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Abstract

Existing methods on understanding the capa-
bilities of LLMs in logical reasoning rely on
binary entailment classification or syntheti-
cally derived rationales, which are not suffi-
cient for proper investigation of model’s ca-
pabilities. We present P-FOLIO, a human-
annotated dataset consisting of diverse and
complex reasoning chains for a set of realis-
tic logical reasoning stories also written by hu-
mans. P-FOLIO is collected with an annota-
tion protocol that facilitates humans to anno-
tate well-structured natural language proofs for
first-order logic reasoning problems in a step-
by-step manner. The number of reasoning steps
in P-FOLIO span from O to 20. We further
use P-FOLIO to evaluate and improve large-
language-model (LLM) reasoning capabilities.
We evaluate LLM reasoning capabilities at a
fine granularity via single-step inference rule
classification, with more diverse inference rules
of more diverse and higher levels of complex-
ities than previous works. Given that a single
model-generated reasoning chain could take
a completely different path than the human-
annotated one, we sample multiple reasoning
chains from a model and use pass @k metrics
for evaluating the quality of model-generated
reasoning chains. We show that human-written
reasoning chains significantly boost the logi-
cal reasoning capabilities of LLMs via many-
shot prompting and fine-tuning. Furthermore,
fine-tuning Llama3-7B on P-FOLIO improves
the model performance by 10% or more on
three other out-of-domain logical reasoning
datasets. We also conduct detailed analysis
to show where most poweful LLMs fall short
in reasoning. We will release the dataset and
code publicly.

1 Introduction

A logical reasoning story consists of a series of
premises and one or more conclusions (Han et al.,
2022). The goal of logical reasoning is to deter-
mine the truth values of the conclusions based on

the premises (Russell and Norvig, 2010). How-
ever, it cannot be determined whether a machine
is indeed equipped with capabilities of logical rea-
soning even if it is able to output the correct truth
value. Generating proofs or reasoning chains that
support its decision is essential for explainability.
Resolution-based symbolic proofs can be gener-
ated automatically with a first-order logic solver
given explicit logic structures, but they are hard
to read and cannot be written in natural language
in a straightforward way in most cases (Russell
and Norvig, 2010). Although studies on natural
language proof generation for logical reasoning
have been conducted before, they focus on syntheti-
cally generated logical reasoning datasets (Saparov
et al., 2023; Saha et al., 2020; Tafjord et al., 2021;
Saha et al., 2021). These logical reasoning chains
contains much less natural language variation and
challenging reasoning patterns than realistic logic
stories (Han et al., 2022).

We present P-FOLIO , a new dataset consisting
of human-written proofs for an existing popular
dataset of logical reasoning, FOLIO (Han et al.,
2022) which consists of realistic logical reasoning
stories written by humans. P-FOLIO is collected
with an annotation protocol for annotators to write
proofs in a step-by-step manner without using proof
by contradiction or proof by case. Table 2 shows
an example story in FOLIO and Table 3 shows its
human-written reasoning chains in P-FOLIO.

P-FOLIO proofs are expert-written. They are
more logically diverse and challenging than previ-
ous logical reasoning datasets equipped with rea-
soning chains. The number of proof steps in P-
FOLIO spans from 0 to 20 and the proofs use di-
verse inference rules, containing 12 types of widely
used and straightforward inference rules and an-
other 20 types of complex inference rules. 26% of
a total of 1430 proofs in P-FOLIO consist of more
than five reasoning steps and 4% of proofs con-
sist of more than 10 reasoning steps. We show the
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Dataset Natural Language Logic

Text Source  Real-World Resource # Reasoning Step #Inference rule
ProofWriter (Tafjord et al., 2021) Synthetic No 0-5 12
ProntoQA-OOD (Saparov et al., 2023) Synthetic No X 6
P-FOLIO Expert-written Yes 0-20 31

Table 1: Comparison of P-FOLIO and other datasets of proofs

A FOLIO example

NL premises

1. There are no mansion houses in an urban area.
2. All skyscrapers are in urban areas.

3. Every creepy haunted house is a mansion house.

NL Conclusion -> Label

If the LaLaurie House is either a
skyscraper or a creepy haunted house,
then it is not a mansion house. -> F

4. Every terrifying building on Halloween is a creepy haunted house.
5. The LaLaurie House is a creepy haunted house or a terrifying Halloween building.

Table 2: An example story in FOLIO consisting of five premises and one conclusion with the label for the conclusion.

comparsion of P-FOLIO and the previous proof col-
lections for logical reasoning, ProofWriter (Tafjord
et al., 2021) and ProntoQA-OOD(Saparov et al.,
2023), in Table 1. Both ProofWriter and ProntoQA-
OQOD are synthetically constructed. ProofWriter
contains at most 5 reasoning steps and ProntoQA-
OOD only uses 6 types of inference rules.

We use P-FOLIO to provide a more in-depth
evaluation and to improve large-language-model
reasoning capabilities. We first evaluate LLM rea-
soning capabilities at a fine-grained granularity
via single-step inference rule classification and
single-step derivation reasoning. Given that the
model-generated reasoning chain could take a com-
pletely different path than the human-annotated
one, we use the pass@k (Chen et al., 2021b; Kulal
et al., 2019), a metric commonly used for evalu-
ating code generation, for evaluating the overlap
between them. We show that human-written reason-
ing chains significantly boost the logical reasoning
capabilities of LLMs via many-shot prompting and
fine-tuning. Furthermore, fine-tuning Llama3-7B
on P-FOLIO improves the model performance by
more than 10% on three other out-of-domain logi-
cal reasoning datasets. Finally, we conduct detailed
analysis to show where most poweful LLMs fall
short in reasoning.

