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Abstract
Large language models (LLMs) have been used for machine translation. When provided with prompts and source
sentences, LLMs can achieve impressive translation results. However, the robustness of these LLMs remains a
significant challenge, as they often struggle to accurately translate sentences in the presence of noise, even when
using similarity-based in-context learning methods. This work proposes a research scheme for studying machine
translation robustness on LLMs, investigating whether LLMs can learn translation robustness from noisy-source
demonstration examples. Through experiments on different models, languages, and noise types, we empirically
demonstrate that LLMs can learn how to handle noise and translation methods from noisy-source demonstration
examples, thereby improving their translation performance on noisy sentences. Furthermore, we find that increasing
the noise ratio appropriately for the noisy-source demonstration examples can enhance the translation robustness
of LLMs. Additionally, we also attempt to investigate scenarios where LLMs are more likely to learn translation
robustness for mixed and specific types of noise. We find that the model’s performance varies across different noise
settings.
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1. Introduction

The emergence of LLMs has posed a great im-
pact on the field of natural language processing.
They are not only capable of capturing knowledge
of general domains, but also highly adaptable to
the knowledge of various specialized domain. This
multi-domain knowledge coverage makes LLMs a
powerful tool for cross-domain natural language
processing tasks, which can be applied to a variety
of domains such as medicine (Thirunavukarasu
et al., 2023), law (Cui et al., 2023), and finance
(Wu et al., 2023). In addition, it can achieve su-
perior capabilities on a wide range of tasks (Wei
et al., 2022), achieving comparable results to task-
specific SOTA models on tasks such as senti-
ment analysis (Wang et al., 2023b) and natural
language inference (Qin et al., 2023). It has also
shown excellent performance in the field of ma-
chine translation (Wang et al., 2023a).

Since fine-tuning LLMs is usually costly, it has
become mainstream to design specific prompting
strategies to enable LLMs to accomplish specific
tasks. One effective prompting approach is to com-
bine task descriptions and demonstration exam-
ples into prompts, i.e., in-context learning (Dong
et al., 2022). It has been suggested that it can en-
hance the performance of a model by learning the
mapping relationship between inputs and outputs
(Pan, 2023). Similarly, employing in-context learn-
ing for translation can also enhance the translation
performance of LLMs (Agrawal et al., 2022), select-
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ing demonstration examples that are more similar
to the test samples can bring more enhancement
to the LLMs (Moslem et al., 2023).

In more complex robust machine translation sce-
narios, our preliminary experiments with LLMs re-
veal the same phenomenon with Moslem et al.
(2023), i.e., selecting demonstration examples
based on similarity leads to a greater improvement
in the performance of the LLMs than choosing
demonstration examples randomly. Nevertheless,
it is important to note that our investigations also
unveil the LLMs’ limitations in effectively address-
ing noise within the target sentences, even when
utilizing the most closely related sentence pair as
a demonstration example.

In this work, we use a in-context learning ap-
proach to translate noisy sentences and attempt
to explore whether LLMs can learn how to han-
dle noise in test samples by incorporating noisy-
source demonstration examples, thereby enhanc-
ing the robustness of LLMs for machine trans-
lation. To accomplish this goal, we propose a
research scheme for the robustness of machine
translation in the context of LLM. Our approach
commences with the preparation of both synthetic
and natural noise data. Subsequently, under
the setting of considering the similarity between
the sentence to be translated and the demon-
stration examples, we employ three distinct sam-
pling methods to sample demonstration examples.
These methods encompass sampling from clean
data, sampling from a combination of different
types of noisy data, and sampling exclusively from
a single type of noisy data. Finally, we eval-



2799

uate and analyze the translations generated by
the model to determine whether it demonstrates
an increased level of robustness in noisy con-
texts. In essence, a sufficient condition for en-
hancing a model’s translation robustness entails
maintaining or improving its performance on clean
datasets while concurrently bolstering its perfor-
mance on noisy datasets. Therefore, our primary
focus lies in evaluating the model’s accuracy on
both clean and noisy datasets. We open source
our code and data at https://github.com/tjunlp-
lab/llm_translate_robust.

In summary, our contributions are as follows:
• We propose a research scheme for investigat-

ing the robustness of LLMs on machine trans-
lation.

• We construct a Chinese-English natural noise
translation dataset based on the Multilingual
Microblog Translation Corpus (McNamee and
Duh, 2022), realizing fine-grained natural
noise classification.

