pipeline and the final results, especially in
big data and multilingual data contexts. In such
contexts, a complex variety of languages need to
be language-identified at scale and three factors
are of great importance: number of languages cov-
ered, accuracy and speed. However, the choice of
language identifiers is mostly based on language
coverage as this is usually a crucial factor in the
decision. Other factors may be disregarded and,
once the choice is made, the rest of the pipeline
will need to cope with the possible mistakes made
by the selected language identifier.

In this paper, we present FastSpell, a language
identifier that reviews and complements prior lan-
guage identification processes. It seeks for a com-
promise between speed and quality, with special
focus on similar languages and language varieties.
FastSpell requires a language to focus on, which
we define as the targeted language, usually
coming from a previous language identifier. Fast-
Spell double-checks that targeted language, pay-
ing special attention to languages that are often
confused with it. To that end, FastSpell first asks
fastText1 to give a prediction. Then, only if the lan-
guage predicted by fastText falls into a group of lan-
guages similar to the targeted language, FastSpell
refines its decision by performing extra checks with

1https://fasttext.cc/

the Hunspell2 spell-checker. This allows to double-
check the prediction made by fastText as well as
to discriminate better between similar languages,
identify new languages or group them.

FastSpell, distributed under the GPLv3 license,3
is officially supported and maintained inside the
Bitextor4 and Monotextor5 pipelines, two free/open-
source tools used to produce parallel and mono-
lingual corpora from web-crawled content. It runs
in the corpus cleaning phase of these two tools to
refine the decisions made by any language iden-
tifier applied earlier. It has been used to produce
corpora in projects such as ParaCrawl,6 MaCoCu,7
and HPLT,8 all complex in the number and variety
of languages and amounts of data processed.

In the following sections, we explain the moti-
vation of building FastSpell (section 2) and why it
relies on fastText (section 3), which was chosen
after a careful evaluation of available tools. This
evaluation, designed and maintained up to date as
an independent benchmark, focuses on particularly
challenging cases, that is, deciding between similar
languages, and reports both accuracy and speed
performance. Section 4 describes the FastSpell
algorithm while section 5 explains how to use and
configure it. Finally, section 6 draws some conclu-
sions and future working plans.

2http://hunspell.github.io/
3https://github.com/mbanon/fastspell/

blob/main/LICENSE
4https://github.com/bitextor
5https://github.com/bitextor/

monotextor
6https://paracrawl.eu
7https://macocu.eu
8https://hplt-project.org

https://fasttext.cc/
http://hunspell.github.io/
https://github.com/mbanon/fastspell/blob/main/LICENSE
https://github.com/mbanon/fastspell/blob/main/LICENSE
https://github.com/bitextor
https://github.com/bitextor/monotextor
https://github.com/bitextor/monotextor
https://paracrawl.eu
https://macocu.eu
https://hplt-project.org

7134

2. Why FastSpell?

FastSpell was initially developed as part of the
code of the ParaCrawl series of projects aiming
at deriving parallel data from web-crawled con-
tent (Bañón et al., 2020). Language identification
of web-crawled data, usually very noisy (Kreutzer
et al., 2022), is a necessary step to derive language-
specific textual corpora from them. After manual
inspections of the parallel sentences produced in
ParaCrawl, we found several issues with CLD2,9
the tool used at the moment to identify language at
document level, then transferred to sentence level:

• Closely related languages often get mixed up.
Especially if one of them has significantly more
resources, for example, Spanish and Galician
or the Bokmål and Nynorsk variants of Norwe-
gian.

• Text containing all or mostly uppercase let-
ters is very often classified as the highest-
resourced language using a particular writing
system. Many Latin script languages end up
badly identified as English, Spanish or French
and Cyrillic script languages as Russian.

• Languages that use two or more scripts are
usually identified with just one of them. For
example, although Serbo-Croatian languages
can technically be written in Cyrillic and Latin,
Cyrillic gets most of the time classified as Ser-
bian and Latin as Croatian. While these are
the mostly used scripts for those languages,
this just does not cover all cases well enough,
e.g. Serbian written in Latin.

FastSpell was developed to be able to cope with
these issues and refine the decisions made by
CLD2 at the beginning of the pipeline.

