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Abstract
Existing models for diverse generative reasoning still struggle to generate multiple unique and plausible results.
Through an in-depth examination, we argue that it is critical to leverage a mixture of experts as prefixes to enhance
the diversity of generated results and make task-oriented adaptation in the latent space of the generation models
to improve the quality of the responses. At this point, we propose EpLSA, an innovative model based on the
synergy of expert-prefix mixtures and task-oriented latent space adaptation for diverse generative reasoning.
Specifically, we use expert-prefixes mixtures to encourage the model to create multiple responses with different
semantics and design a loss function to address the problem that the semantics is interfered by the expert-prefixes.
Meanwhile, we design a task-oriented adaptation block to make the pre-trained encoder within the generation
model more effectively adapted to the pre-trained decoder in the latent space, thus further improving the
quality of the generated text. Extensive experiments on three different types of generative reasoning tasks
demonstrate that EpLSA outperforms existing baseline models in terms of both the quality and diversity of the
generated outputs. Our code is publicly available at https://github.com/IMU-MachineLearningSXD/EpLSA.
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1. Introduction

Diverse generative reasoning aims to generate mul-
tiple semantically distinct and reasonable outputs
according to the same context, like abductive com-
monsense reasoning, where there are multiple pos-
sible intermediate hypotheses. Figure 1 shows
an example of abductive commonsense reasoning.
Given the cause "Mickey was bored." and the ef-
fect "Then, they played for the next hour.", there are
multiple possible explanations for the intermediate
hypothesis. As proved, generating multiple out-
puts with different semantics presents unique chal-
lenges in diverse generative reasoning. Therefore,
this paper investigates diverse generative reason-
ing and expects to improve the quality and diversity
of the generated text.

There are many models developed for diverse
generative reasoning due to their importance in
NLP applications. Among them, pre-trained lan-
guage models have been successful in performing
commonsense inference by implicitly learning rela-
tional patterns from large-scale corpora (Trinh and
Le, 2018). ClarET (Zhou et al., 2022) proposes a
general pre-trained framework for generative rea-
soning tasks. MoKGE (Yu et al., 2022) also uses a
pre-trained Transformer as the backbone network
to diversify the generative reasoning. COLD Decod-
ing (Qin et al., 2022) proposes a decoding frame-
work that unifies the constrained generation as the

Figure 1: An example of abductive commonsense
reasoning. It aims to generate explanatory hypothe-
ses given two observations: O1 as the cause and
O2 as the effect.

specific constraints through an energy function. To
improve diversity, the latest methods for generating
diverse sequences attempt to introduce uncertainty
by incorporating random noise into latent variables
(Gupta et al., 2018) or by using alternative search
algorithms (Vijayakumar et al., 2018; Fan et al.,
2018). The mixture of experts models has also
recently started to be widely used for diversity gen-
eration (He et al., 2018; Cho et al., 2019; Shen
et al., 2019; Yu et al., 2022).

After examining the examples from the models
with the pre-trained models and the mixture of ex-

https://github.com/IMU-MachineLearningSXD/EpLSA
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pert noise prefixes, we find that the models focusing
on promoting diversity lead to the result that the
generated texts do not match the semantics of the
source text, while the models aiming to improve
the quality of generation tend to produce duplicate
text when multiple samples are expected. There
are two reasons for such problems. The first rea-
son is that these models introduce noise prefixes
that interfere with the semantics of the source text,
thus leading to poor inference. The second rea-
son is that the pre-trained models, such as BART
(Lewis et al., 2020), are not trained for the specific
tasks, which means that the latent representations
of the BART encoder for different types of gener-
ative reasoning tasks do not match well with the
BART decoder through limited fine-tuning alone.
In different generative reasoning tasks, the source
text and the target text will show different types
of relationships, such as the causal relationship
between the source text and the target text in the
Abductive Commonsense Reasoning task, and the
summarization relationship between the source text
and the target text in the Story Ending Generation
task. Therefore, to enhance the diverse generative
reasoning, it is necessary to design a specified loss
function to correct the semantic information after
the introduction of the noisy prefix and make the la-
tent representations of the encoder better adapted
to the decoder according to task types.