• Using the research scheme proposed in this
paper, we find 1) LLMs are able to learn trans-
lation robustness from noisy-source demon-
stration examples with synthetic noise. 2)
LLMs are more likely to learn robustness
to character-level noise through type-specific
synthesized noise, but less likely for robust-
ness to word-level noise through mixed-type
synthesized noise. 3) For specific and mixed
types of natural noise, LLMs perform inconsis-
tently in the learning of robustness over high
and low resource languages.

2. Related Work

In-context learning is a commonly used prompt-
ing technique. It composes a prompt into the
model by combining demonstrations with test in-
puts. Compared to zero-shot learning, utilizing in-
context learning can enhance the performance of
LLM on a variety of tasks (Brown et al., 2020).
There have been a number of works that have in-
vestigated the reasons for the effectiveness of in-
context learning. One of the studies points out that
in-context learning can actually be decoupled into
two mechanisms, task recognition and task learn-
ing (Pan, 2023). There are also studies that re-
late in-context learning to gradient descent and un-
derstand in-context learning as implicit fine-tuning
(Dai et al., 2022). When using in-context learn-
ing methods, the demonstration example selection
and ordering affects the performance of in-context
learning (Zhao et al., 2021). Additionally, demon-
strations embedded closer to the test input usually
lead to better performance than those embedded
further away (Liu et al., 2021).

On specific downstream tasks, there are stud-
ies that apply LLMs to machine translation and
show their excellent capabilities. Just using sim-
ple prompts can make it possible to achieve results
comparable to commercial MT systems in high-
resource languages (Jiao et al., 2023). If task in-
formation and domain information are introduced
in the prompts, it can stimulate the ability of LLMs
for machine translation even further (Peng et al.,
2023). In addition, there has been work explor-
ing the use of in-context learning approaches to
apply LLMs for machine translation, and select-
ing in-context examples that have a higher degree
of overlap with the content of the sentence to be
translated can significantly improve the translation
effect of LLMs (Agrawal et al., 2022). However, the
LLMs do not perform well enough on complex ma-
chine translation tasks, and the results obtained
by evaluating the LLMs using a noisy translation
test set show that the translation robustness of the
LLMs still need to be strengthened (Jiao et al.,
2023).

Translation robustness has been a pressing is-
sue in machine translation. Recent studies have
shed light on the impact of adversarial attacks
at the source side vs. the target side, prompt-
ing a quest for more efficient methods of attack
(Zeng and Xiong, 2021). Addressing these chal-
lenges, there have been endeavors to fortify ma-
chine translation systems against black-box (Wal-
lace et al., 2020) and white-box attacks (Cheng
et al., 2019). In particular, research has delved
into mitigating specific types of noise, such as ho-
mophonic errors (Qin et al., 2021). Furthermore,
Pan et al. (2023) find that robustness can also be
transferable across languages to improve transla-
tion robustness in multilingual scenarios. Such
robustness studies on neural machine translation
could provide guidance for analyzing and enhanc-
ing translation robustness for LLMs.

While in general in-context learning can im-
prove the performance of LLMs, injecting noise
into demonstration examples has not been ex-
plored. In addition, previous work has only evalu-
ated LLMs on translation test sets with noise, and
has not gone further to explore how to make LLMs
more robust to translation. In this work, we try to
reveal whether LLMs can learn translation robust-
ness from noisy-source demonstration examples.
This is another aspect to study in-context learning
and provides inspiration to improve translation ro-
bustness for LLMs.

3. Approach

In order to investigate whether LLMs can learn
translation robustness from noisy-source in-
context demonstrations, we have proposed a

https://github.com/tjunlp-lab/llm_translate_robust
https://github.com/tjunlp-lab/llm_translate_robust
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Figure 1: The proposed research scheme to explore whether LLMs can obtain translation robustness
under noisy-source in-context demonstrations.

research scheme for robust machine translation
in the context of LLMs. As shown in Figure 1,
the scheme can primarily be divided into three
stages: noise data preparation, in-context learn-
ing for translation using LLMs, and evaluation of
translation robustness.

3.1. Noisy Data Preparation

In the noise data preparation stage, we prepare
synthetic noise and natural noise data separately.
This is due to the different data distributions of syn-
thetic noise and natural noise, LLMs may produce
different performances on data with different distri-
butions of noise characteristics.