Our contributions are as follow: (1) We collected
expert-written reasoning chains for an existing pop-
ular logical reasoning dataset. The collected rea-
soning chains are more logically diverse and chal-
lenging than previous logical reasoning datasets
equipped with reasoning chains. (2) We evaluate
LLM-generated proofs with both automatic met-
rics and human evaluation. (3) We show that fine-

tuning on our proof collection yields substantial im-
provements for LLM logical reasoning capabilities
on both in-domain and out-of-domain test sets. (4)
We identify weaknesses of LLM reasoning based
on our findings.

2 Related Work

Natural language reasoning Existing studies
on natural language reasoning (Wei et al., 2022;
Creswell et al., 2022; Bang et al., 2023; Prystawski
et al., 2023; Yao et al., 2023) focus on using dif-
ferent prompting strategies on large language mod-
els (LLMs) for better results. Despite significant
progress on the LLLM prediction accuracy of the
final answer, no work has been done to evaluate
the correctness of the intermediate steps. In our
work, we propose to evaluate intermediate steps
at different levels of granularity in order to better
probe into the reasoning capabilities of LLMs.

Improving LLM Logical reasoning capabilities
Luo et al. (2024); Ranaldi and Freitas (2024) fine-
tuned language models with logical reasoning data
to improve logical reasoning capabilities of LLMs.
Large language models have also been directly used
as soft logic reasoners and a variety of prompting
techniques are proposed in order to improve their
performance under this paradigm (Wei et al., 2022;
Yao et al., 2023; Zhou et al., 2024). Using large lan-
guage models as semantic parsers has also shown
improvement on the reasoning performance (Olaus-
son et al., 2023; Pan et al., 2023) where natural
language reasoning problems are first parsed into
logical forms before being fed into an inference
engine to output the final answer.
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Natural language proof generation
ProofWriter (Tafjord et al., 2021) and FLD
(Morishita et al., 2023) are logical reasoning
datasets equipped with natural language proofs,
however both of them are synthetically generated
dataset which neither contains abundant natural
language variation nor encompasses challenging
logical reasoning patters. Previous studies on
proof generation focus on ProofWriter(Morishita
et al., 2023; Saha et al., 2020, 2021; Yang et al.,
2022) and ProntoQA (Saparov et al., 2023).
LogicBench is a synthetically generated natural
language QA dataset and is used for evaluating
the logical reasoning ability of LLMs (Parmar
et al., 2024). While FOLIO covers first-order
logic and one or more inference rules are used in
each example, LogicBench focuses on reasoning
patterns covering propositional logic, first-order
logic, and non-monotonic logic and focuses on the
use of a single inference rule for each example.

We collect proofs for FOLIO (Han et al., 2022)
instead, a realistic expert-written logical reason-
ing dataset. Such proofs need to be written from
scratch and are hard and time-consuming to write
because humans need to manage both the language
and reasoning complexity in the proof-writing pro-
cess and manually construct many steps of reason-
ing. The resulting proofs contain more diverse
types of inference rules and reasoning patterns in
addition to containing more natural language varia-
tion and ensured semantic richness.

3 P-FOLIO

In this section we describe the construction and
properties of our dataset P-FOLIO .

3.1 Inference Rules

‘We first define a set of inference rules that can be
used for derivations of each proof step.

Widely-used inference rules. The most widely
used logical reasoning inference rules include uni-
versal instantiation, hypothetical syllogism, modus
ponens, modus tollens, disjunctive syllogism, con-
junction introduction, conjunction elimination,
transposition, disjunction introduction, material im-
plication and existential introduction.

Boolean identities. During the pilot annotation
process, we found that boolean identities are
needed for certain derivations. For example, if

"A or A" is true then "A" is true. We therefore
allow the usages of boolean identities

Complex inference rules. Some complex infer-
ence rules are intuitively correct and can also be
proved logically correct with an inference engine.
For example, from "A XOR B", we know that "A
implies not B". We include in Table 4 the different
categories of inference rules used in our protocol.

3.2 Dataset Annotation

We offer an annotation protocol that facilitates an-
notators to annotate well-structured proofs for any
logical reasoning problems in a step-by-step man-
ner. Our annotators are selected based on the the
following criteria: 1). They are college or graduate
students who are either native English speakers or
have near-native English proficiency. 2) They have
a formal background in first-order logic, gained
through either relevant coursework or self-directed
study in first-order logic or semantic parsing. 3).
we conducted in-person interviews with all the an-
notators to understand if they are motivated about
completing the task before we added them into the
annotator pool. All the annotators selected have
expressed a keen interest in solving logical puzzles
and are guaranteed to have a significant amount
of time commitment. We also give the annotators
several detailed tutorial sessions on how to write
a proof and give detailed annotation guidelines to
minimize possible ambiguities that can occur in
the annotation process and make sure the annota-
tion protocol is well-understood. A total of six
annotators were selected through this process.