Based on the above analysis, we propose EpLSA,
a novel method for diverse generative reasoning
tasks. In EpLSA, we employ a mixture of expert-
prefixes (MoE) module to extend the semantics of
the source text, in which each expert-prefix repre-
sents different semantic perspectives of the source
text. We design a loss function to correct the se-
mantic information after the introduction of the noisy
prefix (&3.2). We introduce a task adapter in EpLSA
to address the problem that the latent representa-
tion of the encoder of pre-trained models for differ-
ent types of tasks can’t be better adapted to the
decoder (&3.3). We utilize a hard-EM algorithm to
train EpLSA. Unlike other MoE models, we use the
minimum loss to choose the optimal expert-prefix
(&3.4). We conduct experiments on three differ-
ent types of generative inference tasks and found
that our model outperformed the strong baseline in
terms of diversity and generation quality, demon-
strating the effectiveness of our approach.

Our contributions can be summarized as follows:

• We propose a mixture of expert-prefixes in
EpLSA to improve the diversity in generative
reasoning tasks. Different from the previous
works, we design a loss function to correct the
semantic information after the introduction of
the noisy expert-prefixes.

• We introduce a task-oriented adapter in EpLSA,

which allows pre-trained models to be better
adapted to different tasks through the adapter.

• The proposed EpLSA for diverse generative
reasoning outperforms all baseline models in
terms of both the diversity and quality of the
generated outputs on three different types of
generative reasoning tasks.

2. Related work

2.1. Diversity Text Generation

Multiple output generation had a wide range of ap-
plications in machine translation (Shen et al., 2019),
question generation (Cho et al., 2019), dialogue
systems (Dou et al., 2021), story generation (Yu
et al., 2021), and paraphrase generation (Gupta
et al., 2018).

To improve generation diversity, various methods
were developed by exploring different perspectives.
Some research focused on generating uncertainty
by introducing random noise (Gupta et al., 2018)
or changing latent variables (Lachaux et al., 2020),
thereby increasing generation diversity. Shi et al.
(2018) used inverse reinforcement learning meth-
ods for unconditional diversified text generation.
The mixture of experts model was also used to
enhance generation diversity. Cho et al. (2019)
divided diversified generation into two stages: se-
lection and generation. Intuitively, at the selec-
tion stage, each latent variable indicated which
part of the source sequence was important. The
generation, phase was biased towards their focus
for generation. Shen et al. (2019) used a mix-
ture of experts module to improve machine trans-
lation diversity, where each source input was as-
signed to a minimum-loss predictor. Wen et al.
(2023) proposed an Equal-size Hard Expectation–
Maximization algorithm to train a multi-decoder
model for diverse dialogue generation. In addition,
sampling-based decoding was one of the most ef-
fective solutions to improve generation diversity.
Truncated sampling (Fan et al., 2018) limited the
range of values that can be generated by the sam-
pling process based on a predetermined cutoff
value. Nucleus sampling (Holtzman et al., 2020)
sampled the next token from a dynamic core unit
that contains most of the probability mass, rather
than decoding text by maximizing the likelihood.
Some of these methods do not reason about the
semantic information of the source text from dif-
ferent perspectives, and some do not correct the
semantic information of the source text after intro-
ducing noise prefixes.
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Figure 2: Overview of EpLSA. Expert-prefixes for diversity: we focus on k perspectives of the source
text through k expert-prefixes (&3.2); Task adapter for latent representation: we make the BART encoder
more effectively adapted to the BART decoder in the latent space (&3.3).