Synthetic Noise In terms of synthetic noise, we
add three types of noise to the clean translation
dataset. Specifically, it includes character-level,
word-level, and multi-level noise. Three levels of
noise can be added to the data by performing
three levels of black-box attack methods respec-
tively. Character-level black-box attack methods
involve random character insertion, random char-
acter deletion, random character replacement,
and random adjacent character swapping oper-
ations. Word-level black-box attack methods in-
clude insertion and replacement using words with
similar word embeddings to the target word, ran-
dom word deletion, and random word swapping
operations. Character-level black-box attack meth-
ods and word-level black-box attack methods are
combined to form a multi-level black-box attack
methods. In addition, we only add noise to the part
of the source language in the dataset, leaving the
data in the target language unchanged.

Natural Noise In terms of natural noise, we col-
lect user texts generated by social media as raw
natural noise data. We refer to MTNT (Michel and
Neubig, 2018) to classify natural noise into ten
categories, namely spelling/typographical errors,
grammar errors, spoken language, slang, proper
nouns, dialects, code switching, jargon, emojis,
and slurs. We then follow the steps of rule-based
labeling, model-based labeling, and manual label-
ing to classify the natural noise categories of the
data in order to reduce the classification bias.

3.2. In-context Learning for Translation
using LLMs

After the synthetic noise data and natural noise
data are prepared, we take an in-context learning
approach to translate the noisy sentences using
LLMs.

Formally, given k in-context examples {xi,yi}k1 ,
each x and y is a pair of source and target sen-
tences from the parallel corpus, the model input
xp can be constructed by concatenating the in-
context examples to the test sentence to be trans-
lated. The model can be parameterized by θ. The
model translation output ŷ can be generated as fol-
lows:

ŷt = arg max
y′
t

PLLM (y′t | xp, ŷ<t;θ) (1)

In order to explore whether an LLM can learn
to be robust against noise in in-context examples
and then correctly translate noisy sentences, we
take the following three approaches to sampling
in-context examples:

• CLEAN: Sampling in-context examples from
clean data. This sampling method is limited to
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synthetic noise. Because the raw data of syn-
thetic noise is considered clean data, it can
be randomly sampled as a sample set. How-
ever, the natural noise data collected are con-
sidered noisy and there is no clean data to
sample corresponding to it.

• MIXED: Sampling in-context examples from
mixed noise categories of data. In the case of
synthetic noise, clean, character-level noise,
word-level noise, and multi-level noise are
combined as an in-context example sampling
set for sampling. In the case of natural noise,
the ten categories of noise data are combined
as in-context example sampling sets for sam-
pling.

• SPECIFIC: Sampling in-context examples
from data with the same noise type as the sen-
tence to be translated. We first determine the
noise type of the sentence to be translated,
and then select all sentences with the same
type of noise as the sentence to be translated
as the contextual example sampling set to be
sampled.

All the above sampling methods select the most
similar sentences to the test samples from the sam-
pling set as demonstration examples. After com-
pleting the sampling of demonstration examples,
we then construct the prompts for the demonstra-
tion examples according to the specified template,
and add the noisy sentences to be translated into
the prompts to form the final prompts. The con-
structed prompts are fed into the LLMs, and the
model can return the translation results of the sen-
tences to be translated.

3.3. Evaluation of Translation
Robustness

In terms of synthetic noise, we mainly observe
whether the performance of the LLMs on clean and
noisy datasets improves at the same time, given
the demonstrations with noise; in terms of natural
noise, we only observe whether the performance
of the LLMs on noisy datasets improves, since we
only collect comment data with natural noise and
lack clean test data in the corresponding domain.

4. Experiments

Using the proposed research scheme on robust
machine translation in the background of LLMs,
we conducted extensive experiments on different
languages, different types of noise, and different
models, to explore whether LLMs can learn trans-
lation robustness from noisy-source demonstra-
tions.

4.1. Data
We prepared the synthetic and natural noise data
according to the methodology of noise data prepa-
ration mentioned in the research scheme.

