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Abstract

Massively multilingual models are known to
have limited utility in any one language, and
to perform particularly poorly on low-resource
languages. By contrast, targeted multinguality
has been shown to benefit low-resource lan-
guages. To test this approach more rigorously,
we systematically study best practices for adapt-
ing a pre-trained model to a language family.
Focusing on the Uralic family as a test case, we
adapt XLM-R under various configurations to
model 15 languages; we then evaluate the per-
formance of each experimental setting on two
downstream tasks and 11 evaluation languages.
Our adapted models significantly outperform
mono- and multilingual baselines. A regression
analysis reveals that adapted vocabulary size
is relatively unimportant for low-resource lan-
guages, and that low-resource languages can be
aggressively up-sampled during training at lit-
tle detriment to performance in high-resource
languages. These results introduce new best
practices for performing language adaptation
in a targeted setting.

1 Introduction

While multilingual models are susceptible to the
so-called “curse of multilinguality” — the observa-
tion that overall model performance decreases as
more languages are added in pre-training (Conneau
et al., 2020a; Wang et al., 2020b) — it is gener-
ally accepted that low-resource languages benefit
from some multilinguality during training, espe-
cially when added languages are similar in some
way (Conneau et al., 2020a; Ogunremi et al., 2023;
Chang et al., 2023). This paper contributes to a
growing line of research studying fargeted multi-
lingualism as a more practical approach to building
robust models for mid- and low-resource languages
(Chang et al., 2023; Ogueji et al., 2021; Ogunremi
et al., 2023; Ljubesi¢ et al., 2024) by analyzing
what factors matter most for this approach.

In this work, we systematically evaluate the best
technique for adapting a pre-trained multilingual
model (XLM-R) to a language family. We use
the Uralic family as a case study — like many
families, it includes a few mid-resource languages
(e.g. Hungarian, Finnish) as well endangered lan-
guages like Sdmi and Erzya, which are extremely
data-scarce. Our primary adaptation techniques
are multilingual Language-Adaptive Pre-Training
(LAPT; Chau et al., 2020) and vocabulary replace-
ment/specialization (Dobler and de Melo, 2023;
Downey et al., 2023, i.a.). Our experiments show
that both techniques are necessary for robust adap-
ation to the Uralic family.

We demonstrate that adaptation to a language
family is both more efficient than training mono-
lingual models, and performs as well or better
on downstream tasks. We also conduct a regres-
sion analysis to assess the impact of LAPT steps,
adapted vocabulary size, and language sampling
alpha in order to recommend best practices for
adapting models to targeted multilingual groupss.
Notable results include the fact that specialized
vocabularies as small at 16k tokens outperform
the cross-lingual XLM-R vocabulary (with 250k
tokens), and low-resource languages can be aggres-
sively up-sampled during training without signifi-
cant degradation of high-resource performance.

Our contributions are as follows: 1) We train
models adapted for the Uralic family that signifi-
cantly outperform monolingual and multilingual
baselines for almost all languages. 2) We con-
duct a statistical analysis of important parame-
ters for multilingual adaptation to test their rela-
tive effects on downstream task performance. 3)
We use this analysis to make best-practice rec-
ommendations 4) We make all of our adaptation
code, configurations, analysis results, and best-
performing Uralic model(s) publicly available at
https://github.com/CLMBRs/targeted-xlms .
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https://github.com/CLMBRs/targeted-xlms

2 Related Work

Pre-trained model adaptation Extensive work
has proposed reusing pre-trained models for new
settings to retain existing model knowledge and
reduce training costs. Gururangan et al. (2020)
show that continued training on domain-specific
data effectively adapts models in both high- and
low-resource settings. This approach is also used
to adapt models to new languages (i.e. Language-
Adaptive Pre-Training / LAPT; Chau et al., 2020).

Other approaches involve training new, language-
specific adapter layers to augment a frozen mono-
lingual (Artetxe et al., 2020) or multilingual en-
coder (Pfeiffer et al., 2020; Ustiin et al., 2020;
Faisal and Anastasopoulos, 2022). A compari-
son of these cross-lingual adaptation approaches
(Ebrahimi and Kann, 2021) found that continued
pre-training often outperforms more complex se-
tups, even in low-resource settings. Acs et al.
(2021) investigate the transferability of monolin-
gual BERT models to Uralic languages specifically.
They find that vocabulary overlap (and script) is ex-
tremely important for transfer success, rather than
the language-relatedness of the source model.

Model vocabulary and script A major limita-
tion to adapting models to new languages is the vo-
cabulary, which often fails to cover unseen scripts
(Pfeiffer et al., 2021) or tokenizes target text inef-
ficiently (Acs, 2019; Ahia et al., 2023). However,
Muller et al. (2021) demonstrate that script is a
critical factor in predicting transfer success.

Many adaptation techniques have been proposed
to overcome this issue, such as extending the vo-
cabulary with new tokens (Chau et al., 2020; Wang
et al., 2020a; Liang et al., 2023) or retraining the
vocabulary and embeddings from scratch (Artetxe
et al., 2020; de Vries and Nissim, 2021). Other
work reuses information in pre-trained embeddings
rather than randomly initializing new ones. These
include scaling up embedding spaces from smaller
target language models (de Vries and Nissim, 2021;
Ostendorff and Rehm, 2023) or copying embed-
dings from the original vocabulary where there is
exact overlap (Pfeiffer et al., 2021).

We follow recent works that re-initialize the vo-
cabulary (and embeddings) based on the structure
of the original model’s embedding space (Minix-
hofer et al., 2022; Ostendorff and Rehm, 2023; Liu
et al., 2024, i.a.). Dobler and de Melo (2023) intro-
duce the Focus algorithm, which initializes new
token embeddings as a linear combination of the

old embeddings for the most semantically similar
tokens, as computed by an auxiliary embedding
model. Alternatively, Downey et al. (2023) pro-
pose heuristics for initializing a new embedding
matrix based on script-wise distributions, which
perform similarly to more complex techniques like
Focus.