Annotation protocol. An annotator is presented
with a logical reasoning problem consisting of a
series of premises and one conclusion. For each
step of a proof, we ask the annotator to write the
indices of the premises used, a natural language
derivation deduced from the premises used and the
inference rule used for the derivation. The natural
language derivation can then be used as a premise
for future proof steps. We also specify that only
1 or 2 premises should be used in each step. Ta-
ble 2 shows an example of the FOLIO dataset and
Table 3 shows the entire proof annotated for the
example. The proof consists of 14 steps in total
with 14 natural language derivations and the final
derivation is the conclusion. This annotation proto-
col facilitates humans to annotate well-structured
proofs for first-order logic reasoning problems in
a step-by-step manner and the resulting proofs are
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P No Used Derivation D No. Inference Rule

1 If there is a mansion house in the area, then it is not an urban area. D1 Modus Tollens

2 Something that is not in an urban area is not a skyscraper. D2 Modus Tollens

3,D1 A creepy haunted house is not in an urban area. D3 Hypothetical Syllogism
D3,2 A creepy haunted house is not a skyscraper. D4 Hypothetical Syllogism
4, D4 Every terrifying Halloween building is not a skyscraper. D5 Hypothetical Syllogism
D5, 5 The LaLaurie House is not a skyscraper or is a terrifying Halloween building. D6 Universal Instantiation
D6, D4 The LaLaurie House is not a skyscraper or is not a skyscraper. D7 Universal Instantiation
D7 The LaLaurie House is not a skyscraper. D8 Idempotence

5,4 The LaLaurie House is a creepy haunted house or a creepy haunted house. D9 Universal Instantiation
D10 The LaLaurie House is a creepy haunted house. D11 Idempotence

DI11,3 The Lalaurie House is a mansion house. D12 Universal Instantiation
D8, D11 The LaLaurie House is a creepy haunted house and not a skyscraper. D13 Conjunction Introduction
D13,D12  The LaLaurie House is a creepy haunted house and a mansion house and not a skyscraper. D14 Conjunction Introduction

Table 3: Proof written for the example story in FOLIO. “P No” is premise number and “D” stands for derivation.

Type Rules

Widely-used rules
Tollens (MT)

universal instantiation (UI), hypothetical syllogism (HS), Modus Ponens (MP), Modus

disjunctive syllogism (DS), disjunction introduction (DI), conjunction introduction (CI)
conjunction elimination (CE), transposition (TP), material implication (MI), existential

introduction (EI)

Boolean Identities (Idempotent)

"A or A" is equivalent to A; A and A is equivalent to A

Complex rules

From a @ b, we know a — —b; from a — b and b — a, we know —(a @ b).

—b @ b is always true; a P b is equivalent to —a & —b
From Vx(A(x) — C(x)) and A(paul) A B(paul), we know C(paul) A B(paul).

Table 4: Categories of inference rules used in our annotation protocol.

easier to read and evaluate than proofs written in
pure natural language without being divided into
individual steps.

We provide the detailed guidelines on proof an-
notation in the appendix. The guideline contains
detailed instructions on how to write the proofs.
Multiple examples were provided to the annotators
and we conducted in-person tutorials for the annota-
tors. We promptly ask the annotators for feedback
and resolve their questions throughout the entire
annotation process. We found that annotators are
well-versed in the well-established inference rules
and boolean identities. However, sometimes uni-
versal instantiation inferences can be wrongly iden-
tified as hypothetical syllogism. At the initial stage
of annotation, annotators sometimes identified intu-
itively correct but logically incorrect complex rules.
Therefore, we ask them to verify each complex rule
with a logic solver before using it.

We asked the annotators to keep a record of the
time taken for writing each proof. Most of the
proofs requiring 1-5 steps take less than 20 minutes
to annotate with five minutes being the average
while more complicated proofs requiring six steps
or more take 20 minutes to 90 minutes to annotate
with 1 hour being the average since to write these
proofs requires a significant amount of deliberate

thinking and annotators need to go through an in-
termediate deduction process before writing down
the proof steps.

For first-order logical reasoning questions, mul-
tiple reasoning paths can be undertaken to derive
the same conclusion. Due to the time-consuming
nature of the task, only one annotator annotates
each sample with one reasoning path in our anno-
tation procedure although in our pilot annotation
study we identified different annotators sometimes
provide different proofs for the same example.

Quality control via cross checking. We con-
ducted a comprehensive cross-checking process
for all the proofs written by dividing the annotators
into 3 groups, each comprised of 2 people. We
asked the two annotators in each group to review
and validate each other’s work and address any
identified errors. We also provided annotators with
cross checking guidelines to make the process more
efficient. This approach greatly reduces errors for
P-FOLIO.

3.3 Dataset statistics

Number of proof steps. We show the distribu-
tion of the number of proof steps in the entire P-
FOLIO dataset in Figure 2. we have carefully vali-
dated that each of the splits follows a similar distri-
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bution with less than a 2% difference in each split.
The majority of written proofs contain five steps or
less while written proofs comprised of 6-10 steps
also take up a significant portion. There are 55
proofs which are comprised of 11 steps or more.
This represents the portion of the dataset with the
highest complexity.

Inference rule distribution. The widely-used in-
ference rule and boolean identities distribution is
shown in Figure 3. Among the widely-used infer-
ence rules, universal instantiation and hypothetical
syllogism are the most common inference rules in
P-FOLIO while disjunctive syllogism, conjunction
introduction, conjunction elimination and transpo-
sition also appeared a large number of times. Al-
though Modus ponens, Modus tollens, existential
introduction, disjunction introduction, material im-
plication and idempotent are the least common,
their are 50 - 150 number of them in P-FOLIO. The
occurrences of complex inference rules all range
from 1 to 29. The complex inference rules are
essential for making certain derivations although
their occurrences are less frequent.

