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Abstract

A text encoder within Vision-Language Models
(VLMs) like CLIP plays a crucial role in trans-
lating textual input into an embedding space
shared with images, thereby facilitating the
interpretative analysis of vision tasks through
natural language. Despite the varying signif-
icance of different textual elements within a
sentence depending on the context, efforts to
account for variation of importance in con-
structing text embeddings have been lacking.
We propose a framework of Semantic Token
Reweighting to build Interpretable text embed-
dings (SToRI), which incorporates controlla-
bility as well. SToRI refines the text encod-
ing process in CLIP by differentially weighting
semantic elements based on contextual impor-
tance, enabling finer control over emphasis re-
sponsive to data-driven insights and user pref-
erences. The efficacy of SToRI is demonstrated
through comprehensive experiments on few-
shot image classification and image retrieval
tailored to user preferences.

1 Introduction

As artificial intelligence (AI) systems based on
deep learning models grow in application in our
daily lives, their black box nature raises issues of
transparency, resulting in a demand for enhanced
interpretability to promote trust in AI systems (Mur-
doch et al., 2019; Li et al., 2022). Consequently,
research efforts have been focused on making the
systems’ decision-making processes more human-
understandable through various explanatory meth-
ods (Simonyan et al., 2014; Kim et al., 2018; Goyal
et al., 2019; Wu and Mooney, 2019). Among the
various forms of explanation, natural language has
∗ Work done during an internship at Qualcomm Technologies,
Inc.
‡Qualcomm AI Research, an initiative of Qualcomm Tech-
nologies, Inc.
†Corresponding authors

emerged as an excellent medium due to its human-
friendly nature and adeptness in managing high-
level abstractions (Kayser et al., 2021; Sammani
et al., 2022). These advantages have led to a grow-
ing interest in leveraging natural language for inter-
preting vision tasks (Hendricks et al., 2021; Yang
et al., 2023).

To facilitate the use of natural language in vi-
sion tasks, Vision-Language Models (VLMs) like
CLIP (Radford et al., 2021) are commonly de-
ployed to bridge visual information and its linguis-
tic interpretation (Yuksekgonul et al., 2023; Yang
et al., 2023; Oikarinen et al., 2023). CLIP consists
of two encoders that translate images and texts
into embeddings that coexist in a shared space, en-
abling vision tasks to be conducted and understood
through natural language.

Natural language sentences often carry multiple
implications, with varying levels of significance
that can change based on the desired outcome, even
if the text remains unchanged. Selectively empha-
sizing certain information relevant to a task can
aid in conducting and understanding the task. For
instance, when differentiating given images of a
‘great grey owl’ from other groups using the de-
scription ‘a large owl with big yellow eyes’, em-
phasis on ‘eyes’ may better represent the group
of images, indicating that ‘eyes’ is significant (see
examples of image classification in Figure 1). Sim-
ilarly, when searching for images using the query
‘a castle surrounded by trees,’ the preference on
‘trees’ relative to ‘a castle’ could differ based on
user intent, and retrieval reflecting this can yield the
desired search results (see examples of retrieved
images in Figure 1). While there have been at-
tempts to modulate focus in image and text gener-
ation (Ge et al., 2023; Zhang et al., 2023, 2024a),
fine-tuning the importance of specific text elements
in CLIP’s text embeddings remains relatively un-
explored. This paper endeavors to create text em-
beddings that can incorporate a varying controlled
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A tiger shark has dark stripes on its body and a grey back.
An electrical ray has dark brown back.
A great grey owl is a large owl with big yellow eyes.
A red king crab has bard shell and long legs

Figure 1: System diagram of SToRI. SToRI facilitates data-driven control through interpretable weight optimization
in the semantic space, enhancing the classification performance of image data. It also enables user-driven control
over multiple images by allowing fine-grained manipulation of the text prompts. Weights affect text embeddings via
semantic token reweighting (STR).

importance of each semantic element within a sen-
tence, thereby enhancing the representativeness of
text embedding for images in interpretable way.