Targeted multilingualism Recent work has pro-
posed targeted or linguistically-informed multilin-
gual models instead of the “massively-multilingual”
approach covering as many languages as feasible.
Notably, Chang et al. (2023) show that while mas-
sively multilingual models hurt individual language
performance, low-resource languages in particu-
lar benefit from limited multilinguality, especially
when the added languages are syntactically similar
(e.g. have similar word order).

Ogueji et al. (2021) train a multilingual model
from scratch on 11 African languages, obtaining
performance as good or better than XLM-R. Ogun-
remi et al. (2023) refine this approach by showing
that training on languages from individual African
language families is more data-efficient than using
a mixture of unrelated African languages. Snab-
jarnarson et al. (2023) take a similar approach by
adapting a Germanic model to Faroese.

Other work uses targeted multilingual training as
an adaptation process of a pre-trained model, rather
than training from scratch. Alabi et al. (2022) adapt
XLM-R to 17 African languages via LAPT while
discarding the XLLM-R vocabulary unused by the
target languages. Ljubesi¢ et al. (2024) similarly
use LAPT to adapt XLM-R to the closely related
languages of Bosnian, Croatian, Montenegrin, and
Serbian; and Senel et al. (2024) adapt XLM-R sep-
arately to five low-resource Turkic languages while
showing that including the high-resource Turkish
language during training improves this adaptation.

Our work systematically analyzes which factors
are responsible for the success of targeted multilin-
gual adaptation. We focus on the model adaptation
paradigm since cross-lingual models learn useful
language-general patterns that can be leveraged for
a “warm-start” to training (Conneau et al., 2020b).
Unlike Ljubesié et al. (2024); Senel et al. (2024),
we specialize model vocabulary for the target lan-
guage(s), since cross-lingual tokenizers typically
perform poorly for low-resource languages (Rust
etal., 2021). We follow Dobler and de Melo (2023)
and Downey et al. (2023) in using a vocabulary
specialization technique that leverages the struc-
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ture of the original model embedding space, while
creating a new vocabulary that is directly optimized
for the target languages, in contrast to Alabi et al.
(2022), which simply uses a subset of the origi-
nal model vocabulary. Finally, we follow Ogun-
remi et al. (2023) in conducting adaptation for a
language family, while keeping in mind the obser-
vation from Senel et al. (2024) that including a
high-resource language during adaptation can be
advantageous. This comes naturally with our cho-
sen testbed of the Uralic family, which contains
both high- and low-resource languages.

3 Experiments

We adapt models using Language-Adaptive Pre-
Training (LAPT, Chau et al., 2020) and vocabulary
specialization (Downey et al., 2023, i.a.) on Uralic
language data and compare to both multilingual
and monolingual baselines. Within our multilin-
gual experiments, we explicitly model the influence
of important hyper-parameters on downstream per-
formance using a linear mixed-effects regression.

Languages First, we obtain raw-text LAPT data
for as many Uralic languages as possible. For the
high-resource languages (Estonian, Finnish, Hun-
garian, and Russian), all training data is sourced
from the multilingual OSCAR corpus v.22.01
(Abadji et al., 2022), which also contains a small
amount of text for the low-resource languages
Komi (koi) and Mari (mhr/mrj). We further
source low-resource language data from monolin-
gual splits of the OPUS translation corpus (Tiede-
mann and Nygaard, 2004) and the Johns Hopkins
University Bible Corpus (McCarthy et al., 2020).
Table 1 shows an inventory of the LAPT text
with total data amounts after combining the corpora
for each language. We cover 6/8 Uralic branches,
lacking only Ob-Ugric and Samoyedic (Auster-
litz, 2008). The resource gap between high- and
low-resource languages is stark: Estonian (fourth
highest-resource) has ~1000x more data than the
next highest (Komi). The four highest-resource
languages were also seen during XLLM-R’s training,
while the rest were not. We treat this as the cut-
off between the “high-resource” and “low-resource”
Uralic languages for the remainder of this work.
We also include Russian as a high-resource lan-
guage, though it is not Uralic. Many Uralic lan-
guages are spoken by ethnic minorities within Rus-
sia and the former Soviet Union using modified
forms of the Russian Cyrillic alphabet. The lack of

a high-resource Uralic language written in Cyrillic
could be a problem for low-resource performance,
since script overlap is a vital ingredient in cross-
lingual transfer (Muller et al., 2021; Downey et al.,
2023). Further, Russian is a major source of loan
words for Uralic languages and an official language
throughout Russian territory (Austerlitz, 2008).
During training, we sample languages accord-
ing to a multinomial distribution parameterized by
the hyperparameter o (Conneau and Lample, 2019;
Conneau et al., 2020a, i.a.; see Figure 1). Lan-
guages are sampled by sentence, allowing multiple
languages to be potentially sampled in each batch.

Vocabulary replacement To specialize the
model’s vocabulary for target languages, we first
train a new SentencePiece model (Kudo and
Richardson, 2018) on 5 million lines sampled from
the training set,' testing vocabulary sizes of 16k,
32k, and 64k tokens.> We train multilingual to-
kenizers with a consistent sampling parameter of
a = 0.2.> We re-initialize the model’s embedding
matrix for the new vocabulary using the FOCUS
algorithm (Dobler and de Melo, 2023).

1e+07

1e+05

ines

1e+03

1e+01

Figure 1: Uralic data composition by number of lines,
on a log scale. The actual data quantities are shown with
bars, while sampling distributions with several values
of the o parameter are plotted as lines

Training All experiments use XLM-R base as a
starting point (Conneau et al., 2020a). We conduct
LAPT on the multilingual Uralic dataset for 100k,
200Kk, or 400k steps. When training a new vocabu-
lary, the transformer blocks are frozen for the first

'When adapting to single languages with < 5 million lines,
the vocabulary is trained on the entire training set.