4 Reasoning Evaluation

We propose three tasks to evaluating LLM reason-
ing capabilities with P-FOLIO at different levels of
granularities.

4.1 Single-step inference-rule classification

Given a single step of inference in a human-
annotated proof which consists of the premises
used P = {P;, P,} and a derivation d;, single-
step inference-rule classification aims to identify
which inference rule has been used to arrive at dy
from P. This task aims to evaluate whether a model
knows the type of inference required for a single
inference step.

4.2 Single-step derivation reasoning

Given a single step of inference in a human an-
notated proof, the goal of single-step derivation
reasoning is to ask the model to generate the truth
value of a derivation based on the corresponding
premises. The truth value label is always True.

4.3 Proof generation

Given a series of premises P = {p1,p2,...,Pn}
and a conclusion ¢y, the goal of proof generation
is ask the model to generate the proof and the final

truth value. This task aims to evaluate the overall
proof generation capability.

4.4 Proof generation evaluation

Pass@k. Considering that a model-generated
reasoning chain can diverge significantly from
a human-annotated one in logical reasoning, we
sample multiple reasoning chains from GPT-3.5
and GPT-4 and employ pass@k metrics (Chen
et al., 2021a) to assess the quality of these model-
generated chains. GPT-4 is utilized to evaluate
whether two reasoning chains follow a similar path
to reach their conclusions. We provide the prompts
used for this in the Appendix. If we sample k
proofs from a model, we define pass @k to be the
percentage of instances where at least one proof
matches the human-written proof.

4.5 Task comparison

Single-step inference-rule classification and single-
step derivation allow for a more granular assess-
ment of how well the model can follow logical rules
and derive conclusions by breaking down complex
reasoning chains into individual steps. By ana-
lyzing each step independently, identify specific
strengths and weaknesses can be identified in the
model’s reasoning processes, facilitating a better
understanding of the model’s overall performance
and targeted improvements. The entire proof gener-
ation evaluates the reasoning capabilities of LLMs
by challenging them with complex reasoning prob-
lems. This approach requires the model to generate
a complete proof from start to finish, demonstrating
its ability to handle intricate logical structures and
multi-step derivations. By assessing the model’s
performance on entire proofs, we can gauge its pro-
ficiency in maintaining logical coherence, applying
relevant rules, and effectively managing the com-
plexity inherent in comprehensive reasoning tasks.
This evaluation method provides a holistic view of
the model’s reasoning abilities.

S Experimental Results

We conduct experiments using P-FOLIO. The
train/dev/test split is 70%/15%/15%, which is the
same as the split for FOLIO (Han et al., 2022).
For all experiments involved with GPT-4 (OpenAl
et al., 2023), we use gpt-4-0125-preview and the
temperature was set to 0.
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5.1 Single-step evaluation

We conduct single-step inference rule classification
and single-step derivation reasoning on individual
proof steps in P-FOLIO. For single-step derivation
reasoning, we prompt GPT-4 to output the clas-
sification results in zero-shot setting and 5-shot
prompting. The results of inference rule classifi-
cation are shown in the first two columns of Table
5. Giving GPT-4 a few examples leads to better
results for complex inference rules while the im-
provement is minimal for widely used inference
rules. For single-step inference rule classification,
we test two settings. We prompt GPT-4 to output
the truth value directly in one setting. In the other
setting, we prompt GPT-4 to output the explanation
first before generating the final truth value. The re-
sults of single-step inference rule classification are
shown in the last two columns of Table 5. Prompt-
ing GPT-4 to output the explanation before gener-
ating the final truth value leads to better results for
both widely-used rules and complex rules.

5.2 Proof generation

Zero-shot Prompting LLM We use GPT-4
(OpenAl et al., 2023) to generate proofs and truth
value for all the examples. By explicitly prompting
GPT-4 to generate the reasoning process before the
final answer increase the performance by 5% over
prompting GPT-4 to generate only the final answer.

We manually inspect all the generated proofs.
Among the examples with correct truth values,
10.7% exhibited incorrect reasoning processes. In
these cases, the model either struggled to form
the correct reasoning chain for complex problems
involving many reasoning steps or used common-
sense reasoning as a shortcut. Among the exam-
ples with incorrect truth values, 70% failed to form
the correct reasoning chain for complex problems.
Additionally, 10% contained wrong derivations at
a certain steps in the reasoning process. About
15% of the examples presented conclusions with
language or logical structures too intricate for the
model to fully comprehend. Another 5% incor-
rectly applied commonsense reasoning as a short-
cut, leading to errors in the final conclusions. We
provide more analysis in section 6.

Many-shot prompting LLMs We conduct
many-shot prompting experiments with GPT-4 us-
ing 5, 10, 20, 40, and 60 examples in in-context
learning. Sixty is the maximum number of ex-
ample and proof pairs we can fit into the context

Number of Correct and Wrong Answers by Step Range
106

100 mm Wrong Answer
Correct Answer
80
60
40
28 28
26 23
20 18
0 2 0
1-5 6-10 11-15 16 - 21

# Step Range

Figure 1: Distribution of the number of correct & wrong
answers vs the number of human-written proof steps

window of GPT-4. We present the results using
ngram-overlap-based metrics, including ROUGE-
1, ROUGE-2, and ROUGE-L (Lin, 2004), compar-
ing the model-generated proofs with human-written
proofs. Additionally, we report the final answer pre-
diction accuracy. Table 6 demonstrates that adding
5 examples to the prompt improves GPT-4’s per-
formance over zero-shot prompting. Increasing the
number of examples for in-context learning from
5 to 20 results in a further performance improve-
ment of approximately 7%. Using 60 examples
in the prompt significantly enhances performance
compared to zero-shot prompting.

