@inproceedings{shimizu-etal-2024-qa,
title = "{QA}-based Event Start-Points Ordering for Clinical Temporal Relation Annotation",
author = "Shimizu, Seiji and
Pereira, Lis and
Yada, Shuntaro and
Aramaki, Eiji",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://preview.aclanthology.org/add-emnlp-2024-awards/2024.lrec-main.1171/",
pages = "13371--13381",
abstract = "Temporal relation annotation in the clinical domain is crucial yet challenging due to its workload and the medical expertise required. In this paper, we propose a novel annotation method that integrates event start-points ordering and question-answering (QA) as the annotation format. By focusing only on two points on a timeline, start-points ordering reduces ambiguity and simplifies the relation set to be considered during annotation. QA as annotation recasts temporal relation annotation into a reading comprehension task, allowing annotators to use natural language instead of the formalisms commonly adopted in temporal relation annotation. Based on our method, most of the relations in a document are inferable from a significantly smaller number of explicitly annotated relations, showing the efficiency of our proposed method. Using these inferred relations, we develop a temporal relation classification model that achieves a 0.72 F1 score. Also, by decomposing the annotation process into QA generation and QA validation, our method enables collaboration among medical experts and non-experts. We obtained high inter-annotator agreement (IAA) scores, which indicate the positive prospect of such collaboration in the annotation process. Our annotated corpus, annotation tool, and trained model are publicly available: https://github.com/seiji-shimizu/qa-start-ordering."
}
Markdown (Informal)
[QA-based Event Start-Points Ordering for Clinical Temporal Relation Annotation](https://preview.aclanthology.org/add-emnlp-2024-awards/2024.lrec-main.1171/) (Shimizu et al., LREC-COLING 2024)
ACL