2Throughout this paper, 16k, 32k, and 64k are shorthand
for 2'4, 21° and 2' respectively.

3Pilot experiments suggest the choice of o during vocabu-
lary initialization is not as important as the value picked during
multilingual training.
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Language Code Branch Script  XLM-R Data (GB) LAPT Data (GB) LAPT Data (lines) Sources
Russian ru n/a Cyrillic 278.0 9.1 32.7 x 106 (6]
Hungarian hu Hungarian ~ Latin 58.4 12.8 64.8 x 106 (6]
Finnish fi Finnic Latin 54.3 9.3 50.2 x 106 (6]
Estonian et Finnic Latin 6.1 2.8 15.8 x 108 0
Komi koi Permic  Cyrillic 0 6.8 x 1073 48.5 x 103 OPJ
Mari mhr/mrj Mari Cyrillic 0 6.5 x 1073 25.3 x 103 0J
Erzya myv  Mordvinic Cyrillic 0 6.0 x 1073 32.6 x 103 PJ
Veps vep Finnic Latin 0 5.3 x 1073 35.7 x 103 P
Udmurt udm Permic  Cyrillic 0 4.3 x1073 28.1 x 103 PJ
Sami se/sme Sami Latin 0 3.9 x 1073 34.5 x 103 PJ
Karelian krl Finnic Latin 0 2.4 %1073 17.4 x 103 PJ
Moksha mdf  Mordvinic  Cyrillic 0 1.2 x 1073 9.3 x 103 P
Livonian liv Finnic Latin 0 0.5 x 1073 14.2 x 103 P
Votic vot Finnic Latin 0 <0.1x1073 474 P
Ingrian izh Finnic Latin 0 <0.1x1073 21 P

Table 1: Listing of available training data by language (after cleaning, de-duplicating, and reserving 10% for eval
and test sets). XLM-R data is the amount of data used to pre-train that model. LAPT data is the amount of data
available for adaptive training on Uralic languages in our experiments. Codes for language data sources: O =

OSCAR, P =0PUS, ] = JHUBC.

10k steps, to prevent model overfitting on the initial
(possibly poor) embedding initializations.

For our shortest experiments (100k steps) we test
four values of a: {0.1,0.2,0.3,0.4}. For longer
experiments, we test only the two most promising
values: {0.1,0.2}. Because the data ratio between
our high and low-resource languages is so extreme
(Table 1), we cap the four high-resource languages
at approximately 2 GB of text each.* Because sev-
eral languages of the Finnic branch have less than
1 MB of text, we also sample the 5 low-resource
Finnic languages as if they are a single language
(“Finnic” in Figure 1). This is to prevent extreme
over-sampling of tiny datasets such as Ingrian.

Task evaluation We evaluate model performance
with Part Of Speech (POS) tagging accuracy as
well as Unlabeled Attachment Score (UAS) on Uni-
versal Dependencies (UD) treebanks (de Marneffe
et al., 2021).°> Treebanks exist for all high-resource
languages plus Erzya, North Sdmi, Komi, Kare-
lian, Livvi, Moksha, and Skolt Sami. Models are
fine-tuned for each task over four random seeds.
Because the amount of fine-tuning data varies
considerably over languages, we consider three
evaluation settings: few-shot, full-finetune, and
zero-shot. For few-shot, models are fine-tuned
on 512 sampled sentences per language. For full-
finetune, models are fine-tuned on all examples in
a given language (ranging from 896 sentences for
Erzya to 32,768 for Russian). Zero-shot setting is

“This is in addition to alpha sampling, reflected in Figure 1.
SCurrently, UD appears to be the only source for high-
quality NLP evaluation data in low-resource Uralic languages.

used for very low-resource languages which have
only small test sets, and no standard training data:
we fine-tune the model on the combination of lan-
guages with training sets, and then evaluate directly
on the target test set. An inventory of Uralic UD
data can be found in Appendix B, along with more
details on our evaluation methodology.

Baselines Our simplest baseline is “off-the-shelf”
XLM-R — the pre-trained model from Conneau
et al. (2020a) without modification. We also test
XLM-R adapted with LAPT, but without vocabu-
lary specialization. LAPT alone is a strong baseline,
but as Downey et al. (2023) note, training a large
cross-lingual vocabulary incurs considerable extra
computation compared to a smaller, specialized
one. Given cross-lingual tokenizers are often inef-
ficient and ineffective for low-resource languages
(Acs, 2019; Rust et al., 2021), we hypothesize a
specialized vocabulary will show a performance
advantage as well as reduced computational cost.

We also train baselines adapted to single lan-
guages, adapting XLM-R with LAPT and a vocab
size of 16k (per language). We assume a shared
computational “budget” of 400k training steps,
where steps are allocated across languages accord-
ing to the multinomial distribution with o = 0.1,
similar to the data sampling technique for multilin-
gual training. This baseline is meant to be compa-
rable to our multilingual model trained with 400k
steps, vocab size 16k, and a = 0.1.

15650



Task Type Erzya North Sdmi Estonian Finnish Hungarian Russian Avg
UAS monolingual 49.74+0.7 420+22 5244+10 692+21 632+34 69.1+18 57.6
UAS multilingual 588+23 5134+05 569+25 712+21 699+12 71.7+2.6 633
POS  monolingual 620+13 60.8+20 84.0+0.6 79.1+23 859+22 865+£18 764
POS  multilingual 761 +33 732+12 77739 797+26 893+13 875£05 80.6

Table 2: Few-shot comparisons with monolingual baselines (both tasks). All models have vocabulary size 16k.
Multilingual models are trained for 400k steps with o = 0.1. Monolingual models trained for a total of 400k steps
“budgeted” across the languages, according to o = 0.1, as described in § 3.