3. Benchmarking Language
Identifiers

FastSpell starts by launching automatic language
identification over a text, sentences in our case. To
be able to make an informed decision on which tool
was better suited for this task, we benchmarked
several language identification tools (see Table
1) focusing on performance (runtime) and accu-
racy (F-score). This benchmark is constantly evolv-
ing to incorporate new tools and languages and
is publicly available at https://github.com/
mbanon/benchmarks with results available at
https://tinyurl.com/2u48kycz.

The benchmark includes a diverse set of lan-
guages added in two batches according to projects
needs. The first batch, introduced during the

9https://github.com/CLD2Owners/cld2

ParaCrawl project, covered Spanish (es), Galician
(gl), Catalan (ca), Danish (da), Norwegian Bokmål
(nb) and Norwegian Nynorsk (nn). The second one,
introduced during the MaCoCu project, included
Bulgarian (bg), Czech (cz), Greek (el), Macedo-
nian (mk), Romanian (ro), Slovak (sk), Slovene (sl),
Albanian (sq), Maltese (mt), Turkish (tr), Bosnian
(bs), Montenegrin (me), Croatian (hr), and Serbian
(sr). For convenience, we grouped several times
Croatian, Bosnian, Serbian and Montenegrin under
the Serbo-Croatian (hbs) macrolanguage.

F1 scores
Lang pyCLD2 pyCLD3 fastText 176 HeLI FastSpell

es 0,890 0,932 0,929 0,957 0,954
gl 0,866 0,903 0,808 0,939 0,800
ca 0,904 0,935 0,951 0,961 0,935
da 0,914 0,868 0,824 0,930 0,799
nb 0,713 - - 0,724 0,675
nn 0,781 - 0,433 0,787 0,810
bg 0,939 0,959 0,979 0,972 0,990
cs 0,965 0,908 0,918 0,941 0,962
el 0,976 0,964 1,000 0,991 1,000

mk 0,883 0,981 0,993 0,982 0,985
ro 0,960 0,947 0,970 0,988 0,975
sk 0,966 0,934 0,917 0,952 0,937
sl 0,925 0,887 0,847 0,942 0,880
sq 0,981 0,986 0,993 0,992 0,990
mt 0,984 0,976 0,896 0,996 0,914
tr 0,978 0,985 0,990 0,983 0,988
bs 0,443 0,336 0,416 - 0,370
me - - - - 0,458
hr 0,641 0,423 0,557 - 0,541
sr 0,529 0,327 0,565 - 0,493

hbs 0,940 0,941 0,922 0,982 0,983
Avg. Runtime 0,011 0,097 0,019 2,688 1,076

Table 1: F1 scores and average runtime for all the lan-
guages and some of the language identification tools
benchmarked. Best scores in bold.

For each language in each batch, we built a gold-
standard corpus made of sentences. We used
SETIMES10 for Bosnian, Macedonian, Albanian,
Serbian and Turkish, MontenegrinSubs (Božović
et al., 2018) and texts from the Government of Mon-
tenegro webpage11 for Montenegrin and Paracrawl
human annotations (Ramírez-Sánchez et al., 2022)
for the other languages. We also built an "anti-gold
standard" by combining all sentences in a batch and
excluding the sentences for the targeted language
(for example, the anti-gold standard for Norwegian
Nynorsk included the sentences in the Danish and
Norwegian Bokmål gold-standards).

The benchmarked tools and versions are
pyCLD2,12 pyCLD3,13 langid,14 FastLang,15

10https://opus.nlpl.eu/SETIMES.php
11https://www.gov.me/
12https://github.com/aboSamoor/pycld2
13https://github.com/bsolomon1124/

pycld3
14https://github.com/saffsd/langid.py
15https://spacy.io/universe/project/

spacy_fastlang

https://github.com/mbanon/benchmarks
https://github.com/mbanon/benchmarks
https://tinyurl.com/2u48kycz
https://github.com/CLD2Owners/cld2
https://opus.nlpl.eu/SETIMES.php
https://www.gov.me/
https://github.com/aboSamoor/pycld2
https://github.com/bsolomon1124/pycld3
https://github.com/bsolomon1124/pycld3
https://github.com/saffsd/langid.py
https://spacy.io/universe/project/spacy_fastlang
https://spacy.io/universe/project/spacy_fastlang

7135

langdetect,16 NLTK,17 GuessLanguage,18 FastText
(lid.176 model compressed and binarized version)
and HeLI-OTS (Jauhiainen et al., 2022). The same
benchmarking was performed combining Hunspell
with PyCLD2 and PyCLD3 instead of fastText.