Pass@k Evaluation Table 9 presents the pass @k
results for GPT-3.5 and GPT-4 on the P-FOLIO
dataset, illustrating the comparative performance
of these models in generating reasoning chains.
Pass@k metrics indicate the percentage of in-
stances where at least one out of k sampled rea-
soning chains matches the human-annotated proof.
The results show a clear performance improve-
ment from GPT-3.5 to GPT-4 across all values of k.
Specifically, GPT-4 achieves a pass@1 of 55.3%,
outperforming GPT-3.5’s 49.5%. This trend contin-
ues with GPT-4 attaining pass@5, pass@10, and
pass@20 scores of 59.2%, 62.1%, and 66.9% re-
spectively, compared to GPT-3.5’s 51.6%, 53.9%,
and 55.7%. These findings suggest that GPT-4 is
more effective in generating reasoning chains that
align with human-annotated proofs, highlighting
its enhanced capability in logical reasoning tasks.

Fine-tuning and Out-of-Domain Generalization
We test the performance of fine-tuning with Flan-
T5-Large (Chung et al., 2022) and Llama3-8B
(Al@Meta, 2024) and test the out-of-domain gen-
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Inference Rule Classification

Truth Value Classification

No Examples With Examples No Explanation With Explanation
Established Rules 54.72 55.08 85.31 87.13
Complex Rules 40.8 43.62 70.67 80.43

Table 5: Single-step inference rule classification and single-step derivation reasoning results.

#ishot R-1 R-2 R-L Acc(%)
0-shot 60.2 52.7 61.5 65.2
5-shot  63.9 542 64.1 68.1
10-shot 65.8 549 65.9 70.7
20-shot 70.6 59.5 69.6 75.3
40-shot 73.7 62.1 72.7 77.4
60-shot 78.2 663 78.1 80.6

Table 6: Result of many-shot prompting with GPT-4.

Method Answer Acc Proof Acc
w/o proofs. 60.2 -
w/ proofs. 65.2 58.2

Table 7: Comparison of final answer accuracy and proof
accuracy (%).

eralization capabilities of LLMs fine-tuned on P-
FOLIO. We compares two models, Flan-T5-Large
and Llama3-7B (AI@Meta, 2024), in both zero-
shot and fine-tuned configurations. We provide
the hyper-parameter settings in the Appendix. Ta-
ble 8 highlights that fine-tuning on FOLIO (w/o
Proofs) and P-FOLIO (w/Proofs) significantly en-
hances the performance of both models across all
tasks. Llama3-7B consistently outperforms Flan-
T5-Large.

Table 8 also shows that fine-tuning without
proofs using the FOLIO dataset and fine-tuning
with proofs boost the performance on the three
out-of-domain logical reasoning datasets tested,
BirdElectricity (Tafjord et al., 2021), ProntoQA
(Saparov and He, 2023) and bAbi-deductive (We-
ston et al., 2015). The inclusion of human-written
proofs consistently improves the accuracy for fine-
tuned models, underscoring the importance of
proofs in bolstering the generalization capabilities
of LLMSs in out-of-domain datasets. These results
suggest that LLMs fine-tuned with human-written
rationales are able to generalize learned reasoning
strategies to new, unseen tasks, demonstrating ro-
bust out-of-domain generalization.

Number of Occurrences by Step

# Number

1-5 6-10 11-15 16 - 20 >20

# Step

Figure 2: Distribution of the number of proof steps

Distribution of Inference Rules

0 200 400 600 800 1000
# Number

Figure 3: Distribution of widely used inference rules

6 Analysis

Most powerful LLMs fail on examples with
10 steps or more in human-written reasoning
chains. Figure 1 illustrates the performance of
GPT-4 on logical reasoning tasks of varying com-
plexity. While GPT-4 accurately answers most
questions requiring 1-5 human-written reasoning
steps, its accuracy drops significantly for more com-
plex tasks. For questions involving 6-10 reasoning
steps, GPT-4 answers correctly only about half the
time. Its performance further declines with exam-
ples requiring 11-15 steps, where it fails more than
half the time. For tasks with 16 or more reasoning
steps, GPT-4 is unable to provide correct answers
at all.

Making new derivations with complex rules
could be one of the bottlenecks for LLM rea-
soning To gain a more detailed understanding
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FOLIO (2022) BirdElectricity (2021) ProntoQA (2023) bAbi-deductive (2015)

w/o Proofs ~ w/ Proofs w/o Proofs w/ Proofs w/o Proofs w/Proofs w/o Proofs w/Proofs
Zero-Shot Flan-T5-Large 5.3% 5.3% 42.1% 40.9% 6.5% 5.0% 38.9% 40.4%
Fine-Tune Flan-T5-Large 65.9% 67.5% 53.4% 60.8% 33% 41% 44.710% 50.30%
Zero-Shot LLlama3-8B 52.1% 54.1% 54.8% 57.5% 63.1% 64.9% 72.1% 75.7%
Fine-tune Llama3-8B 70.2% 76.3% 60.8 % 66.7 % 76.1% 80.6 % 85.1% 87.9%

Table 8: Fine-tuning results and out-of-domain generalization capabilities of LLMs trained on FOLIO and P-FOLIO.
"w/o Proofs" indicates the model is trained with FOLIO and "w/Proofs" indicates the model is trained with P-FOLIO.

