@inproceedings{wu-etal-2024-leveraging,
title = "On Leveraging Encoder-only Pre-trained Language Models for Effective Keyphrase Generation",
author = "Wu, Di and
Ahmad, Wasi and
Chang, Kai-Wei",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://preview.aclanthology.org/add-emnlp-2024-awards/2024.lrec-main.1083/",
pages = "12370--12384",
abstract = "This study addresses the application of encoder-only Pre-trained Language Models (PLMs) in keyphrase generation (KPG) amidst the broader availability of domain-tailored encoder-only models compared to encoder-decoder models. We investigate three core inquiries: (1) the efficacy of encoder-only PLMs in KPG, (2) optimal architectural decisions for employing encoder-only PLMs in KPG, and (3) a performance comparison between in-domain encoder-only and encoder-decoder PLMs across varied resource settings. Our findings, derived from extensive experimentation in two domains reveal that with encoder-only PLMs, although keyphrase extraction with Conditional Random Fields slightly excels in identifying present keyphrases, the KPG formulation renders a broader spectrum of keyphrase predictions. Additionally, prefix-LM fine-tuning of encoder-only PLMs emerges as a strong and data-efficient strategy for KPG, outperforming general-domain seq2seq PLMs. We also identify a favorable parameter allocation towards model depth rather than width when employing encoder-decoder architectures initialized with encoder-only PLMs. The study sheds light on the potential of utilizing encoder-only PLMs for advancing KPG systems and provides a groundwork for future KPG methods. Our code and pre-trained checkpoints are released at https://github.com/uclanlp/DeepKPG."
}
Markdown (Informal)
[On Leveraging Encoder-only Pre-trained Language Models for Effective Keyphrase Generation](https://preview.aclanthology.org/add-emnlp-2024-awards/2024.lrec-main.1083/) (Wu et al., LREC-COLING 2024)
ACL