2.2. Generative Reasoning
In recent years, commonsense reasoning tasks
have received widespread attention. GRF (Ji et al.,
2020) proposed a method that utilizes the structure
and semantic information of external knowledge
bases by performing dynamic multi-hop reasoning
on relationship paths. MoKGE (Yu et al., 2022) was
the first work to boost diversity in natural language
generation by diversifying knowledge reasoning on
commonsense knowledge graphs. ClarET (Zhou
et al., 2022) proposed a pre-training framework for
event-centered reasoning by learning relevant per-
ceptual contexts to event transformers from event-
rich textual corpora. COLD Decoding (Qin et al.,
2022) was an energy-based Constrained Text Gen-
eration with Langevin Dynamics. Arabshahi et al.
(2021) also explored generative reasoning in com-
monsense scenarios, but the domain of their ap-
proach is limited. Chain-of-thought prompting tech-
niques were used to conduct step-by-step reason-
ing by eliciting intermediate steps from large lan-
guage models (Wei et al., 2022; Creswell et al.,
2022). However, none of the existing methods took
into account the adaptation of the encoder and de-
coder to different types of tasks.

3. Methodology

3.1. Overview of EpLSA
Generative reasoning tasks are characterized by
having multiple possible reasoning results that cor-
respond to the same given reasoning premise,
which means one-to-many generation. Given a
source input x, a set of outputs Y = (y1, y2...yk)
is obtained. Our goal is to model a conditional
distribution for the target outputs: p(y|x) that as-
signs high values to {p(y1|x), · · · , p(yk|x)} for k
mappings, i.e., {x → y1, · · · , x → yk}.

To improve the diversity and quality of the gen-
erated text, this paper proposes a model with the
synergy of expert-prefix mixtures and task-oriented
latent space adaptation (EpLSA), as shown in Fig-
ure 2. The expert-prefix provides a semantics as-
pect prefix for diversity generation, and the task
adapter improves the latent representation for bet-
ter generation quality. We model expert-prefixes
mixtures as a hard mixture of experts (hard-MoE)
(Jacobs et al., 1991; Shen et al., 2019). We use the
BART encoder and BART decoder for information
encoding and decoding.

3.2. Expert-prefixes for Diversity

To perform diverse generations, we explore differ-
ent semantic perspectives of the source text. In-
spired by the mixture of experts (MoE) approach,
we regard experts as prefixes, and reason from
different semantic perspectives of the source text
by mixing expert-prefixes (ep). As shown in Figure
2, we include k expert-prefixes with a length of l
before each input text sequence, thus providing
different inferred views of the source text.

Splicing noisy expert-prefixes with the source text
sequence brings multiple inference perspectives
while causing disturbance to the semantics of the
source text. Therefore, we design a loss function to
correct the semantic information of the source text.
Specifically, we introduce the task type, denoted
as tt. We randomly initialize the tt and let it be
updated during training. The semantic information
is corrected by learning the similarity between the
task type tt and the semantic difference of (ep, x)
and y. To facilitate the similarity calculation, we de-
fine a linear transformation function LT (h), which
converts the hidden state of the BART encoder to
the sentence-level semantic information similar to
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Bert’s [cls] (Devlin et al., 2019).

LTt = Adapter(tt) , (1)
LTx = LT (BART_Enc(ep, x)) , (2)
LTy = LT (BART_Enc(y)) . (3)

The training loss (here only for one expert-prefix)
is

LTask = 1− cos(LTx + LTt,LTy), (4)

where cos(·, ·) is the cosine similarity. By this
method, we alleviate the problem that the seman-
tics is interfered by the expert-prefixes for better
diverse reasoning.

3.3. Task Adapter for Latent
Representation

In diverse generative reasoning, the pre-trained
models are not trained specifically for downstream
tasks, so the latent representations of the BART
encoder for different types of generative reasoning
tasks do not match well with the BART decoder. To
allow the model to better adapt to different genera-
tive reasoning tasks, we introduce a task adapter
denoted as Adapter. The Adapter includes only
a position embedding layer, leading to a small in-
crease in parameters compared to the original pre-
trained model. We refer to the relationship between
the source text and the target text as the task type
tt, and use tt as the input of Adapter. After that,
the hidden state of the BART encoder and the out-
put of Adapter is used as the input of the BART
decoder.