Task Type Karelian Komi Livvi Moksha Skolt Sdmi  Avg
UAS monolingual 61.7+04 284+46 61.1+£0.8 40.0+3.1 289+21 440
UAS  multilingual 659+03 738+£0.6 659+03 702102 414+16 634
POS monolingual 84.5+0.1 446+3.1 81.6+02 497+20 526+05 62.6
POS  multilingual 87.7+0.2 80.1+03 850+02 783+02 554+03 773

Table 3: Zero-shot comparisons with monolingual baselines (both tasks) with the same models as Table 2. Monolin-
gual models are fine-tuned on the most similar language with a UD training set: Finnish — Karelian, Livvi; Erzya

— Komi, Moksha; North Sdmi — Skolt Sami.

4 Results

First, we compare our best-performing Uralic-
adapted multilingual models to both multilingual
and monolingual baselines. We show that our
chosen method of layering LAPT and vocabulary
specialization on a pre-trained multilingual model
largely outperforms alternatives on downstream
tasks and is more computationally efficient.

We then analyze the dynamics of multilingual
adaptation factors such as number of LAPT steps,
adapted vocabulary size, and sampling alpha. Our
grid search yields 72 evaluation data-points per
language, per task, per setting.® We visualize the
overall trends observed for each parameter, and
then present a regression analysis of the combined
effect of these parameters on task performance.

4.1 Baselines

Monolingual baselines Tables 2 and 3 compare
our best-performing, fully-adapted multilingual
models to the comparable monolingual baselines
described in §3. With a few exceptions for high-
resource languages like Estonian and Finnish, the
multilingual models substantially outperform the
baselines. This is especially salient for the UAS
task (first two rows of each table), the zero-shot
setting (Table 3), and low-resource languages.

Multilingual baselines Tables 4 and 5 show a
comparison of our fully-adapted multilingual mod-
63 training lengths x 3 vocabulary sizes x 2 alpha values

X 4 random seeds (during fine-tuning) = 72. Only 2 alpha
values are tested over all training lengths.

els to multilingual baselines for the dependency
parsing task. The first row in each represents XLM-
R “off-the-shelf”. The second row is the XLM-R
adapted with LAPT, but without vocabulary special-
ization. It retains the large cross-lingual vocabulary
inherited from XLM-R, which is almost 4x larger
than our largest adapted vocabulary (64k tokens).

Table 4 shows that in few-shot evaluations, our
smallest model with vocabulary specialization sig-
nificantly outperforms the best baseline model with-
out. An adapted vocabulary of 16k tokens results in
an average gain of 1.6 points over the baseline, and
increasing to 64k tokens raises this to 4.7 points.
We also note that LAPT on XLM-R with its original
vocabulary incurs ~2-3x more computation than a
version with a specialized vocabulary of size 32k.

The zero-shot evaluations do not reflect this con-
sistent improvement with increasing vocabulary
size (Table 5). 4/5 zero-shot languages still see
the best results with a specialized vocabulary. The
exception is Skolt Sdmi, which is modeled best by
the +LAPT/-vocab-adaptation baseline. However,
our results for Skolt Sdmi go against overall trends
in our experiments, and we delve into this finding
further with an error analysis in Appendix D.

For space and clarity, we focus only on UAS re-
sults in this section. Comparable tables for POS are
found in Appendix C. We observe similar trends
for POS, though the LAPT baseline with original
vocabulary is more on par with the specialized vo-
cabularies. We hypothesize that this reflects POS
being a simpler task than dependency parsing, since
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LAPT Alpha Vocab Erzya North Sdmi Estonian Finnish Hungarian Russian Avg

0 * 250k (orig) 29.0+2.1 262+£1.0 374+54 515£31 453+£100 47.6+£35 395
400k 0.1 250k (orig) 540+09 510+13 547+23 712+10 691+14 701+34 617
400k 0.1 16k 588+23 513+£05 569425 712£21 699+12 71.7£26 633
400k 0.1 32k 56.6 08 520+£08 567+19 720+£18 70.1+08 71.9+£20 632
400k 0.1 64k 61.5+28 538+08 60.7+09 73.0+1.0 752+05 742+22 664

Table 4: Few-shot UAS — comparison with multilingual baselines. First row is XLM-R “off-the-shelf” (without
LAPT or vocab specialization). Second row is XLM-R with original vocabulary, but adapted with Uralic LAPT
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Figure 2: Few-shot UAS — effect of hyper-parameters by language, marginalized across other parameter settings

the latter involves more linguistic structure. It may
be telling that the advantage of adapted vocabular-
ies is clearer in the more complicated UAS task.

4.2 Qualitative trends

Figure 2 shows the effect of each hyper-parameter
(marginalized across other parameters) in the few-
shot setting for UAS.” Unsurprisingly, the number
of LAPT (training) steps has a large effect on per-
formance. This also reflects that adaptation may
take a long time to properly converge on new lan-
guages, as the slope is steeper for languages new
to XLM-R such as Erzya (myv). Adapted vocab-
ulary size also has an overall positive effect on
performance, though this effect is not as strong as
longer training and not as clear for the low-resource
Erzya (myv) and North Sdmi (sme). Finally, the ef-
fect of sampling alpha diverges between high- and
low-resource languages, as lower alpha values up-
sample low-resource languages and down-sample

"We see similar trends in our regression analysis for the
POS tagging task (Appendix Figure 4).

high-resource ones. However, the observed effect
for low-resource languages at lower alpha values is
much larger than the corresponding degradation on
high-resource languages.

Plots for the zero-shot setting. The effects of
steps and alpha are similar to the few-shot trends.
However, vocabulary size does not have an obvious
effect in this setting (an observation corroborated
by our regression). As previously noted, Skolt
Sami performance remains consistently poor across
hyperparameters (see § D).