4.1.1. Synthetic Noise Data

We used the Chinese-English parallel corpus data
from the publicly available WMT News Test Set
dataset (Barrault et al., 2019) and the Indonesian-
Chinese data from the TED TALKS 2020 dataset
(Reimers and Gurevych, 2020), randomly selected
a portion of these data as the raw data, and then
added synthetic noise to them. For the Indonesian-
Chinese translation, we used the nlpaug library
(Ma, 2019) to implement character-level, word-
level, and multi-level black-box attack operations
to add noise. In terms of character-level black-
box attacks, the proportion of attacked words to all
words in each sentence is 0.3. Each attacked word
has up to one character modified in it. The cov-
erage of the four attack operations per sentence
is 25%. For word-level black-box attacks, the pro-
portion of attacked words to all words in each sen-
tence is 0.3. Word insertion and substitution op-
erations are language-dependent and require the
use of language-specific pre-trained word embed-
dings to find words with similar semantics. We
chose fastText pre-trained word embeddings1 here
and selected the most semantically similar words
to replace. Similarly, the coverage of the four at-
tack operations per sentence is 25%. In terms of
multi-level black-box attacks, character-level and
word-level attack operations are combined. The
coverage of eight attack operations per sentence
is 12.5%. For the Chinese-English language di-
rection, the only difference is that in regards to the
character-level black-box attack, the randomly re-
placed or inserted characters are those that are
homophonic to the target character, which is more
in line with realistic noise scenarios.

4.1.2. Natural Noise Data

For Chinese-English translation, we used the
Chinese-English part of the MMTC dataset (Mc-
Namee and Duh, 2022). We performed secondary
processing of the data, including data filtering,
modification and labeling of noise categories. We
started by filtering for repeated sentences. Also we
filtered the data for discriminatory statements, as
the LLMs may reject translations of these discrim-
inatory statements. We also observed that there
is a mismatch between username mentions and
URLs in the parallel corpus. That is, when the
username mention exists in the source sentence,
the reference translation may or may not translate

1https://fasttext.cc/docs/en/crawl-vectors.html



2802

the username mention, which has an impact on
the quality of the data. Therefore, we uniformly re-
move username mentions and URLs from the sen-
tences. Finally we follow the following three steps
for labeling the natural noise categories.

1) Rule-based labeling: The emojis noise in
sentences is labeled by using regular expres-
sions. In particular, for Chinese, dialect noise
in sentences can be labeled by using the
opencc library2, and code switching noise in
sentences can be labeled by using regular ex-
pressions.

2) Model-based labeling: We use the GPT-3.5-
turbo api3 for labeling. The manually labeled
examples are used as context samples, which
are then entered into the model as prompts
along with the samples to be labeled. In-
cluding context samples in the prompts effec-
tively specifies the format of the model output
noise categories and facilitates the extraction
of noise categories from the model output.

3) Manual labeling: The above steps of auto-
matic labeling may produce errors, we need
to manually confirm and modify the labeling
results to ensure the correctness of the label-
ing results.

After labeling, the raw natural noise data is divided
into ten categories. Since a sentence may contain
multiple natural noises, it is possible that the sen-
tences in each category may overlap.

In Indonesian-Chinese translation, we used the
publicly available Indonesian-Chinese noise trans-
lation dataset. Its data is also derived from social
media, which is more consistent with the distribu-
tion of natural noise data in the Chinese-English
language direction. In addition, it has the same
noise classification as that set forth herein.

Having been labeled and organized, the statis-
tical information of the natural noise dataset in
the Chinese-English language direction and the
Indonesian-Chinese language direction is shown
in Figure 2. As can be seen from the figure,
both language directions have more grammatical
errors, spoken language, slang, and proper nouns
natural noise errors, and fewer spelling/typo and
slurs natural noise errors.

4.2. Model
We used two families of LLMs, Baichuan2 (Yang
et al., 2023), Qwen (Bai et al., 2023). For
Baichuan2, we used the chat version of 7B and
13B. For Qwen, we used the chat version of 7B
and 14B.

2https://github.com/BYVoid/OpenCC
3https://openai.com/product

Figure 2: Statistical information on natural noise
categories in the Chinese-English and Indonesian-
Chinese translation.

4.3. Sampling Details
In selecting demonstration examples, we first de-
termined the sampling set based on different sam-
pling methods. Then we calculated the sentence
embeddings of the sampling set and the sentence
to be translated separately using the sentence-
transformer (Reimers and Gurevych, 2020). After
that, we computed the cosine similarity between
the sentence embeddings to be translated and the
sentence embeddings of the sampling set. Fi-
nally, a specified number of demonstration exam-
ples that are most similar to the sentence to be
translated are selected.