As shown in Table 1, in terms of F-scores and
runtime, CLD2 would have been the best candi-
date for language identification in FastSpell but,
since it was already used in previous steps in the
Bitextor production pipeline, we decided to use a
different and complementary tool. HeLIOTS would
have also been a good choice, but it was, at the
moment, up to 100 times slower than fastText on
average. For these reasons, fastText was selected
as the language identification tool to be included in
FastSpell.

Figure 1: fastText confusion matrices for some groups
of similar languages.

4. The FastSpell Spell

In order to address the issues mentioned in section
2 with similar languages being confused, FastSpell
makes a two-step decision using two different, well-
known tools: fastText and Hunspell.

FastText (Joulin et al., 2016a,b) is a free/open-
source library for fast text representation and clas-
sification, developed by Meta.19 In particular, the
language identification model used in FastSpell
is the lid.176.bin model, trained on data from

16https://github.com/Mimino666/
langdetect

17https://www.nltk.org/api/nltk.
classify.html#nltk.classify.textcat.
TextCat.guess_language

18https://pypi.org/project/guess_
language-spirit

19https://opensource.fb.com

Wikipedia, Tatoeba and SETIMES and able to rec-
ognize up to 176 languages.20

Using fastText alone to make this second predic-
tion was deemed insufficient to make good predic-
tions in many cases. As shown in Figure 1, fast-
Text has issues discriminating among similar lan-
guages which it confuses frequently (for example,
Galician with Spanish), struggling on Norwegian
Nynorsk with Norwegian Bokmål, or making inac-
curate predictions for many South-Slavic closely-
related languages. In other cases, predictions look
quite good, but still not completely accurate as in
the case of Slovak. Thus, a second step relying on
spell-checking results was introduced.

The technology chosen to perform spell-
checking is Hunspell, the well-known free/open-
source spell checker and morphological analyser
widely used in also well-known tools, such as
Mozilla Firefox, Google Chrome or the LibreOffice
suite. For spell checking, Hunspell uses affix files
and dictionaries, that can be obtained from differ-
ent sources21 independently or be custom-built by
users.

FastSpell focuses on a given language (the tar-
geted language), that is provided as a parameter.
Given a text (usually, a sentence), FastSpell will
first predict its language by using fastText. For
efficiency, only if the predicted language is the tar-
geted language or a similar language according
to a configurable list (see section 2), FastSpell will
try to refine the fastText prediction by checking the
sentence spelling with Hunspell for the targeted lan-
guage and its similar languages. Depending on the
ratio of spelling errors for each of the spell-checked
languages, FastSpell will confirm the targeted lan-
guage as the winner or replace it by the similar
language with the lowest number of spelling errors.
This is true for the aggressive mode . However, in
the conservative mode, when there is not a clear
winner after the spell-checking step, the language
for that text can be tagged as "unknown". The full
algorithm is shown in Appendix B.

5. Using FastSpell

FastSpell can be installed to be used as a CLI tool
or as a Python package. In both cases, besides a
text, the only parameters that are needed are the
targeted language (i.e. the language predicted by a
prior language identification tool and the mode (ei-
ther aggressive or conservative). In the example be-

20https://fasttext.cc/docs/en/
language-identification.html

21https://github.com/LibreOffice/
dictionaries, https://github.com/wooorm/
dictionaries/, https://extensions.
libreoffice.org/?q=spellchecker, http:
//hlt.sztaki.hu/resources/hunspell/

https://github.com/Mimino666/langdetect
https://github.com/Mimino666/langdetect
https://www.nltk.org/api/nltk.classify.html#nltk.classify.textcat.TextCat.guess_language
https://www.nltk.org/api/nltk.classify.html#nltk.classify.textcat.TextCat.guess_language
https://www.nltk.org/api/nltk.classify.html#nltk.classify.textcat.TextCat.guess_language
https://pypi.org/project/guess_language-spirit
https://pypi.org/project/guess_language-spirit
https://opensource.fb.com
https://fasttext.cc/docs/en/language-identification.html
https://fasttext.cc/docs/en/language-identification.html
https://github.com/LibreOffice/dictionaries
https://github.com/LibreOffice/dictionaries
https://github.com/wooorm/dictionaries/
https://github.com/wooorm/dictionaries/
https://extensions.libreoffice.org/?q=spellchecker
https://extensions.libreoffice.org/?q=spellchecker
http://hlt.sztaki.hu/resources/hunspell/
http://hlt.sztaki.hu/resources/hunspell/