4.3 Statistical analysis

Experimental Setup We conduct a regression
analysis to predict performance with linear mixed-
effect models in the 1me4 package (Bates et al.,
2015). LAPT steps and vocabulary size are treated
as fixed continuous effects. Fine-tuning examples
is treated as a fixed continuous effect for few-shot
and full-finetune settings only. Task (POS vs UAS)
is modeled as a fixed categorical effect, as the
scores mostly follow a fixed offset (with POS ac-
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LAPT Alpha Vocab Karelian Komi Livvi Moksha Skolt Sdmi  Avg

0 * 250k (orig) 59.0+04 41.1£14 560+£09 527+003 444=+£14 506
400k 0.1 250k (orig) 652 4+03 739+£04 634+£04 704+06 448+12 636
400k 0.1 16k 659+03 738£06 659+02 702+£02 414+£16 634
400k 0.1 32k 664+04 749+03 654+£07 71707 433£15 643
400k 0.1 64k 66.0+04 750£01 65605 73.3£05 408+13 64.1

Table 5: Zero-shot UAS — comparison with multilingual baselines. First row is XLM-R “off-the-shelf” (without
LAPT or vocab specialization). Second row is XLM-R with original vocabulary, but adapted with Uralic LAPT
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Figure 3: Zero-shot UAS — effect of hyper-parameters by language, marginalized across other parameter settings

curacy higher than UAS). We verify this with a
regression with interaction terms between task and
other parameters (e.g. steps), finding no significant
interactions; ANOVA confirms no significant dif-
ference between the regressions (p = 0.95).

Since the effect of « has a different sign and mag-
nitude between high- and low-resource languages,
we model it as an interaction with a binary variable
coding the language as high- or low-resource. We
justify the binarity by the stark resource disparity
between the two groups (§ 3). Due to differing
baseline performance across languages, we also
include a language-wise random-effect intercept.
The final regression formula and full summary ta-
ble with coefficients are in Appendix Table 12.

Few-shot / Full-finetune Results We find highly
significant effects on performance (p < 0.001) for
LAPT steps, vocabulary size, fine-tuning examples,
and task.® Sampling alpha is significant in the
low-resource case (p = 0.035), but not the high-
resource (p = 0.36). This indicates lower alpha has

8Effect of task simply means baseline scores of each are
different — about 14 points lower for UAS.

a significant positive effect for low-resource lan-
guages, without significantly hurting high-resource
performance. The coefficient estimate for steps is
1.67, meaning an overall gain of 1.67 POS/UAS
points for each 100k steps. The estimate for vo-
cabulary size is 0.62 points per 16k tokens. The
estimate for fine-tuning examples is 0.40 per 512
examples. In concrete terms, this means doubling
steps from 100k to 200k is ~2.7 times as effec-
tive as doubling the vocabulary from 16k to 32k
tokens, and ~4.2 times as effective as doubling the
fine-tuning examples to 1024. Finally, we test for
but find no significant interaction between steps
and vocabulary size; ANOVA comparison confirms
no significant difference between models with and
without this interaction (p = 0.43).

Zero-shot Results Our zero-shot regression is
similar to the previous, except that number of fine-
tuning examples is not applicable, and there is
no interaction between alpha and resource level,
since all zero-shot languages are low-resource. The
effects for steps and task are highly significant
(p < 0.001); alpha is also significant (p = 0.0027).
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In contrast to the fine-tuned settings, vocabulary
size is not significant (p = 0.73). The coefficient
for steps is 1.35 points per 100k steps, which is
slightly smaller than for the fine-tuned experiments.
This could be partly due to the results for Skolt
Sami showing little change under any parameters.

5 Discussion

Multilinguality is beneficial for many languages
The baselines in §4.1 demonstrate that, given a
fixed computational budget, it is more effective
to adapt a multilingual model to cover a group of
related languages than to adapt models monolin-
gually. This is especially true for low-resource lan-
guages, but surprisingly some high-resource ones
(like Hungarian and Russian) also benefit from mul-
tilinguality. This supports the idea that multilingual
training is useful for learning general patterns that
are beneficial for many languages. Table 3 further
shows that robust performance on languages with-
out fine-tuning data, like Komi and Moksha, is only
feasible by combining multilinguality and transfer
learning.

Specialized vocab is more effective and efficient
Our multilingual baselines in §4.1 demonstrate that
even models with our smallest specialized vocabu-
lary are on par with or outperform those retaining
the large cross-lingual vocabulary from XLM-R,
regardless of language. Table 6 shows that the 16k
vocabulary tokenizes Uralic data with similar effi-
ciency as the XLM-R vocabulary (in terms of mean
sequence length), while yielding a model that is
35% of XLM-R’s size. This reduction is significant
both for the size of the model in disk/memory and
for computational cost during training.’

Vocab size  Parameters Avg. length
16k 98.6M 49.9
32k 111.2M (+13%) 44.3 (-11%)
64k 136.4M (+23%)  39.7 (-10%)
128k 186.8M (+37%)  36.1 (-9%)
250k (orig) 278.3M 484

Table 6: Total model parameters and mean sequence
length for each vocabulary size. In parentheses is per-
cent change from the next-smallest vocab. Computed
on 100k sentences sampled from LAPT data (o = 0.1).

Per Kaplan et al. (2020), we estimate the number of opera-
tions per training step, per token as 6(N + dv + 2d), where N
is the number of non-embedding parameters, d is the hidden
dimension, and v is the vocabulary size. Note this estimate is
approximately proportional to the total number of parameters.

Training steps vs. vocabulary size Though we
find that training steps and vocabulary size both
positively contribute to downstream performance
in fine-tuned settings, an additional 100k steps is
almost three times as effective as adding 16k ad-
ditional tokens (§4.3). These factors also come
with efficiency tradeoffs: increasing the vocabulary
size from 16k to 32k only increases the number of
floating point operations during training about 13%
per token (for XLM-R base), whereas doubling the
training steps doubles the number of operations.