To meet our objective, we introduce SToRI
(Semantic Token Reweighting for Interpretable text
embeddings). SToRI adjusts the importance of
each semantic element during text embedding ex-
traction in CLIP by assigning a weight to each
element, denoting its significance, which modu-
lates the self-attention mechanism in text encoding.
This allows the final text embedding vector to re-
flect the desired emphasis on specific elements,
enhancing representativeness for vision tasks with-
out requiring new modules. Since the emphasis
remains within an interpretable space, SToRI also
enables the interpretative analysis of vision tasks
using natural language.

Our SToRI framework offers two ways of tailor-
ing text embeddings: data-driven and user-driven.
The data-driven approach derives token weights
from training on dataset, optimizing text embed-
dings for image classification and revealing in-
terpretable insights (see the orange path in Fig-
ure 1). The user-driven approach allows users to
set weights for each semantic token, customizing
the text embedding to fit their preferences (see the
green path in Figure 1). We demonstrate these en-
hancements through two vision tasks with CLIP:
few-shot classification and image retrieval.

To summarize, our main contributions are:

• We propose a novel framework to differenti-
ate the importance of textual information dur-
ing the construction of text embeddings with
CLIP for vision tasks.

• Our method can build improved text classifiers
in few-shot learning tasks while offering new
interpretability insights.

• We demonstrate the controllability of our
method, specifically customization of seman-
tic emphasis, and its utility in image retrieval
tasks using a new metric.

2 Preliminary: Text embeddings in CLIP

The text encoder of CLIP (Radford et al., 2021),
which utilizes a transformer-based architecture,
transforms a given text prompt into a single vector
through the following process. Initially, a given
text prompt is converted into a sequence of text
tokens {xi}Ni=1, where N represents the number
of the text tokens. Tokens indicating the start and
end, [SOS] and [EOS] tokens, are appended at the
beginning and the end of the sequence of tokens,
resulting in the extended series {xi}N+1

i=0 , with x0
and xN+1 representing the [SOS] and [EOS], re-
spectively. Each text token is then converted into
an embedded input token, and positional embed-
ding is added, resulting in the input embedding for
the first transformer block {z0i }N+1

i=0 . For the l-th
block of the encoder, the input tokens can be rep-
resented as Z l−1 = [zl−1

0 , ..., zl−1
N+1]. The output

tokens from the l-th block is given by:

Z l = Blockl(Z l−1), (1)

where l ∈ [1, L] with the encoder consisting of
L blocks. Each block contains a multi-head self-
attention mechanism. First, Z l−1 is projected into
the query Q, key K, and value V . Then, the atten-
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tion process is performed as follows:

Attention(Q,K, V ) = AV,

s.t. A = softmax(QKT ).
(2)

Scaling and masking operations are omitted for
simplicity. Through the attention mechanism, to-
kens influence each other, and the values of A rep-
resent the extent to which they influence one an-
other (Vaswani et al., 2017). In general, the final
output text embedding of the [EOS] token encapsu-
lates the full semantic meaning of the text prompt.
This embedding is compared with image embed-
dings to assess the degree of correspondence with
images once it has been projected into a multi-
modal embedding space.

A pre-trained CLIP model is commonly em-
ployed for image classification, where given an
image, it computes similarity scores with class
names, which become logits. To adapt the model
to a specific dataset, fine-tuning is performed by
minimizing the cross-entropy loss as follows:

L = LCE(y, sim(ϕT , ϕI)/τ), (3)

where ϕT and ϕI represent output text and image
embeddings from two encoders, respectively, τ is
a temperature factor, and y is a target class.

3 Method

We propose SToRI, a novel framework that encodes
a given text prompt into a single text embedding
vector using CLIP by varying the importance of
different textual elements through data-driven and
user-driven controls. In Section 3.1, we elabo-
rate on semantic token reweighting, which involves
modifying the attention given to individual tokens
within the text encoding process based on their re-
spective weights. In Section 3.2, we present two
methods for determining these weights.

3.1 Semantic Token Reweighting

In natural language processing, a given text is
tokenized prior to encoding, resulting in one or
more tokens. Consequently, to emphasize or de-
emphasize a particular semantic element, one must
focus on the corresponding tokens. Henceforth, our
discussion will center on the process of reweighting
in terms of these tokens.