7136

low, FastSpell receives English (en) as the targeted
language and conservative (cons) as the mode.
For the first sentence (Hello, world), FastSpell
outputs English as the predicted language, for the
second one (Hola, mundo), it outputs Spanish
(es), refining the a priori prediction.
from fastspell import FastSpell
fsobj=FastSpell("en", mode="cons")
fsobj.getlang("Hello, world")
#’en’
fsobj.getlang("Hola, mundo")
#’es’

Out-of-the-box FastSpell comes pre-configured
for several targeted languages and the necessary
linguistic resources (fastText model and Hunspell
dictionaries) are installed as a dependency.22 This
default configuration mainly focuses on the lan-
guages of interest of the three projects in which
FastSpell has been used: Paracrawl (Bañón et al.,
2020), MaCoCu (Bañón et al., 2022) and HPLT
(Aulamo et al., 2023). Besides addressing the issue
of identifying similar or closely related languages
(for example, Spanish and Galician), we also pro-
vide a solution to identify single languages from a
macrolanguage (languages in the Serbo-Croatian
family or Norwegian Bokmål/Nynorsk), languages
not supported by the current fastText model (for
example, Montenegrin) and languages that in prin-
ciple are not similar but that fastText seems to con-
fuse (for example, Somali and English). The pre-
configured targeted languages and the ones similar
to each of them are shown in Appendix A.

Custom configuration The default configuration
of FastSpell might not be suitable in some cases, for
example, when it does not support the targeted lan-
guage by default, when there’s a need to change
the pre-defined similar languages for a targeted
language, or when a different Hunspell dictionary
needs to be used. FastSpell is easily customizable
in these cases, only requiring to modify some con-
figuration text files located in the fastspell/config
directory.

One of those files is similar.yaml (whose first
lines can be seen in Figure 2), a file containing the
pre-defined targeted languages and their associ-
ated similar languages. These languages (see the
full list in Appendix A) will be double-checked with
Hunspell after being predicted by fastText. Adding
or removing a new language from this file will acti-
vate or deactivate the spellchecking step in case it
matches the criteria of the FastSpell algorithm (see
section 4). The list of similar languages associated
to a targeted language can also be modified. Note
that the list of similar languages is not necessarily

22https://pypi.org/project/
fastspell-dictionaries/

#Targeted langs(keys) dict for
#mistakeable languages (values)
similar:

af: [nl, de, af]
az: [tr, az]
be: [ru, uk, be]
bg: [mk, ru, bg]
bs: [hr, sr, sl, bs]
ca: [es, oc, ca]
cs: [sk, cs]
cy: [ga, en, cy]

Figure 2: First lines of the default similar.yaml file

symmetrical: a targeted language A may have lan-
guage B as similar, but a targeted language B may
not have language A as similar instead. Indeed, it
may not even be necessary to have language B
configured as a targeted language.

The hunspell.yaml file, which contains
Hunspell-related information such as the path to
the location of Hunspell dictionaries and the name
of the dictionary for each language, may also be
configured. This allows some flexibility in usage, for
example, to assemble a dictionary for a macrolan-
guage and use it as a targeted or similar language.
This is the case of Serbo-Croatian (hbs), for which
a single Hunspell dictionary gathers together Ser-
bian, Croatian and Bosnian in FastSpell.

FastSpell results, included in 1, show how some
languages not supported or badly supported by
other tools can be more reliably identified using
FastSpell, as is the case of Montenegrin or Norwe-
gian Nynorsk.

6. Conclusions and Future Work

We have presented FastSpell, a second-opinion
language identifier that reviews and refines deci-
sions made by a previous language identifier from
which a targeted language is set. FastSpell is able
to distinguish better between closely-related lan-
guages or to discover new languages or language
varieties not predicted by a language identifier (for
example, Norwegian Nynorsk), usually hidden or
confused with a larger-resource language (for ex-
ample, Norwegian Bokmål). There is still room for
enhancements that could be added to FastSpell,
for example:

• Exploring possible replacements for the cur-
rent fastText model, lid.176.bin, by, for exam-
ple, the 201-language model introduced in
(Burchell et al., 2023).