Furthermore, while a larger vocabulary size can
reduce sequence length as the SentencePiece model
becomes more efficient, each doubling of the vo-
cabulary size only reduces the average sequence
length about 10% (Table 6). These parameter
increases therefore eventually outpace efficiency
from shorter sequences, as well as increase the
model’s memory footprint and hardware costs.

Finally, our regression shows that vocabulary
size does not significantly affect zero-shot task per-
formance, which covers our lowest-resource lan-
guages (§4.3 and Table 5). Therefore, a best prac-
tice for adapting to a low-resource language family
would be to start with a relatively small vocabu-
lary, and increase the size only until the increase
in parameters outpaces the decrease in sequence
length. Computational budget should then be spent
on longer training rather than a larger model.

Lower alpha is better While o does not have
a significant effect on task performance in high-
resource languages, low alphas do significantly ben-
efit low-resource settings (§4.3). Our multilingual
models thus frequently achieve their best average
performance with the lower o« = 0.1, buoyed by
strong performance in low-resource languages.

This indicates that practitioners can aggressively
up-sample low-resource languages in multilingual
datasets with little risk to performance on high-
resource “anchor” languages. Further, as low as
a = 0.1, we see no evidence that “over-sampling”
low-resource languages harms their downstream
performance. However, we note that the considered
high-resource languages are in XLM-R’s original
training set, which likely affects the model’s ro-
bustness on these languages. It is an open question
whether multilingual sampling dynamics differ in
“from-scratch” training scenarios or for other high-
resource, but previously unseen, languages.
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6 Conclusion

This work shows that adapting a pre-trained cross-
lingual model to a language family greatly im-
proves task performance, especially for under-
resourced languages in that family. Targeted mul-
tilingual adaptation soundly outperforms monolin-
gual adaptation for all low-resource Uralic lan-
guages we test, as well as for half of the high-
resource ones. Further, we show that specializing
the model vocabulary for the Uralic family yields
significant improvements over the large “cross-
lingual” vocabulary of XLM-R, while simultane-
ously improving computational and memory ef-
ficiency. Finally, our statistical analysis demon-
strates which parameters (sampling alpha, training
steps) are key to targeted adaptation performance.

While our work is similar in goal to recent
projects such as Glot500-m (Imani et al., 2023), our
approach contrasts in important ways. Imani et al.
(2023); Liang et al. (2023); i.a. propose “horizon-
tal” scaling to more languages primarily through
vocabulary expansion, growing the overall model
size. We on the other hand advocate for model spe-
cialization, shrinking the overall model size while
increasing per-language parameter and vocabulary
capacity. Both our work and Glot500-m signifi-
cantly outperform XLLM-R on under-resourced lan-
guages (though the exact evaluation results are not
directly comparable'?). However, we note that our
smallest fine-tuned model does so with just 25% of
the parameters of Glot500-m.

Specialization to smaller models has significant
advantages in resource-constrained scenarios, and
may better facilitate the democratization of NLP
research and engineering for more language com-
munities. Imani et al. (2023) point out that reducing
the size of models like Glot500-m through knowl-
edge distillation would be useful future work. In
fact, the two approaches are not mutually exclu-
sive: our specialization technique could be applied
to larger base models with expanded multilingual-
ity, and model expansion and specialization may
be more or less practical depending on the specific
applied NLP workflow.

We therefore concur with Ogueji et al. (2021);

10Both studies evaluate POS tagging on Erzya, North Sami,
Estonian, Finnish, Hungarian, and Russian. However, we do
so in a fine-tuned setting whereas Glot500-m is fine-tuned
on English then zero-shot transferred to all other languages.
Our models show higher accuracy on low-resource languages,
but this may be attributable to the difference in setting among

other confounding variables like total compute budget for
continued pre-training.

Ogunremi et al. (2023); Chang et al. (2023); i.a.
that targeted or linguistically-informed multilin-
gual modeling is one of the most promising av-
enues for extending NLP advance to the majority
of the world’s languages, as it both leverages the
benefit of multilingualism for under-resourced lan-
guages and avoids the “Curse of Multilinguality”
seen in massively multilingual approaches. How-
ever, given the success of large pre-trained lan-
guage models, and of the pre-training paradigm
more generally (Gururangan et al., 2020), we argue
that it is more effective to leverage transferable in-
formation in existing cross-lingual models, rather
than training from scratch. We hope our findings
will inform best practices for such targeted mul-
tilingual adaption when extending the benefits of
pre-trained models to under-resourced languages.

Limitations

One limitation of our work is the small selection
of evaluation tasks available for under-resourced
languages. For most, the only high-quality datasets
are found in expertly curated cross-lingual projects
such as Universal Dependencies. While a few other
datasets exist for under-resourced languages, they
are often of questionable quality due to being au-
tomatically curated (Lignos et al., 2022). As such,
our experiments are limited to POS tagging and
UAS for dependency parsing.

Second, to maintain a feasible scope of work, we
use only XLM-R as a base model for adaptation.
Useful future work could include evaluating our
adaptation techniques both in larger models, and
for “generative” models trained with a traditional
language modeling task rather than the masked lan-
guage modeling employed by XLM-R. XGLM (Lin
et al., 2022), for example, would be a natural next
step, since it is both larger and generative. Eval-
uating multilingual generative models would also
open the door to evaluations on more contemporary
prompting-based tasks.
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A Training Details

The main details of our experimental process can
be found in § 3. Here we provide our choice of
hyperparameters and other details relevant to repro-
ducibility.

A.1 Data

All LAPT data used in our experiments is cleaned
and de-duplicated with the OpusFilter package
(Aulamo et al., 2020). For low-resource languages,
we additionally filter out lines that are identified as
English with a probability of 90% or higher, since
positive automatic language-identification for low-
resource languages is likely not robust (Kreutzer
et al., 2022). We additionally filter out lines com-
posed of less than 2 tokens, lines with an average
token length of greater than 16 characters, lines
with tokens longer than 32 characters, and lines
composed of fewer than 50% alphabetic charac-
ters. We reserve 5% of the total LAPT data in each
language for a development set, and 5% for a test
set.
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A.2 Parameters

All models are trained and fine-tuned on Nvidia
Quadro RTX 6000 GPUs using the Adam opti-
mizer (Kingma and Ba, 2015). Hyperparameters
for Language-Adaptive Pre-Training (LAPT) can
be found in Table 7.