Model Pass @1 Pass @5 Pass @10 Pass @20
GPT-3.5 49.5 51.6 53.9 55.7
GPT-4 553 59.2 62.1 66.9

Table 9: Pass @k results for GPT-3.5 and GPT-4

Added Rule Type Accuracy (%)
Complex rules 70.60
Widely-used rules 63.20

Table 10: Final answer accuracy of GPT-4 with human-
written derivations

of LLM reasoning capabilities, we conducted an
experiment by augmenting the original logical rea-
soning examples with additional derivations. First,
we created a set of examples by adding derivations
derived exclusively from widely-used rules, ensur-
ing that no complex or less common rules were
included. Next, we created another set of examples
by incorporating derivations that were based solely
on well-established rules, explicitly excluding any
derivations that originated from widely-used rules.
This approach allowed us to isolate the impact of
different types of inference rules on the reasoning
performance of LLMs.

Table 10 reports the zero-shot prompting perfor-
mance of GPT-4 on the two new set of augmented
examples we created. The results reveal that GPT-
4 achieves much higher accuracy on the set aug-
mented with complex inference rule derivations,
at 70.60%, compared to an accuracy of 63.20%
on the set with widely-used rule derivations. This
indicates that while GPT-4 performs better when
leveraging complex inference rules, the creation
of new derivations using these rules could pose a
significant challenge, potentially acting as a bottle-
neck for large language model (LLM) reasoning.
This suggests that further advancements in han-
dling complex rule derivations may be necessary
to improve the overall reasoning capabilities of
LLM:s.

Faulty reasoning We show a case study where
GPT-4 makes a mistake in writing the proof and
producing the final truth value. The logical reason-
ing example and the GPT-4 output are shown in
Table 11. This mistake happens due to the model’s
inability to form the correct reasoning chain for a
complex problem involving lots of steps, which is
also the main cause of most model failures. No-
tably, in this scenario, the model indeed follows
formal rules in each step perfectly and can make
correct derivations based on the premises provided.
However, it is unable to reach a conclusion because
it is unable to correctly derive certain crucial inter-
mediate steps in the reasoning process. We observe
a similar pattern across different examples that re-
quire 10 reasoning steps or more. As we can see
from the GPT-4 output, the model fails to find the
correct reasoning chain, thereby not finding the fi-
nal conclusion and producing "Uncertain" for the
truth value although the correct answer should be
"True". In particular, the model fails to arrive at the
derivation that "No one both has visited Ibiza and
never left the United States.", which can be derived
from "If someone has visited Ibiza, then they have
left the United States." using one of the complex
rules: "from a — —b we know —(a A b)".

7 Conclusion

We presented P-FOLIO, a new dataset consisting
of human-written proofs for FOLIO, a set of real-
istic logical reasoning stories written by humans.
26% of a total of 1430 proofs in P-FOLIO con-
sist of more than five reasoning steps and 4% of
proofs consist of more than 10 reasoning steps.
We further use P-FOLIO to evaluate and improve
large-language-model reasoning capabilities. We
propose tasks with different levels of granulari-
ties and use various metrics to evaluate the perfor-
mance of LLM reasoning capabilities. We show
that human-written reasoning chains significantly
boost the logical reasoning capabilities of LLMs
via many-shot prompting and fine-tuning. Fine-
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Prompt

Using deductive reasoning, find out the truth values of the conclusions based on the premises. The truth value can be
True, False or Uncertain. First show the reasoning process, and then output the truth value in the format of "Truth value: ".
Premises: 1. If someone has never left the United States, then they have not been to Europe. 2. If someone has traveled to
the Iberian Peninsula, then they have been to Europe. 3. Everyone who has visited Barcelona has traveled to the Iberian
Peninsula. 4. Everyone who has taken a selfie at the Basilica Familia Sagrada has visited Madrid. 5. If Kate has either taken
a selfie at the Basilica Familia Sagrada or has never left the United States, then Kate has not either visited Barcelona or never
left the United States.

Conclusion: Kate has not taken a selfie at the Basilica Familia Sagrada.

GPT-4 Output

Reasoning process: Let’s analyze the premises and see if we can deduce the truth value of the conclusion.

Premise 1: If someone has never left the United States, then they have not been to Europe. Premise 2: If someone has
traveled to the Iberian Peninsula, then they have been to Europe. Premise 3: Everyone who has visited Barcelona has traveled
to the Iberian Peninsula. Premise 4: Everyone who has taken a selfie at the Basilica Familia Sagrada has visited Madrid.
Premise 5: If Kate has either taken a selfie at the Basilica Familia Sagrada or has never left the United States, then Kate has
not either visited Barcelona or never left the United States. ... Verbatim repetition of the original premises...

Conclusion: Kate has not taken a selfie at the Basilica Familia Sagrada.