• Exploring faster implementations of fastText
such as fasterText.23

23https://github.com/kpu/fasterText

https://pypi.org/project/fastspell-dictionaries/
https://pypi.org/project/fastspell-dictionaries/
https://github.com/kpu/fasterText

7137

• Curating Hunspell dictionaries for languages
not having publicly available dictionaries to ex-
tend FastSpell’s language support. For ex-
ample, Pashto seems to be frequently miss-
labelled as Arabic, but we have not been able
to find any Pashto dictionaries that can be in-
tegrated into FastSpell. A similar situation is
found with Sindhi and Farsi.

• Exploring proper tokenization and/or stemming
of sentences before spellchecking with Hun-
spell to improve language identification accu-
racy after it. Since Hunspell is based in dictio-
naries of known words, spellchecking stems
instead of full words will probably result in
less false negatives, specially in inflected lan-
guages.

• Adding non-targeted identification, that is, not
focusing on a given language (by applying ex-
tra checks only for it and its similar languages),
but applying the extra checks for any identi-
fied language. This is expected to be substan-
tially slower, but will provide more accurate
language identification.

• Exploring using different error thresholds, de-
pending on the targeted language.

• Write a Hunspell-like engine which is capable
to process more than one language at once to
avoid repeated checks.

Current language extensions and enhancements
to FastSpell have been made inside the HPLT
project, still ongoing, which has recently produced
language resources for more than 75 languages
(de Gibert et al., 2024). Among those, there are
many that have different variants or are closely-
related languages which have benefited from Fast-
Spell refinements.

Acknowledgements This work has been
supported by the three ParaCrawl projects
(paracrawl.eu) funded by the Connecting Eu-
rope Facility of the European Union 2014–2020
(CEF Telecom) and an additional project,
MaCoCu (macocu.eu), also funded by the
same programme under Grant Agreement No.
INEA/CEF/ICT/A2020/2278341, all already fin-
ished. It is now being supported by the European
Union’s Horizon Europe research and innovation
programme under grant agreement No 101070350
and from UK Research and Innovation (UKRI)
under the UK government’s Horizon Europe
funding guarantee [grant number 10052546]
through the HPLT project (hplt-project.eu.org). We
thank professor Mikel L. Forcada for its thorough
review and contributions to this paper.

7. Bibliographical References

Mikko Aulamo, Nikolay Bogoychev, Shaoxiong Ji,
Graeme Nail, Gema Ramírez-Sánchez, Jörg
Tiedemann, Jelmer van der Linde, and Jaume
Zaragoza. 2023. HPLT: High performance lan-
guage technologies. In Proceedings of the 24th
Annual Conference of the European Association
for Machine Translation, pages 517–518, Tam-
pere, Finland. European Association for Machine
Translation.

Marta Bañón, Pinzhen Chen, Barry Haddow, Ken-
neth Heafield, Hieu Hoang, Miquel Esplà-Gomis,
Mikel L. Forcada, Amir Kamran, Faheem Kirefu,
Philipp Koehn, Sergio Ortiz Rojas, Leopoldo
Pla Sempere, Gema Ramírez-Sánchez, Elsa
Sarrías, Marek Strelec, Brian Thompson, William
Waites, Dion Wiggins, and Jaume Zaragoza.
2020. ParaCrawl: Web-scale acquisition of par-
allel corpora. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4555–4567, Online. Association
for Computational Linguistics.

Marta Bañón, Miquel Esplà-Gomis, Mikel L. For-
cada, Cristian García-Romero, Taja Kuzman,
Nikola Ljubešić, Rik van Noord, Leopoldo Pla
Sempere, Gema Ramírez-Sánchez, Peter Rup-
nik, Vít Suchomel, Antonio Toral, Tobias van der
Werff, and Jaume Zaragoza. 2022. MaCoCu:
Massive collection and curation of monolingual
and bilingual data: focus on under-resourced lan-
guages. In Proceedings of the 23rd Annual Con-
ference of the European Association for Machine
Translation, pages 303–304, Ghent, Belgium. Eu-
ropean Association for Machine Translation.