Given a sequence of text tokens {xi}Ni=1, we
first define a sequence of weights {wi}Ni=1, where
wi is the level of significance of token xi. Note

that wi = 1 indicates a typical weight in common
situations, where xi is neither emphasized nor de-
emphasized. Our goal is to modulate the impact
each token has on the final output embedding of
the text prompt. As elaborated in Section 2, tokens
interact with each other through attention mech-
anisms. Each token generates its embedding by
referencing other tokens, including itself, in pro-
portion to the attention scores. Consequently, as
the attention score of a specific token increases,
its influence on the text embedding becomes more
substantial. Therefore, we directly multiply the
weights {wi}Ni=1 to amplify original attention val-
ues proportionally. From Eq. (2), the weighted
attention scores can be reformulated as follows:

âm,n =
wn exp (qmkTn )∑
j wj exp (qmkTj )

, (4)

where âm,n represents attention value for n-th
value token to be attended by m-th query token.
qm and kn represent vector elements of Q and K,
respectively. Through this process, we can selec-
tively enhance the influence of particular tokens
during the attention process by simply changing
the corresponding weights.

The reweighting process is applied to all blocks
following a certain block. Experimentally, we con-
firm that the effects are similar regardless of start-
ing from any intermediate block. Please refer to
Appendix C.6 for further details.

3.2 Strategies to Control
There are two approaches to determine weights for
tokens: user-driven and data-driven controls.

Data-driven control determines weights by
learning from data. This approach is suitable when
data is available and we want to obtain text embed-
dings that align closely with the data. As shown
with the orange path in Figure 1, an illustrative
task where this can be effectively applied is image
classification. In image classification, weights are
trained using Eq. (3), where ϕT is obtained with
âi,j , allowing only {wi}Ni=1 to be updated. Since
the weights are trained to build text embeddings
that correspond well to image belonging to their
corresponding classes, we can interpret which tex-
tual information prominently stands out in the im-
age data with the weights.

User-driven control applies to scenarios where
the user assigns weights to each token. This method
allows user to determine a particular textual in-
formation to be emphasized or de-emphasized ac-
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Figure 2: Text prompts and corresponding weights are provided as examples after training. The intensity of the red
shading reflects the weight assigned, with darker shades indicating higher weights. For visualization, the weights
are normalized to sum up 1. The figures on the right display an example image for each class.

cording to their intentions, thereby influencing the
resulting text embeddings. The green path in Fig-
ure 1 presents examples of preference-based im-
age retrieval, an application in the user-driven con-
trol. Users may initially set a text prompt and then
progressively amplify the weight of keywords per-
ceived as more crucial, assess the resulting arrange-
ment, and refine their selection accordingly.

4 Experiments

We evaluate SToRI on two representative vision
tasks, few-shot image classification and preference-
based image retrieval. In few-shot image classi-
fication, weights are determined via data-driven
control and provide interpretation on the trained
classifier. Evaluation on preference-based image
retrieval demonstrates controllability of SToRI via
user-driven control.

4.1 Classification with Data-driven Control

We train weights that best represent each dataset
for the image classification task. We first show in-
terpretation with trained weights and then evaluate
few-shot classification performance of trained text
classifier.

4.1.1 Experimental Setup
Datasets We use DTD (Cimpoi et al., 2014)
and CUB (Wah et al., 2011) datasets for analy-
sis on interpretation. We use various benchmarks
for few-shot learning i.e., ImageNet (Deng et al.,
2009), DTD (Cimpoi et al., 2014), SUN397 (Xiao
et al., 2010), Flowers102 (Nilsback and Zisser-
man, 2008), Caltech101 (Fei-Fei et al., 2004), and
Food101 (Bossard et al., 2014).

Text Prompts We use text descriptions for each
class which are provided by CuPL (Pratt et al.,
2023). For the ImageNet and SUN397 datasets,

due to the large number of total prompts, we use 10
text prompts for each class, selected based on their
similarity with training set. We average the text
embeddings from multiple text prompts to build
one text embedding for each class. We refer the text
embedding for image classifier as a text classifier.

Model The experiments are conducted using
CLIP and MetaCLIP ViT-L/14, with reweighting
applied from the 7th block onward.

Implementation Details We set the logarithm of
the weight as the parameter to be trained in order to
constrain the weights to non-negative values. Each
text prompt has its own individual set of weights.