LR = BART_Enc(X)+Adapter(tt), (5)
output = BART_Dec(LR). (6)

To enhance the compatibility between the
encoder-adapter combination and the decoder, we
define the training loss for Adapter (here only for
one expert-prefix) :

LTA = LT (Adapter(tt)), (7)
LAda = max(0, λ+ d(LTx + LTA,LTy)), (8)

where d(·, ·) represents the distance in semantic
space, which is the Euclidean distance used in this
work. λ is a hyperparameter that is used to bal-
ance the difference between the source semantic
representation and the target semantic representa-
tion. It is worth noting that our task adapter module
is applicable to all models with encoder-decoder
structures.

3.4. Overall objective
Taking the expert-prefixes ep, source text x and
task type tt as model inputs and generating the

Algorithm 1 Training
(N: Dataset size, K: Number of expert-prefixes)

Input: D =
{
(epK , x(i), y(i), tt)

}N

i=1
Output: L
1: for each i ∈ [1, N ] do
2: /*E-step select best expert-prefix.*/
3: for each z ∈ [1,K] do
4: L(i)z

LM = − log p(y|ep, x, tt)
5: end for
6: z(best)i = argminL(i)z

LM

7: /*M-step updates the parameters with gradi-
ents of the best expert-prefix from E-step.*/

8: L = Lz(best)i

LM + αLz(best)i

Task + βLz(best)i

Ada

9: θ = θ −∇θL
10: end for

output sequence y, we adopt the cross-entropy
loss, which can be denoted as:

LLM = − log p(y|ep, x, tt)

=

|y|∑
t=1

log p(yt|ep, x, tt, y < t).
(9)

The final loss we need to optimize is a linear
combination

L = LLM + αLTask + βLAda, (10)

where α and β are hyperparameters set according
to different tasks.

3.5. Model Training and Inference
Training Stage: Ideally, different expert-prefixes
represent different reasoning perspectives, allow-
ing for diverse reasoning. However, in the training
phase, only one reasoning perspective should be
dominant for a given input premise (Shen et al.,
2019). Unlike other mixture of experts models that
select a guidance expert, we select the optimal
expert-prefix based on the LLM . Specifically,
we employ a hard mixture model with hard-EM
algorithm (Dempster et al., 1977; Shen et al., 2019)
and select the best expert-prefix with the minimum
LLM as the prefix during the training process. The
specific training process be expressed as:

E-STEP (line 3-6 in Alg. 1) we sample all the
expert-prefixes and calculate their LLM using the
current parameters θ; We then select the best
expert-prefix with the minimum LLM .

M-STEP (line 8-9 in Alg. 1) we only use the gradient
of the expert-prefix selected by E-STEP to update
the parameters.

Independently parameterizing each expert-prefix
would lead to a dramatic increase in the number
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of parameters. Therefore, we follow the parameter
sharing mode used by Cho et al. (2019); Shen
et al. (2019); Yu et al. (2022). This only requires a
negligible increase in parameters over the models
that do not use MoE.
Inference Stage: To generate k different reason-
ing results on the test set, we follow the method
proposed by (Shen et al., 2019). By enumerating
all expert-prefixes, we decode each token through
ŷt = argmax p(y|ŷ1:t−1, ep, x, tt), where we require
each expert-prefix to represent different perspec-
tives of the source text. The decoding process is
efficient, easily parallelized, and can accommodate
a variety of decoding strategies. We use Nucleus
sampling at p = 0.95 (Holtzman et al., 2020).

4. Experiments

4.1. Tasks and Datasets
Abductive Commonsense Reasoning (αNLG) :
It aims to generate explanatory hypotheses when
two observations are given: O1 is the cause and O2

is the effect. We use the ART benchmark dataset
(Bhagavatula et al., 2020), following the data split
(Yu et al., 2022) with 50,481/1,779/3,560 in train-
ing/dev/test. Each example in the ART dataset
has 1 to 5 references.
Explanation Generation (EG) : Its purpose is to
provide explanations when counterfactual state-
ments are given (Wang et al., 2019). We use the
benchmark dataset ComVE from SemEval-2020
Task 4 (Li et al., 2020). We follow the data split
Yu et al. (2022) with 10000/997/1000 in training/de-
v/test. All examples in the dataset have 3 refer-
ences.
Story Ending Generation (SEG) : It is to generate
a reasonable ending given a four-sentence story
context. The stories come from ROCStories corpus
(Mostafazadeh et al., 2016). We follow the data
split (Guan et al., 2019) with 90000/4081/4081 in
training/dev/test. All examples in the dataset only
have 1 reference.