From Premise 5, we know that if Kate has taken a selfie at the Basilica Familia Sagrada, then she has visited Barcelona or
left the United States. However, we don’t have any information about whether Kate has actually taken a selfie at the Basilica

Familia Sagrada or not. Therefore, we cannot deduce the truth value of the conclusion based on the given premises.

Truth value: Uncertain

Table 11: Case Study

tuning on P-FOLIO improves the model perfor-
mance by more than 10% on three other out-of-
domain logical reasoning datasets. We conduct de-
tailed analysis to show where most poweful LLMs
fall short in reasoning.

8 Limitations

The abundant human-written reasoning chains in
P-FOLIO can be used in many other ways that we
have not explored. For instance, bootstrapping with
abundant human-written reasoning chains could
further improve the performance of bootstrapping
with limited human-written rationales (Zelikman
et al., 2022).
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A Appendix

A.1 Annotation Guidelines

We provide the detailed annotation guidelines in
Table 12.

A.2 Instruction used in the GPT-4 prompt

Table 13 shows the instruction used in the GPT-4
prompt.

A.3 Prompt used for evaluating reasoning
path

We provide an example in Table 14 including our
prompt used and GPT-4 input and output for how
GPT-4 is used to evaluate whether two reasoning
chains follow a similar path to reach their conclu-
sions.

A.4 Hyper-parameter settings

For fine-tuning Flan-T5-Large, we use a learning
rate of 1e-4, batch size of 8, gradient accumulation
of 2, warmup step of 100 and the model was trained
for 3 epochs. For fine-tuning LLama-8b, we use a
learning rate of 2e-5, batch size of 1 and gradient
accumulation of 8. The warmup steps were set to
25 and the model was trained for 3 epochs.
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Write a proof for each conclusion in a story. Write the relevant derivation at each inference step and the rule of inference.
Please think about the forms of the input premises and conclusions carefully. If the forms do not correspond to a rule in
the instructions, then you should not use it without verifying it. You can invent new rules yourselves. But please verify the
correctness of the rules with the truth table calculator here. If the rule is not successfully verified, please do not use it. If it is
successfully verified, you can add it to the updated list and use it.

Do’s:

*¥%* Write the inference rule used for each inference step. For inference rules, please refer to this page. If you think the
inference rules needed are not included in this list, please add them to the updated list below.

... Established inference rule definitions with examples...

Intuitively and Logically Correct Rules: There are some rules that might be needed in the proof procedure but that are
hard to be derived. Theses rules do not have a commonly agreed name, we are listing these rules as below:

*%% —(a xor b) is equivalent to (- a and —b) or (a and b).

#+* ANDEquivalentl: a — —b is equivalent to ~(a and b)

#%% XOR1: —(a xor —b) is equivalent to (a xor b)

#&% XOR2: (a xor b) is equivalent to (—a xor —b)

#%% XOR3: not B xor B is always true.

*#*% XOR4: From (a xor b), we know that a — —b.

#%% XORS: From —(a xor b), we know thata — b.

##*% XOR6: From a — b and b — a, we know that —(a xor b).

#%% IMPANDI1: From a->-b we know —(a and b).

##% XORUnil: From Any x (C(x) — —~A(x)), Any x (A(x) xor B(x)), we know that Any x (C(x) — B(x)).

#&% XORUni2: From Any x (A(x) — B(x)), Any x (A(x) xor B(x)), we know that Any x (B(x)).

##% XORUni3: From "Any x (A(x) xor B(x))" and "Any x (A(x) = C(x))", we know that “Any x (C(x) or B(x))”.

##% OREquivalent1: (ab)(a—b) is equivalent to a You can add more rules here that are needed when you are writing proofs.
##% ANDUnil: From “"Any x (A(x) = C(x))" and "A(paul) and B(paul)”, we know that "C(paul) and B(paul)".

#%% ORUnil: From "Any x (A(x) or B(x))" and "Any x (A(x) — C(x))", we know that “Any x (C(x) or B(x))”.

*##% ORUni2: "Any x (A(x) = C(x))", "A(paul) or B(paul)", we know that "C(paul) or B(paul)".

##% ORUni3: "Any x (-C(x) — A(x))", "A(paul) or B(paul)", we know that "-C(paul) or B(paul)".

*##% ORUni4: From "Any x (A(x) — C(x))" and "Any x (B(x) — C(x))", we know that "Any x ((A(x) or B(x)) — C(x))".
#%% Note: From —a->b we cannot know —(a and b).

*#% Note: From "Any x (A(x) xor B(x))" and "Any x (A(x) — C(x))", we cannot infer “Any x (C(x) xor B(x))”.

##% Also note: From "Any x (A(x) — D(x))" and "A(paul) or B(paul) — C(paul)", we cannot infer "D(paul) or B(paul) —
C(paul)”.

##% QORUniS: From Any x (C(x) — —A(X)), Any X (A(x) or B(x)), we know that Any x (C(x) — B(x)). Idempotent: A or A.
Therefore, A.

#*#% Iff introduction: If A, then B. If B, then A. Then, either both A and B or neither A nor B.

*#% For complicated conclusions, sometimes proving part of them is sufficient. A or B. A is true -> the conclusion is true. A
-> B. A is false -> the conclusion is false. For conclusions with truth values of False, prove the opposite is True.

*%% For the sake of annotation purposes, either..or in any context is exclusive, or is inclusive. For example, if I can either
sleep at home today or go to class, this means that I can choose to sleep at home, go to class, but not both. Whereas if I can I
can drink soda or drink coffee, it means I can drink soda, coffee, or both.