4.4. Results
LLMs can learn translation robustness from
demonstration examples with synthetic noise.
From Table 1, it is evident that LLM translation re-
sults with MIXED sampling method yield slightly
higher BLEU scores than the CLEAN sampling
method on the clean test set. Since the CLEAN
sampling setup samples clean demonstration ex-
amples, while in the MIXED sampling setup sam-
ples basically demonstration examples with noise,
this suggests that introducing moderate noise to
demonstration examples has no adverse impact
on LLM translation of clean sentences. This may
be due to the fact that noise in the demonstra-
tion example serves as augmented data, enhanc-
ing model performance. BLEU scores achieved
with MIXED and SPECIFIC sampling methods
are consistently higher than those obtained with
CLEAN sampling method on character-level noise,
word-level noise, and multi-level noise test sets.
This implies that for translating noisy sentences,
demonstration examples with noise are more valu-
able than clean ones. The model can learn from
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shots
Baichuan2-7B-Chat Baichuan2-13B-Chat

Clean Character
Noise

Word
Noise

Multi
Noise Clean Character

Noise
Word
Noise

Multi
Noise

0 shot 15.34 10.98 8.66 10.15 14.77 11.97 9.53 10.64

CLEAN
1 shot 24.16 18.19 15.42 17.28 26.32 20.99 16.76 19.19
3 shot 23.75 17.60 15.70 16.90 26.68 21.59 17.82 19.72
5 shot 24.32 18.77 15.99 17.85 25.86 20.64 18.10 19.39

MIXED
1 shot 24.04 18.94 15.55 17.76 26.39 21.04 17.60 19.67
3 shot 24.42 17.87 15.47 17.34 26.32 21.68 18.02 20.12
5 shot 24.49 19.54 16.65 17.00 26.45 21.98 18.57 20.44

SPECIFIC
1 shot 24.16 18.59 15.70 17.50 26.32 21.12 17.65 19.19
3 shot 23.75 18.55 16.05 18.04 26.68 22.06 18.14 20.14
5 shot 24.32 20.03 15.27 19.06 25.86 22.35 17.59 21.20

Table 1: Results of Baichuan2-7B-Chat model and Baichuan2-13B-Chat on Chinese-English dataset of
sythetic noise. (underline: the maximum value of the data in this column for the current sampling method;
bold: the maximum value of data in this column for all sampling methods).

shots
Qwen-7B-Chat Qwen-14B-Chat

Clean Character
Noise

Word
Noise

Multi
Noise Clean Character

Noise
Word
Noise

Multi
Noise

0 shot 21.41 7.79 12.52 11.48 24.25 13.51 14.51 14.34

CLEAN
1 shot 22.33 9.22 13.43 11.26 25.89 15.47 14.54 16.05
3 shot 22.89 9.03 13.43 12.62 26.04 17.20 16.09 17.70
5 shot 22.67 9.68 13.84 12.81 26.01 15.98 16.20 17.57

MIXED
1 shot 22.25 10.17 13.92 12.35 25.96 16.87 16.18 16.95
3 shot 22.96 10.38 13.78 12.25 26.26 17.97 17.34 18.55
5 shot 22.90 9.98 14.37 13.30 26.15 18.16 17.57 18.21

SPECIFIC
1 shot 22.33 10.51 13.90 12.22 25.89 17.28 15.37 17.12
3 shot 22.89 9.87 12.86 12.91 26.04 18.26 16.08 18.39
5 shot 22.67 9.28 12.97 12.99 26.01 18.12 17.45 18.77

Table 2: Results of Qwen-7B-Chat model and Qwen-14B-Chat on Indonesian-Chinese dataset of sythetic
noise.

demonstration examples with synthesized noise
how to handle the noise and translate it so that it
can better cope with the sentence to be translated.
This scenario remains consistent even when se-
lecting a different number of demonstration exam-
ples. Similarly, Table 2 demonstrates consistent
findings in low-resource languages. Therefore, we
can empirically conclude that Language Models
(LLMs) can acquire translation robustness from ex-
amples with synthetic noise. Additionally, when
employing the same sampling method configura-
tion, the greater the number of demonstration ex-
amples used, the more likely LLMs are to exhibit
improved translation performance. However, in
certain cases, there may also be situations where
3-shots perform better than 5-shots. Our case
studies reveal that an increased number of demon-
stration examples may lead to a higher likelihood
of the model exhibiting hallucination, potentially ex-
plaining why 5-shots do not perform as well as 3-
shots in certain instances.