4.2. Baseline Methods
When we perform diversified reasoning, which
means one-to-many text generation, we exclude
baseline methods that can’t produce multiple out-
puts mentioned in related work and only compare
with methods that can generate diverse outputs,
e.g., Ji et al. (2020); Zhou et al. (2022); Qin et al.
(2022).
BART-base (Lewis et al., 2020) is a pre-trained lan-
guage generation model based on the Transformer
structure. We fine-tune the model on the abductive
commonsense reasoning, explanation generation,
and story ending generation tasks. Then using Nu-
cleus sampling (Holtzman et al., 2020) also known

as Top-p sampling and Truncated sampling (Fan
et al., 2018) also known as Top-k sampling for
sampling in the generation phase.
CVAE-SVG (Gupta et al., 2018) is a conditional VAE
model that can produce multiple outputs based on
an original sentence as input.
MoE-based method (Shen et al., 2019; Cho et al.,
2019): Mixture models provide an alternative ap-
proach to generating diverse outputs by sampling
different mixture components. We compare two
mixture of experts (MoE) implementations by Shen
et al. (2019) and Cho et al. (2019). We refer to
them as MoE-Shen (Shen et al., 2019) and MoE-
Cho (Cho et al., 2019).
MoKGE (Yu et al., 2022) is the first work to boost
diversity in NLG by diversifying knowledge reason-
ing on commonsense knowledge graphs. MoKGE
uses both embed and prefix to implement mixture
of experts. We refer to them as MoKGE_embed
and MoKGE_prompt. It is also the current SOTA
for the abductive commonsense reasoning and ex-
planation generation tasks.

4.3. Implementation Details
We initialize EpLSA and baseline model use BART-
base (Lewis et al., 2020), which is one of the state-
of-the-art pre-trained Transformer models for natu-
ral language generation (Gehrmann et al., 2021).

For model training, we use Adam (Kingma and
Ba, 2015) with a batch size of 15, gradient accumu-
lation steps of 4, the learning rate of 3e-5, learning
rate warm-up over the first 10,000 steps, and linear
decay of the learning rate. Our model is trained
by one GTX 1080Ti GPU with 11GB memory, and
implemented on PyTorch with the Huggingface’s
Transformer (Wolf et al., 2020).

4.4. Automatic Evaluation
We evaluate the performance of different genera-
tion models from two aspects: quality and diversity.
Quality metric(↑). We compare the highest accu-
racy between all generated sequences in the Top-K
list with the target sequence to measure genera-
tion quality (Ott et al., 2018; Vijayakumar et al.,
2018). Concretely, we generate K hypotheses{
Ŷ (1), · · · Ŷ (K)

}
from each source X and keep

the hypothesis Ŷ best that achieves the best sen-
tence level metric with the target Y . Then, we
calculate a corpus-level metric with the greedily-
selected hypotheses

{
Y (i)best

}N

i=1
and references

{Y (i)}Ni=1. We use BLEU-4 (Papineni et al., 2002)
and ROUGE-L (Lin, 2004) to evaluate the abduc-
tive commonsense reasoning and the explanation
generation tasks and use BLEU-1 and BLEU-2 (Pa-
pineni et al., 2002) to evaluate the story ending
generation task.
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Models αNLG EG
SB-3(↓) SB-4(↓) B-4(↑) R-L(↑) SB-3(↓) SB-4(↓) B-4(↑) R-L(↑)

CVAE-SVG (Gupta et al., 2018) 57.02 53.40 11.91 36.46 54.81 49.28 15.62 41.23
Top-k sample (Fan et al., 2018) 52.11 47.75 14.01 38.98 61.39 56.93 17.48 42.44
Top-p sample (Holtzman et al., 2020) 56.32 52.44 13.53 38.42 63.43 59.23 17.68 42.60
MoE_embed (Cho et al., 2019) 29.02 24.19 14.31 38.91 33.64 28.21 18.66 43.72
MoE_prompt (Shen et al., 2019) 28.05 23.18 14.26 38.78 33.42 28.40 18.91 43.71
MoKGE_embed (Yu et al., 2022) 29.17 24.04 13.74 38.06 35.36 29.71 19.13 43.70
MoKGE_prompt (Yu et al., 2022) 27.40 22.43 14.12 38.41 30.93 25.30 19.01 43.83
EpLSA (Ours) 23.18 17.82 15.25 40.35 27.93 21.33 19.40 44.02