Laurie Burchell, Alexandra Birch, Nikolay Bogoy-
chev, and Kenneth Heafield. 2023. An open
dataset and model for language identification.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 865–879, Toronto,
Canada. Association for Computational Linguis-
tics.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister
Lindén. 2022. HeLI-OTS, off-the-shelf language
identifier for text. In Proceedings of the Thir-
teenth Language Resources and Evaluation Con-
ference, pages 3912–3922, Marseille, France.
European Language Resources Association.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas
Mikolov. 2016a. Fasttext.zip: Compressing text
classification models.

https://aclanthology.org/2023.eamt-1.61
https://aclanthology.org/2023.eamt-1.61
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/2020.acl-main.417
https://aclanthology.org/2022.eamt-1.41
https://aclanthology.org/2022.eamt-1.41
https://aclanthology.org/2022.eamt-1.41
https://aclanthology.org/2022.eamt-1.41
https://doi.org/10.18653/v1/2023.acl-short.75
https://doi.org/10.18653/v1/2023.acl-short.75
https://aclanthology.org/2022.lrec-1.416
https://aclanthology.org/2022.lrec-1.416
http://arxiv.org/abs/1612.03651
http://arxiv.org/abs/1612.03651

7138

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016b. Bag of tricks for
efficient text classification.

Julia Kreutzer, Isaac Caswell, Lisa Wang, Ah-
san Wahab, Daan van Esch, Nasanbayar
Ulzii-Orshikh, Allahsera Tapo, Nishant Sub-
ramani, Artem Sokolov, Claytone Sikasote,
Monang Setyawan, Supheakmungkol Sarin,
Sokhar Samb, Benoît Sagot, Clara Rivera,
Annette Rios, Isabel Papadimitriou, Salomey
Osei, Pedro Ortiz Suarez, Iroro Orife, Kelechi
Ogueji, Andre Niyongabo Rubungo, Toan Q.
Nguyen, Mathias Müller, André Müller, Sham-
suddeen Hassan Muhammad, Nanda Muham-
mad, Ayanda Mnyakeni, Jamshidbek Mirza-
khalov, Tapiwanashe Matangira, Colin Leong,
Nze Lawson, Sneha Kudugunta, Yacine Jer-
nite, Mathias Jenny, Orhan Firat, Bonaventure
F. P. Dossou, Sakhile Dlamini, Nisansa de Silva,
Sakine Çabuk Ballı, Stella Biderman, Alessia Bat-
tisti, Ahmed Baruwa, Ankur Bapna, Pallavi Bal-
jekar, Israel Abebe Azime, Ayodele Awokoya,
Duygu Ataman, Orevaoghene Ahia, Oghenefego
Ahia, Sweta Agrawal, and Mofetoluwa Adeyemi.
2022. Quality at a glance: An audit of web-
crawled multilingual datasets. Transactions of
the Association for Computational Linguistics,
10:50–72.

Gema Ramírez-Sánchez, Marta Bañón, Jaume
Zaragoza-Bernabeu, and Sergio Ortiz Rojas.
2022. Human evaluation of web-crawled parallel
corpora for machine translation. In Proceedings
of the 2nd Workshop on Human Evaluation of
NLP Systems (HumEval), pages 32–41, Dublin,
Ireland. Association for Computational Linguis-
tics.

8. Language Resource References

Petar Božović, Tomaž Erjavec, Jörg Tiedemann,
Nikola Ljubešić, and Vojko Gorjanc. 2018. Opus-
montenegrinsubs 1.0: First electronic corpus of
the montenegrin language.

Ona de Gibert, Graeme Nail, Nikolay Arefyev,
Marta Bañón, Jelmer van der Linde, Shaox-
iong Ji, Jaume Zaragoza-Bernabeu, Mikko
Aulamo, Gema Ramírez-Sánchez, Andrey Kutu-
zov, Sampo Pyysalo, Stephan Oepen, and Jörg
Tiedemann. 2024. A new massive multilingual
dataset for high-performance language technolo-
gies.

http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1607.01759
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.18653/v1/2022.humeval-1.4
https://doi.org/10.18653/v1/2022.humeval-1.4
http://hdl.handle.net/11356/1176
http://hdl.handle.net/11356/1176
http://hdl.handle.net/11356/1176
http://arxiv.org/abs/2403.14009
http://arxiv.org/abs/2403.14009
http://arxiv.org/abs/2403.14009