LLMs are more likely to learn robustness
to character-level noise through type-specific

synthetic noise and robustness to word-level
noise through mixed-type synthetic noise. By
referring to Table 1 and Table 2, we can observe
that, for the character-level noise test set, using
the SPECIFIC sampling method yields better re-
sults for LLMs compared to the MIXED sampling
method. For instance, the Baichuan2-7B-Chat
model achieved the highest BLEU score of 20.03
on the Chinese-English character-level noise test
set using SPECIFIC sampling. However, for word-
level noise test sets, LLMs perform better using the
MIXED sampling method compared to the SPE-
CIFIC sampling method. These findings hold true
for both high- and low-resource languages. This is
to some extent due to the fact that coarse-grained
word-level noise includes fine-grained character-
level noise, so the model can learn robustness to
word-level noise through character-level noise, but
not vice versa.

The robustness of LLMs in learning from vari-
ous types of natural noises varies across high
and low-resource languages. Through Tables
3 and 4, we can observe that in high-resource
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shots Code
Switch Dialect Emojis Grammar Jargon Proper

Nouns Slang Slurs Spelling/
Typo

Spoken
Language Average

0 shot 15.77 15.19 15.17 14.40 17.11 17.31 14.40 12.83 16.77 15.09 15.40

MIXED
1 shot 15.60 16.73 14.63 16.79 17.74 17.92 16.90 14.97 19.42 15.41 16.61
3 shot 15.47 14.85 12.67 15.28 16.98 16.05 15.14 12.37 20.66 15.09 15.45
5 shot 14.55 13.50 11.92 15.05 15.90 15.55 14.45 10.18 16.09 13.58 14.08

SPECIFIC
1 shot 15.28 15.33 14.13 14.35 17.13 16.41 14.69 11.37 18.44 13.56 15.07
3 shot 16.52 15.75 12.45 14.25 16.96 17.08 14.35 9.73 16.85 13.96 14.79
5 shot 16.16 15.54 13.12 15.20 17.34 16.99 14.98 11.35 17.17 14.25 15.21

Table 3: Results of Baichuan2-7B-Chat model on Chinese-English dataset of natural noise.

shots Code
Switch Dialect Emojis Grammar Jargon Proper

Nouns Slang Slurs Spelling/
Typo

Spoken
Language Average

0 shot 17.83 17.77 17.41 19.40 20.43 23.19 18.73 12.35 18.07 17.18 18.24

MIXED
1 shot 18.17 17.59 21.72 19.60 21.32 22.21 18.45 12.72 20.46 19.41 19.16
3 shot 16.55 18.84 17.92 19.09 18.95 23.22 20.26 15.48 16.20 19.13 18.56
5 shot 18.91 17.51 15.08 20.67 21.50 20.94 19.86 15.03 14.87 19.09 18.35

SPECIFIC
1 shot 19.23 17.49 20.66 20.02 21.30 23.38 18.53 13.80 20.16 19.36 19.39
3 shot 18.36 17.45 21.62 17.14 21.72 23.77 20.41 14.38 21.57 19.00 19.54
5 shot 15.43 15.04 16.04 21.09 23.13 24.81 15.85 13.57 21.37 17.77 18.41

Table 4: Results of Qwen-7B-Chat model on Indonesian-Chinese dataset of natural noise.

languages, LLMs achieve higher BLEU scores for
translation results under the MIXED sampling set-
ting compared to the SPECIFIC setting. How-
ever, the opposite trend emerges in low-resource
languages. This holds with different numbers of
demonstration examples. This may be attributed
to the fact that LLMs have more comprehensive
knowledge in high-resource languages, enabling
them to use mixed type noise for translation ro-
bustness. Conversely, in low-resource languages,
where knowledge is lacking, specific types of
natural noise are needed to learn translation ro-
bustness. Therefore, it can be empirically con-
cluded that the performance of LLMs in acquir-
ing translation robustness varies inconsistently in
high-resource and low-resource languages when
exposed to various types of natural noise.

5. Analysis

We explore the effect of the noise ratio in the
demonstrations on the learning effect of the LLMs’
translation robustness, and investigate the trans-
lation robustness of the LLM learned from noisy-
source demonstrations for specific examples.