Table 1: Diversity and quality evaluation on the test set of αNLG and EG. Each model is required to
generate three outputs. We use the generation results from Yu et al. (2022). Metrics: SB-3/4: Self-BLEU-
3/4 (↓), B-4: BLEU-4(↑), R-L: ROUGE-L (↑). (↑)/(↓) means the higher/lower score the better.

Models SEG
SB-3/4 (↓) B-1/2 (↑)

CVAE-SVG 61.78/58.18 30.65/14.60
Top-k sample 52.54/48.00 31.33/15.34
Top-p sample 51.83/47.32 31.26/15.37
MoE_embed 36.77/31.75 32.08/16.13
MoE_prompt 31.71/27.38 32.12/16.20
MoKGE_embed 26.02/20.65 29.90/13.76
MoKGE_prompt 30.00/25.66 30.08/13.85
EpLSA (Ours) 24.84/19.55 32.18/16.26

Table 2: Diversity and quality evaluation on the test
of SEG. Each model is required to generate three
outputs. The above results were obtained by using
the open-source code of the paper. Metrics: SB-
3/4: Self-BLEU-3/4 (↓), B-1: BLEU-1(↑), B-2:BLEU-
2 (↑). (↑)/(↓) means the higher/lower score the
better.

Pairwise metric(↓). Referred as self- (Zhu et al.,
2018) or pairwise- (Ott et al., 2018) metric, it mea-
sures the within-distribution similarity. This metric
computes the average of sentence-level metrics
between all pairwise combinations of hypotheses
{Y (1), · · · , Y (K)} generated from each source se-
quence x. In this paper, we use Self-BLEU-3 and
Self-BLEU-4. A low pairwise metric indicates high
diversity between generated hypotheses.

4.5. Experimental Results

To evaluate the effectiveness of EpLSA, we perform
experiments on three different types of generative
reasoning tasks. We present the results of the
automatic assessment for abductive commonsense
reasoning and explanation generation in Table 1
and the results of the story ending generation in
Table 2.

MoKGE (Yu et al., 2022) is the current SOTA for
diverse abductive commonsense reasoning and
the diverse explanation generation tasks. On the

Models αNLG
SB-3/4 (↓) B-3/4 (↑)

ChatGPT 23.62/17.01 1.61/19.32
EpLSA (Ours) 23.18/17.82 15.25/40.35

Table 3: Diversity and quality evaluation compare
with ChatGPT on the test of α NLG. Each model is
required to generate three outputs.

abductive commonsense reasoning task, EpLSA
achieves the best results in terms of both genera-
tive diversity and generative quality among all base-
line methods. EpLSA can further boost diversity
by about 4.22% and 4.61% on Self-BLEU-3 and
Self-BLEU-4, compared with the MoKGE. More-
over, EpLSA also enhances the generated quality
by approximately 1.13% and 1.94% on BLEU-4 and
ROUGE-L, compared with the MoKGE. On the ex-
planation generation task, EpLSA achieves compet-
itive results in all baseline models. Compared with
MoKGE, EpLSA achieves improvements of 3.00%,
3.97%, 0.39% and 0.19%, respectively. For story
ending generation task, EpLSA also achieves the
best results in all baseline models. Compared with
MoKGE, EpLSA achieves improvements of 1.18%,
1.10%, 2.28% and 2.50%, respectively. The above
results confirm that EpLSA improves the quality
and diversity of generated text. This is because
different expert-prefixes focus on different semantic
perspectives of the source text and the introduction
of the loss function corrects the semantic informa-
tion after introducing expert-prefixes, increasing
the diversity while ensuring the quality of the gen-
eration. The task adapter makes the pre-trained
encoder within the generation model more effec-
tively adapted to the pre-trained decoder in the
latent space for better diverse reasoning.