7139

A. Pre-configured similar languages

Targeted language Similar languages
Afrikaans Dutch, German

Azerbaijani Turkish
Belarusian Russian, Ukrainian
Bulgarian Macedonian, Russian
Bosnian Croatia, Serbian, Slovene
Catalan Spanish, Occitan
Czech Slovak
Welsh Irish, English
Danish Norwegian Bokmål, Swedish
Spanish Galician, Catalan

Farsi Arabic, Azerbaijani
Irish Welsh, English

Galician Spanish, Portuguese
Serbo-Croatian (Latin) Slovene

Serbo-Croatian (Cyrillic) Russian, Macedonian, Bulgarian
Hindi Marathi, Nepali

Croatian Bosnian, Serbian, Slovene
Indonesian Malay
Icelandic Danish, Norwegian Bokmål, Norwegian Nynorsk, Swedish
Hebrew Yiddish
Kazakh Kyrgyz, Tatar, Russian
Kyrgyz Russian, Kazakh, Tatar, Mongolian
Latvian Lithuanian

Montenegrin Croatian, Serbian, Slovene, Bosnian
Macedonian Bulgarian, Serbian, Russian
Mongolian Russian, Kyrgyz, Bulgarian

Marathi Hindi
Malay Indonesian

Norwegian Bokmål Danish, Swedish, Norwegian Nynorsk
Nepali Marathi, Hindi
Dutch Afrikaans

Norwegian Nynorsk Norwegian Bokmål, Danish, Swedish
Norwegian Danish, Swedish, Norwegian Nynorsk
Portuguese Spanish, Galician

Russian Ukrainian, Bulgarian
Slovak Czech, Polish

Slovene Serbian, Croatian, Bosnian
Somali English, Finnish, Welsh, Kannada
Serbian Bosnian, Croatian, Slovene, Montenegrin
Swedish Danish, Norwegian Bokmål

Tatar Kazakh, Kyrgyz, Russian
Ukrainian Belarusian, Russian, Macedonian, Bulgarian

Urdu Farsi, Arabic
Uzbek Turkish
Yiddish Hebrew

Table 2: FastSpell preconfigured similar languages

7140

B. The FastSpell Algorithm

function getLanguage(target_lang, sentence, strategy)
similar_langs← SimilarLanguages(target_lang) ∪ {target_lang}
pred_FT← FastText(lowercase(sentence))
if |similar_langs|=1 then ▷ similar_langs={target_lang} only

return pred_FT
end if
if pred_FT /∈ similar_langs then

return pred_FT
end if
candidate_langs← ∅
best_error_rate← 0
for all sim_lang ∈ similar_langs do

relevant_tokens← remove_uppercased(remove_non_alphabetic(tokens(sentence)))
correct_tokens← collect_correct_tokens(Hunspell(relevant_tokens, sim_lang))
error_rate← 1− (|correct_tokens|/|relevant_tokens|)
if error_rate ≤ error_threshold then

candidate_langs← candidate_langs ∪ {sim_lang}
if error_rate < best_error_rate then

best_error_rate← error_rate
end if

end if
end for
refined_candidates← candidates_with_lowest_error_rate(candidate_langs)
if |refined_candidates| = 1 then

return first(refined_candidates) ▷ The first and only language in the set
else if |refined_candidates| > 1 then

if strategy = aggressive then
if target_lang in refined_candidates then

return target_lang
else if pred_FT in refined_candidates then

return pred_FT
else

return first(refined_candidates) ▷ The first language will do in case of a draw
end if

else if strategy = conservative then
if target_lang ∈ refined_candidates ∧ best_error_rate = 0 then

return target_lang
else

return unknown_lang ▷ A special code
end if

end if
else if |refined_candidates|=0 ∨ |candidate_langs|=0 then

if strategy = aggressive then
return pred_FT

else if strategy = conservative then
return unknown_lang

end if
end if

end function

Figure 3: The FastSpell Algorithm

	Introduction
	Why FastSpell?
	Benchmarking Language Identifiers
	The FastSpell Spell
	Using FastSpell
	Conclusions and Future Work
	Bibliographical References
	Language Resource References
	Pre-configured similar languages
	The FastSpell Algorithm