*¥+% When we say that someone is not an energetic person or a sloth, this means that someone is neither an energetic person
nor a sloth.

#*%* o(Indian(jesse) Human(jesse)) : Jessie is either Indian and human, or that he is neither Indian nor human. In several
instances, this sentence is rendered as "Jessee is not either an Indian or a human."

Proof consistency check:

#¥* Please involve at most two premises in one inference step.

*%% Be sure to write the conjunction introduction steps.

#%* Existential generalization check: Broadway Sheetmetals was a business owned by Edwin Smith, who was a rower. ->
There was a business owned by a rower. There are two steps of existential generalization involved. Be sure to write both
steps.

*¥% Do not use derivations used for a previous conclusion in a new conclusion. If conclusion A uses certain inference steps
of conclusion B you have written the proof for, be sure to copy those inference steps in the proof of conclusion A.

#%% Check for missing modus tollens steps.

*#% Note the difference between modus tollens and transposition.

*#%* Note the difference between hypothetical syllogism, modus ponens and universal instantiation.

*#* Hypothetical syllogism should be easy to distinguish from the other two since hypothetical syllogism would involve two
implications (->). Both the premises need to have implications in order to derive the conclusion.

*#% Universal instantiation and modus pones both involve only one implication

#%% Universal instantiation involves the universal quantifier, you can check the FOL part if you are not sure if a statement
involves the universal quantifier.

*#% Modus ponens does not involve the universal quantifier.

*#% Note: A(a) xor B(a) imply A(a) or B(a); A(a) or B(a) cannot imply A(a) xor B(a).

**%* Hypothetical syllogism instead of universal instantiation: If you have room for dessert, you have room for broccoli.
Everyone at Luis’s dinner party has room for dessert, including Luis. -> Everyone at Luis’s dinner party has room for
broccoli.

Table 12: Annotation guidelines

16564


https://www.emathhelp.net/calculators/discrete-mathematics/truth-table-calculator/
https://en.wikipedia.org/wiki/List_of_rules_of_inference#Rules_for_negations

Using deductive reasoning, find out the truth values of the conclusions based on the premises. The truth
value can be True, False or Uncertain. First show the reasoning process, and then output the truth value
in the format of "Truth value: ".

Table 13: Instruction used for prompting GPT-4 for zero-shot proof generation.

Prompt

Given a deductive reasoning question, demonstrate whether the two reasoning chains are semantically similar and follow
the same reasoning path to derive the final answer. After your explanations, output your decision in the format of "Decision:
". Your decision should be either Yes or No.

Premises: 1. Northwich Victoria FC is a football club that plays at Wincham Park. 2. Simon Hackney is a member of
Northwich Victoria FC. 3. Northwich Victoria FC is part of the Northern Premier League. 4. If someone is a member of an
organization that is part of a group, then the person is a member of the group. 5. If someone is a member of an organization
and the organization plays at a certain place, then the person plays at the place.

Conclusion: Simon Hackney is a member of the Northern Premier League.

Reasoning chain A: Reasoning process: 1. Simon Hackney is a member of Northwich Victoria FC (Premise 2). 2. Northwich
Victoria FC is part of the Northern Premier League (Premise 3). 3. If someone is a member of an organization that is part of
a group, then the person is a member of the group (Premise 4). 4. Therefore, Simon Hackney is a member of the Northern
Premier League (from 1, 2, and 3).

Reasoning chain B: Reasoning process: From premise 2 and premise 3, we know that Simon Hackney is a member of
Northwich Victoria FC, which is a part of the Northern Premier League. From this and premise 4, we know that Simon
Hackney is a member in the Northern Premier League.

GPT-4 Output

Analyzing Reasoning Chain A: Step 1: It asserts that Simon Hackney is a member of Northwich Victoria FC, which
directly uses Premise 2. Step 2: It states that Northwich Victoria FC is part of the Northern Premier League, utilizing
Premise 3. Step 3: It invokes the rule from Premise 4, which is a conditional statement about membership extension from an
organization to a group. Step 4: This is the conclusion step that synthesizes the information from steps 1, 2, and 3 to conclude
that Simon Hackney is a member of the Northern Premier League. This follows a logical and direct application of the
premises. Analyzing Reasoning Chain B: Initial Statement: Acknowledges that Simon Hackney is a member of Northwich
Victoria FC (from Premise 2) and that the club is part of the Northern Premier League (from Premise 3). Subsequent Logic:
Directly applies Premise 4, which relates individual membership in an organization to membership in a broader group if the
organization is part of that group. Conclusion: Concludes that Simon Hackney is a member of the Northern Premier League,
which aligns with the conclusion from the initial statement and the application of Premise 4. Comparison and Decision:
Both reasoning chains follow the same logical structure: They acknowledge Simon Hackney’s membership in Northwich
Victoria FC. They recognize the club’s affiliation with the Northern Premier League. They apply the same general rule from
Premise 4 to extend Simon’s membership from the club to the league. The primary difference lies in the explicitness and
breakdown of steps: Chain A is more structured and delineated, breaking down each logical step explicitly. Chain B is more
concise, combining some steps but still following the same logical pathway. Decision: Yes — Both reasoning chains are
semantically similar and follow the same reasoning path to derive the final answer.

Table 14: Example including prompt, GPT-4 model input and output for evaluating whether two model outputs
following the same reasoning path.
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