In addition, we compared our method with Chat-
GPT (OpenAI, 2023). The experimental data are
shown in the Table 3. Since the number of expert-
prefixes is set to 3 in this paper, we also let Chat-
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Models Size
αNLG EG SEG

Diversity Reasonability Diversity Reasonability Diversity Reasonability

Nucleus sampling 139M 3.01±0.60 3.20±0.62 2.83±0.44 3.64±0.51 2.98±0.30 3.56±0.42
MoE_embed 140M 3.71±0.21 3.51±0.43 3.46±0.41 3.82±0.42 3.62±0.43 4.10±0.22
MoE_prompt 140M 3.78±0.35 3.32±0.27 3.54±0.52 3.88±0.36 3.85±0.36 4.15±0.18
MoKGE_embed 145M 3.79±0.45 3.49±0.38 3.54±0.39 3.92±0.26 4.02±0.27 3.45±0.21
MoKGE_prompt 145M 3.93±0.26 3.25±0.36 3.88±0.27 3.91±0.29 3.88±0.36 3.51±0.30
EpLSA (Ours) 140M 4.22±0.30 4.12±0.28 4.15±0.35 4.08±0.33 4.16±0.36 4.20±0.26

Table 4: Human evaluation results on three datasets.

Models αNLG EG
SB-3(↓) SB-4(↓) B-4(↑) R-L(↑) SB-3(↓) SB-4(↓) B-4(↑) R-L(↑)

EpLSA (Ours) 23.18 17.82 15.25 40.35 27.93 21.33 19.40 44.02
w/o LTask 26.80 22.09 15.17 40.11 31.77 24.91 19.09 43.82
w/o Adapter 32.20 24.89 14.73 30.01 32.62 23.34 18.57 43.09
w/o MoE 44.35 38.91 14.61 39.66 57.91 52.51 18.44 43.37
BART-base (Top-p sampling) 56.32 52.44 13.53 38.42 63.43 59.23 17.68 42.60

Table 5: Ablation study of the proposed model. When not using MoE (line –w/o MoE), we set the beam
as three to generate three outputs. Metrics: SB-3/4: Self-BLEU-3/4 (↓), B-4: BLEU-4(↑), R-L: ROUGE-L
(↑). (↑)/(↓) means the higher/lower score the better.

GPT generate three different answers for a fair
diversity comparison. As shown in the table, the
performance of our approach is close to that of
ChatGPT, which proves that our method is effec-
tive in diversity generation. We significantly outper-
form ChatGPT on the quality assessment metrics
Bleu-4 and ROUGE-L. This is due to the fact that
ChatGPT is not fine-tuned in our dataset and the
answers are very different from those in the test
set resulting in lower metrics. The manual review
of the generated results reveals that the answers
generated by ChatGPT are logical and easy to un-
derstand. Therefore, Bleu-4 and ROUGE-L do not
reflect the quality of ChatGPT generation. Over-
all, our method achieves a similar performance to
ChatGPT.

4.6. Human Evaluation

Automatic diversity evaluation does not reflect
content-level diversity and contextual logical rea-
sonability. Therefore, we conducted an extensive
human evaluation to evaluate the quality and diver-
sity of outputs produced by different models. We re-
cruited 20 annotators and evaluated 100 sentences
randomly selected from the test set of each pair
of models. The diversity and reasonability scores
are normalized to the range from 0 to 5 and the re-
sults are shown in Table 4. Higher scores represent
better diversity and rationality.

4.7. Ablation Study

We conduct ablation studies to assess the effective-
ness of the various model components, as summa-
rized in Table 5. Our results demonstrate that each
component plays a crucial role in achieving optimal
performance. Particularly, removing the mixture
of expert-prefixes module (w/o MoE) resulted in
a significant decrease in the diversity reasoning
ability of the model. It indicates that the mixture of
expert-prefixes module is effective in performing
high-quality inference from multiple perspectives.
In addition, the removal of the loss function that
corrects semantic information (w/o LTask) and the
task adapter module (w/o Adapter) both reduce
the generation quality and diversity to some extent.
This is because the loss function helps to correct
semantic representation after introducing expert-
prefix and task adapter to improve the latent rep-
resentation for better diversity reasoning. There is
also a significant improvement in generation quality
and diversity when we do not use the MoE module
compared to BART-base. This observation implies
that the combination of task type and task adapter
effectively adapts the pre-trained model to different
tasks.