Hyperparameter Value
mlm_masking_prob 0.15
max_sequence_length 256
learning_rate le-5
lr_schedule linear
batch_size 200
max_gradient_norm 1.0

Table 7: Hyperparameters for model training (LAPT)

B Evaluation Details

B.1 Data

Most language have a standard train/dev/test
split curated the original Universal Dependencies
dataset (de Marneffe et al., 2021). Erzya, however,
only has a standard train/test split. To form a dev
split, we randomly sample 300 sentences from the
train split. The inventory of UD evaluation data
can be found in Table 8.

B.2 Parameters

Hyperparameters for task fine-tuning on POS and
UAS are in Table 9. We cap fine-tuning training
data at 32,768 sequences (only relevant for Rus-
sian).

B.3 Unlabeled Attachment Score

Unlabeled Attachment Score (UAS) is the accu-
racy with which a model assigns each word its
proper dependency head. Our implementation uses
the graph biaffine algorithm defined in Dozat and
Manning (2017). The contextual embedding repre-
sentation for each token r; is passed through each
of two feed-forward layers, to produce a represen-
tation of this token as a head and as a dependent,
respectively:

h?ead — FFNhead(Ti)
h{%P = FENYP(r;)

The score of a directed edge i — j, is then as-
signed according to a biaffine scoring function:

Biaffine(h)“*", h{%) = Uure + Ware + b

Uarc = h;lep . UT

arc_head
head
Uarc_head =U- hi
head
Ware =W - by

where U, W, and b are weights learned by the
model. A probability distribution over possible
heads is then computed by passing score(i — j)
through a softmax layer. Our implementation is
based on Jurafsky and Martin (2024) and https:
//www.cse.chalmers.se/~richajo/nlp2019/
17/Biaffine%2@dependency%2@parsing.html.

C Additional results

Results and visualizations for the POS task can
be found in this appendix. For POS, the multi-
lingual baseline without vocabulary specialization
performs more on-par with models with specialized
vocabulary (Tables 10, 11). This is possibly due to
the relative simplicity of the task. The parameter-
wise trends for POS are mostly the same as for
UAS (Figures 4, 5).

D Skolt Sami error analysis

The consistently poor Skolt Sdmi task performance
across experimental settings suggests that the Sami
LAPT data may not be useful for this variant. We
note that the datasets used for LAPT (in the case
of Sdmi, OPUS (Tiedemann and Nygaard, 2004)
and the JHUBC (McCarthy et al., 2020)) label most
text as either undifferentiated Sami (se) or as North
Sami (sme); however, Sdmi is a group of languages,
not all of which are mutually intelligible.

We therefore consider multiple tests for distribu-
tion shifts between the LAPT data and UD evalua-
tion. The first is tokenizer efficiency, in characters
per token. Our monolingual Sadmi tokenizer trained
on the LAPT data obtains 4.5 characters per token
on that data, but this drops to 1.9 and 1.6 on the UD
North Sdmi and Skolt Sami datasets, respectively;
this indicates a significant domain shift between the
text seen in pre-training and in the UD datasets. We
hypothesize that the model overcomes this vocab-
ulary issue by available fine-tuning data for North
Sami, but that this does not occur for Skolt Sami,
since we evaluate it in a zero-shot setting.

In addition, the tokenizer shows a dramatic in-
crease in OOV tokens when applied to Skolt Sadmi
— the unigram frequency for <unk> increases to
9%, from only 0.3% on the LAPT data.!! Single-
character tokens like <6>, <>, <&>, and <&> also

"North Sami OOV frequency is only 0.003%.
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Language Code  Branch Script  Train  Dev  Test
Russian ru n/a Cyrillic 69,630 8,906 8,800
Finnish fi Finnic Latin 14981 1,875 1,867
Estonian et Finnic Latin 5,444 833 913
North Sdmi  sme Sami Latin 2,001 256 865
Hungarian hu  Hungarian Latin 910 441 449
Erzya myv  Mordvinic Cyrillic 896 300 921
Komi koi Permic Cyrillic 0 0 663
Moksha mdf Mordvinic Cyrillic 0 0 446
Skolt Sdmi  sms Sami Latin 0 0 244
Karelian krl Finnic Latin 0 0 228
Livvi olo Finnic Latin 0 0 106

Table 8: Universal Dependencies evaluation set sizes, by number of examples (sentences)

Hyperparameter Value
max_sequence_length 256
learning_rate 5e-6
1r_schedule constant
max_epochs 64
eval_interval (epochs) 2
patience (epochs) none / 8
batch_size 72
max_gradient_norm 1.0

Table 9: Hyperparameters for model task fine-tuning.
few-shot has no early stopping. Full-finetune and zero-
shot settings have early stopping after patience of 8
epochs

greatly increased in frequency, demonstrating the
substantial hindrance that orthography differences
can have on transfer between otherwise closely-
related languages. These findings once again high-
light importance of quality for language-modeling
data, even when large web-scraped datasets have
become the norm (Kreutzer et al., 2022). Conse-
quently, a future best practice may be to consider
the intended downstream tasks (and their text dis-
tributions) when forming the vocabulary for a spe-
cialized multilingual model in order to minimize
the occurrences of UNK tokens and facilitate better
transfer learning between the language-modeling
and task domains. Particular OOV tokens included
<_de>, <_di>, <son>, <_§’ tte>.