5.1. Effect of Noise Ratio in
Demonstrations

We explore the effect of the noise ratio in
the demonstration example on model robustness
learning on the Chinese-English dataset for three
synthetic noise types. Specifically, we use the
BLEU value of the MIXED sampling method sub-
tracted from the BLEU value of the CLEAN sam-

pling method under the same shot setting as a
measure of the robustness of the LLMs, and con-
duct the experiments under the settings of noise
ratio of 0.1, 0.3, and 0.5, respectively, and the re-
sults are shown in Fig 3.

We find that as the noise proportion increases,
the average BLEU improvement of LLMs for three
types of noise in all shot scenarios also increases.
The trends in BLEU improvement values for the
three types of noise under specific shot settings
exhibit a similar pattern for the most part. There-
fore, we empirically conclude that the robustness
of LLMs to noise they learn improves within a cer-
tain noise proportion range as the noise propor-
tion increases. However, this increasing trend will
slow down as the noise level increases. Therefore,
we predict that the improvement of LLMs’ robust-
ness to noise will not continuously increase with
the increase in noise levels. Only when the noise
level is within a certain range, more noise imparts
greater knowledge to LLMs, and the performance
improvement of LLMs’ robustness to noise will in-
crease accordingly. Nevertheless, when the pro-
portion of noise exceeds this interval, the difficulty
of the task exceeds the upper limit of the LLMs’ ca-
pability, and thus the learning effect of the LLMs’
robustness to noise shows a decreasing trend.

5.2. Case Study
Through Table 5, we can find that when the LLMs
are provided with noisy-source demonstration ex-
amples, the LLMs can better solve the noise
problem in the test input and output high-quality
translated sentences. We argue that there are
noisy source sentences to be translated and corre-
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Figure 3: The relationship between the BLEU score change and noise proportion in demonstration ex-
amples when comparing the MIXED sampling method with three types of synthetic noise on a Chinese-
English dataset to the CLEAN sampling method. The first three subfigures respectively demonstrate the
relationship between the noise ratio and the change in BLEU score for 1-shot, 3-shot, and 5-shot settings.
The fourth subfigure averages the BLEU score changes for all types of noise under the same shot and
noise ratio settings, and displays the relationship between the noise ratio and this average value.

Source 这位 17岁的攻击型前卫在上个赛季总共出场五次，他是英超联赛中出现的首个 1999年出生
的球员，在英国青少年球队中也受到高度评价。

Reference The 17-year-old attacking midfielder made five appearances in total last season, becoming
the first player born in 1999 to appear in the Premier League, and is also highly rated in the
England underage system.

Demonstration 普利斯在职业生涯中起用年轻球员的效率之慢谓可臭名昭著，在上个季赛以 1-1战平利物浦队
的最后一场篦赛中入进其乞视野的三名青少年球员（乔纳森·莱科、姆山·菲尔德和泰勒·罗
伯茨）怖不太可能成隈常态。
Pulis has been notoriously slow to promote young players throughout his career and the sight
of three teenagers - Jonathan Leko, Sam Field and Tyler Roberts - in the final game of last
season, a 1-1 draw with Liverpool, is unlikely to become the norm.

Noisy input 这位 17 隋得攻击型歉前卫在上铬赛季总共出场次五，他是超英联赛中出现的首个 1999念出
生的球员，在哉英国少青年球队中揶受到高度评价。

LLM output The 17-year-old attacking midfielder made five appearances in total during the last season,
becoming the first player born in 1999 to appear in the Premier League, and receiving high
praise in the English youth teams.

Table 5: LLM for generating cases in the Chinese-English dataset, where demonstration examples are
selected for 1 shot. (Orange: Insertion noise; Red: Swapping noise; Magenta: Replacement noise; Blue:
Deletion noise.)

sponding clean target-translated sentences in the
demonstration examples, from which the LLMs are
able to learn how to transform against the noise,
and that when confronted with noisy test input sen-
tences, the LLMs are able to apply this ability to
deal with the noise.

Furthermore, when there is the same type of
noise as the test input in the noise demonstration
example, it might be more beneficial for the LLMs
to learn about the way to deal with this type of
noise. For example, as shown in Table 5, there are
Insertion, Swapping, Replacement and Deletion
noises in the demonstration example, and these
types of noises in the test input are also well re-
solved by the LLM.