4.8. Impact of the Sampling Mothed

We carry out numerous experiments to examine
the impact of different sampling methods on di-
verse text generation. We use Self-BLEU-3/4 (↓)
to evaluate diversity and BLEU-4 (↑) to evaluate
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Figure 3: Effect of different parameters on the test set of αNLG.

generation quality. Specifically, we explore the ef-
fects of different parameters of Truncated sampling
(Fan et al., 2018) and Nucleus sampling (Holtzman
et al., 2020), as summarized in Figure 3. Overall,
it illustrates that the different parameters have a
small effect on the generation quality, with large
fluctuations in the generation diversity. Notably, we
obtain similar results with Truncated sampling at
k = 30 or k = 50 and Nucleus sampling at p = 0.95.
These observations suggest that the selection of
an appropriate sampling method is also crucial for
achieving diverse text generation.

4.9. Impact of the Numbers of
Expert-prefixes

We conduct experiments to analyze the effect of
the number of expert-prefixes on diversity and gen-
eration quality, as shown in Figure 3 (c). We found
that the increase in the number of expert-prefixes
negatively impacted the diversity metrics while im-
proving the quality of the generation. Upon closer
examination of the generated examples, it becomes
evident that the more expert prefixes there are, the
greater the diversity of the generated answers. The
reason behind the decline in the diversity indica-
tor can be attributed to the presence of common
elements within the generated answers, such as
shared names or locations. It is necessary to un-
derstand that the method employed to calculate

the diversity metric, Self-BLEU, magnifies the im-
pact of even subtle similarities. As a result, the
metric responds significantly even if there are very
few shared elements, resulting in a deteriorating
indicator.

Since all baseline models generate three differ-
ent answers, we also set the number of expert-
prefixes to 3 in our experiments to maintain fairness.
It is worth noting that when the number of mixtures
of expert-prefixes is equal to 1, it is equivalent to
directly performing the M-step of the hard-EM algo-
rithm, making the mixture of experts system irrele-
vant at this point.

4.10. Impact of the Length of
Expert-prefixes

These expert-prefixes represent different perspec-
tives on the semantics of the source text that we
should focus on. To ensure that the length of the
expert-prefixes is appropriate to avoid a large inter-
ference with the semantics of the source text, we
conduct extensive experiments, the results of which
are shown in Figure 3 (d). Our results show that
the length of the expert-prefixes can’t highlight the
semantic perspective that needs to be focused on if
it is too short, while the length of the expert-prefixes
can have an excessive impact on the semantics of
the source text if it is too long. The optimal length of
the expert-prefixes is different on different datasets,
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so we need to set it according to different task types.
In this paper, we set the length of expert-prefixes
to 5.

EpLSA consistently outperforms existing models
when the length of expert-prefixes is greater than
1. It is worth noting that the optimal results are
achieved when the length of the expert prefix is
between 15% and 25% of the average length of the
source text.

5. Conclusion

In this paper, we propose EpLSA, an innovative
model based on the synergy of expert-prefix mix-
tures and task-oriented latent space adaptation for
diverse generative reasoning. We introduce expert-
prefix mixtures to encourage the model to create
multiple responses with different semantics, where
each expert-prefix focuses on a different perspec-
tive of the source text. Meanwhile, we define a loss
function to correct semantic information after intro-
ducing expert-prefixes. In addition, the task adapter
makes the pre-trained encoder within the gener-
ation model more effectively adapted to the pre-
trained decoder in the latent space for better gen-
eration quality. Our experiments show that EpLSA
outperforms existing baseline models in terms of di-
versity and generation quality across three different
types of generative reasoning tasks.
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