E Regression tables

The full regression summaries from the 1me4 pack-
age (Bates et al., 2015) can be found in Tables 12-
15. These cover both the fine-tuned (few-shot/full-

finetune) and zero-shot models. As mentioned in
§ 3, we test four values of alpha for experiments
with 100k steps, but only two values for longer ex-
periments. Because this introduces artificial corre-
lation of input variables, we separate the regression
with two alphas as our “main” results, but include
the summary of regressions with four values (but no
variation in training steps) here (Tables 13 and 15).
These secondary regressions show a greater effect
size for low-resource alpha, indicating the estimate
between the alpha values 0.1 and 0.2 might not
accurate estimate the larger trends. Note that these
secondary regressions do not change the standings
of which variables are significant.
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LAPT Alpha Vocab Erzya North Sdmi  Estonian Finnish ~ Hungarian  Russian  Avg

0 * 250k (orig) 509 +£19 538+31 639+£54 667=£37 8l5*£54 86.8+10 673
400k 0.1 250k (orig) 752+£26 772+2.6 842+03 833+21 880£32 901+2.0 827
400k 0.1 16k 76.1 £33 732+12 777+39 797+26 893+13 875+05 80.6
400k 0.1 32k 723+£42 T714+12 827+24 823+£38 87724 83.0x22 80.7
400k 0.1 64k 780+14 765+35 830+24 854+22 941+11 881+15 84.2

Table 10: Few-shot POS — comparison with multilingual baselines. First row is XLM-R “off-the-shelf” (without
LAPT or vocabulary replacement). Second row is XLM-R with original cross-lingual vocabulary, but fine-tuned on
Uralic languages with LAPT

LarPT Alpha Vocab Karelian Komi Livvi Moksha  Skolt Sdmi  Avg

0 * 250k (orig) 77706 496+0.6 73.7+£08 644+£03 550=£12 64.1
400k 0.1 250k (orig) 86.7+£0.2 800£02 852+04 794+02 561+1.0 77.5
400k 0.1 16k 87.7+0.2 80.0+03 85.0+£02 783+£02 554+03 773
400k 0.1 32k 873+03 80102 85.6+04 78.6+£05 537+03 770
400k 0.1 64k 874+04 814+04 856+02 79.6+01 522+17 772

Table 11: Zero-shot POS — comparison with multilingual baselines. First row is XLM-R “off-the-shelf” (without
LAPT or vocabulary replacement). Second row is XLM-R with original cross-lingual vocabulary, but fine-tuned on
Uralic languages with LAPT
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Figure 4: Few-shot POS — effect of hyper-parameters by language, marginalized across other parameter settings
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Figure 5: Zero-shot POS — effect of hyper-parameters by language, marginalized across other parameter settings

Fixed effects Estimate Std. Errror df tvalue pvalue
(Intercept) 75.93 2.53 5.63 2997 2.00e-07
lapt_steps 1.67 0.15 1691.67 11.16 <2e-16
vocab_size 0.62 0.15 1691.67 4.15 3.49e-05
finetuning_lines 0.40 0.01 1696.77 3032 <2e-16
taskuas -13.84 0.38 1691.67 -36.71 <2e-16
resourcehigh:lapt_alpha 0.42 0.46 1582.98 0.92 0.3606
resourcelow:lapt_alpha -1.36 0.64 1239.05 -2.11 0.0347

Table 12: Regression summary table for few-shot and full-finetune settings. Significant coefficients and p values in
bold. This regression covers all training lengths (step numbers), but only includes alphas {0.1, 0.2}. Formula:
Imer (accuracy ~ lapt_steps + vocab_size + finetuning_lines + task + resource:lapt_alpha + (1 | language))

Fixed effects Estimate Std. Errror df tvalue pvalue
(Intercept) 78.39 2.95 539 26.61 6.27e-07
vocab_size 0.39 0.19 1140.76 2.01 0.0448
finetuning_lines 0.42 0.02 1146.00 25.14 <2e-16
taskuas -14.16 0.48 1140.76 -29.44 <2e-16
resourcehigh:lapt_alpha 0.19 0.26 1132.87 0.72 0.4730
resourcelow:lapt_alpha -2.38 0.37 1058.70 -6.45 1.66e-10

Table 13: Secondary regression summary table for few-shot and full-finetune settings. Significant coefficients and p
values in bold. This regression covers all values of alpha {0.1, 0.2, 0.3, 0.4}, which are only tested in experiments
with 100k training steps. Thus, the lapt_steps variable is excluded from this regression. Formula:

Imer(accuracy ~ vocab_size + finetuning_lines + task + resource:lapt_alpha + (1 | language))
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Fixed effects  Estimate Std. Errror df tvalue pvalue

(Intercept) 72.68 5.20 4.09 1399 1.31e-4
lapt_steps 1.35 0.11 711.00 12.58 <2e-16
vocab_size 0.04 0.11 711.00 0.35 0.7266
lapt_alpha -0.81 0.27 1711.00 -3.02 2.66e-3
taskuas -12.89 0.27 711.00 -48.02 <2e-16

Table 14: Regression summary table for zero-shot setting. Significant coefficients and p values in bold. This
regression covers all training lengths (step numbers), but only includes alphas {0.1, 0.2}. Formula:
Imer(accuracy ~ lapt_steps + vocab_size + lapt_alpha + task + (1 | language))

Fixed effects  Estimate Std. Errror df tvalue pvalue
(Intercept) 74.33 4.72 408 15.73 8.31e-5
vocab_size -0.05 0.12 472.00 -0.38 0.7020
lapt_alpha -1.30 0.14 472.00 946 <2e-16
taskuas -12.45 0.31 472.00 -40.55 <2e-16

Table 15: Secondary regression summary table for zero-shot setting. Significant coefficients and p values in bold.
This regression covers all values of alpha {0.1, 0.2, 0.3, 0.4}, which are only tested in experiments with 100k
training steps. Thus, the lapt_steps variable is excluded from this regression. Formula:

lmer(accuracy ~ vocab_size + lapt_alpha + task + (1 | language))
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