5.3. Results for Other Models and
Language Pairs

To ensure the broad applicability of our findings
and mitigate potential biases stemming from spe-
cific models and language pairs, we expanded our
experiments to cover more models and language
pairs. For the Baichuan2 model, we augmented
our experiments to include en-zh, fr-en and id-zh
translation directions. We employed four distinct
experimental settings: 0 shot, CLEAN, MIEXD,
and SPECIFIC. In each case, three contextual ex-
amples were sampled for the respective sampling
methods. Results are presented in Table 6. Like-
wise, for the Qwen model, we broadened the ex-
periments to encompass three translation direc-
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Settings
en-zh fr-en id-zh

clean character word clean character word clean character word

0 shot 35.27 22.64 19.02 21.61 12.98 10.55 16.01 5.47 9.19
CLEAN 38.28 24.52 21.84 23.00 13.44 10.67 19.56 6.19 10.87
MIXED 38.62 27.64 23.16 23.82 13.71 11.79 19.05 6.53 10.94
SPECIFIC 38.28 27.91 22.06 23.00 14.06 11.38 19.56 6.26 9.56

Table 6: Results of Baichuan2-7B-Chat on the synthetic noise dataset under various settings.

Settings
en-zh fr-en zh-en

clean character word clean character word clean character word

0 shot 33.62 22.34 16.36 17.67 10.27 7.61 23.65 17.83 14.95
CLEAN 36.46 26.41 19.64 26.82 13.11 10.07 28.53 22.05 19.92
MIXED 36.86 28.32 20.54 28.72 14.74 11.47 28.94 22.22 20.20
SPECIFIC 36.46 28.16 20.32 26.82 15.40 10.46 28.53 22.80 20.08

Table 7: Results of Qwen-7B-Chat on the synthetic noise dataset under various settings.

Settings
en-zh fr-en zh-en

clean character word clean character word clean character word

0 shot 31.47 19.22 15.05 26.24 10.76 10.22 20.15 12.98 9.52
CLEAN 32.78 19.59 16.01 26.68 11.47 11.27 22.22 14.10 11.75
MIXED 33.31 22.78 16.28 27.78 12.52 11.63 23.08 15.55 11.36
SPECIFIC 32.78 23.01 14.19 26.68 12.79 11.55 22.56 16.28 12.43

Table 8: Results of InternLM-Chat-7B on the synthetic noise dataset under various settings.

tions: en-zh, fr-en, and zh-en. The correspond-
ing experimental results can be found in Table 7.
Furthermore, we introduced a new model InternLM
and conducted experiments across three transla-
tion directions en-zh, fr-en, and zh-en, with results
provided in Table 8.

According to these experimental results, it is ev-
ident that the BLEU scores achieved through the
MIXED and SPECIFIC sampling methods, across
various models and translation directions, consis-
tently surpass the BLEU scores obtained via the
CLEAN sampling method. This trend holds true
across different test sets, including the clean test
set, character-level noise test set, and word-level
noise test set. These results further corroborate
the assertion that LLMs exhibit enhanced transla-
tion robustness by learning from context enriched
with synthetic noise. Notably, on the character-
level noise test set, LLMs with the SPECIFIC sam-
pling method consistently outperform those with
the MIXED sampling method in the majority of ex-
perimental setups. Conversely, on the word-level
noise test set, LLMs that use the MIXED sam-
pling method demonstrate superior performance
compared to those with the SPECIFIC sampling
method. These observations align with our re-
search findings, highlighting the general validity of
our conclusions across diverse models and lan-
guage pairs.

6. Conclusion

In this paper, we have presented a research
scheme on the robustness of machine translation
via LLMs, aiming at investigating whether LLMs
can learn to deal with noise and translation meth-
ods in contextual environments with noise. We find
empirically through experiments that LLMs can in-
deed learn machine translation robustness from
demonstration examples with synthetic noise, both
on high- and low-resource languages. And we find
that within the appropriate range, increasing the
noise level in the demonstration examples can en-
hance the translation robustness of LLMs. More-
over, we observe that LLMs are more likely to learn
robustness to character-level noise through type-
specific synthesized noise as well as robustness to
word-level noise through mixed-type synthesized
noise. Finally, we conduct an exploration on both
publicly available and self-annotated natural noise
translation noise test sets and find that for various
types of natural noise, the robustness learning per-
formance of LLMs varies between high and low-
resource languages. High-resource languages
tend to learn robustness in demonstration exam-
ples with mixed-type noise, while low-resource lan-
guages tend to learn robustness in demonstration
examples with specific types of noise.
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