Training Details Following TaskRes (Yu et al.,
2023), we evaluate our method by training with
1/2/4/8/16 examples (shots) per class from the train-
ing sets, respectively. We follow the data split out-
lined in CoOp (Zhou et al., 2022b), conducting
tests on the official test set of each dataset and the
validation set of the ImageNet dataset. 1/2/4-shot
training is done with 100 epoch and the other is
done with 200 epoch for all datasets. For further
details, please refer to Appendix A.1.

4.1.2 Interpretability
Interpretation with Trained Weights After
training for an image classification task, we an-
alyze the trained weights. Figure 2 presents exam-
ples of text prompts and the corresponding trained
weights for each token within the DTD dataset. We
have crafted the text prompts. We can discern that
banded is associated with an emphasis on words
like multiple and stripes. For gauzy, terms such
as translucent and light are emphasized, and
cobwebbed are notably associated with the word
spider web. As illustrated by the images corre-
sponding to each category, high weight values are
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Blue headed Vireo   vs  Warbling Vireo

Blue headed Vireo    vs  White eyed Vireo

1

0

Figure 3: Text prompts and their corresponding weights are presented after training with the CUB dataset. The
more intense the shade of red, the greater the weight assigned. In each scenario, the text classifier is trained to
discriminate two classes. The weights for the same text prompts vary depending on the class to be distinguished.

Text Caltech101 SUN397

CuPL 97.42±0.23 79.54±0.12
CuPL+Nonsensical tokens 97.30±0.15 79.11±0.10

Table 1: Accuracy (%) on 16-shot image classification.

assigned to important semantic tokens. This shows
that SToRI can learn text embeddings that effec-
tively represent the data in a data-driven control
context, and the trained weights can offer novel
insights for interpretation.

Does Optimization Occur in Interpretable
Space? To ensure interpretability of text embed-
dings through data-driven control optimization, we
conduct two experiments: an analysis on trained
classifiers with different class compositions and an
assessment of the effect of nonsensical text tokens.

The role of classifier is to distinguish one class
from others. Thus, even for classifiers within the
same class, the critical distinguishing features can
vary depending on the alternative categories be-
ing compared. Figure 3 shows two text classifiers
trained on the CUB dataset for two distinct pairs:
Blue headed Vireo versus Warbling Vireo, and Blue
headed Vireo versus White eyed Vireo. The text
prompts for each class are generated with the at-
tribute labels from the dataset. When contrast-
ing Blue headed Vireo with the Warbling Vireo,
striped is attributed a high weight. However,
when distinguished from the White eyed Vireo, the
weight on striped becomes low and grey is at-
tributed a high weight. Note that White eyed Vireo
also has striped wings. These terms highlight the
key distinctions between each pair of classes.

To evaluate whether simply increasing the num-
ber of trainable parameters—specifically through
the addition of nonsensical tokens—would enhance

performance, we compare 16-shot classification
results with and without the inclusion of such
tokens. If performance improvements stemmed
solely from the increased number of trainable pa-
rameters, rather than from optimizing attention on
semantically meaningful tokens, we would expect a
boost in performance when nonsensical tokens are
added. We randomly sample five tokens from the
set of three rare tokens (Ruiz et al., 2023), namely
‘sks’, ‘pll’, and ‘ucd’, and add them to the end
of all the original texts from CuPL. The inclusion
of rare tokens does not contribute meaningful infor-
mation to build a text classifier; it simply extends
the number of tokens and trainable parameters. As
shown in Table 1, the performance with rare tokens
does not exceed the baseline without their inclu-
sion. This demonstrates that adoption of the tokens
without semantic meaning does not contribute to
performance improvement. These findings support
that data-driven control, achieved through atten-
tion modulation for tokens with semantic meaning,
facilitates the creation of text embeddings that ef-
fectively represent the data, thereby ensuring the
interpretability of text embeddings.

4.1.3 Few-shot Classification Performance

To evaluate the capability of the text classifier ob-
tained through SToRI to perform few-shot image
classification, we conduct a comparative analysis
of the prediction performance between SToRI and
TaskRes (Yu et al., 2023). TaskRes is a recent
method for few-shot image classification, which
trains class-specific residual embedding xc added
to initial text embedding tc to create new classifier
tc + αxc for each class c. Here, tc denotes the text
embedding derived from a given text prompt for
class c, and α is a hyperparameter for scaling. xc
is trained with cross-entropy loss (refer to Eq. (3)).
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Method Text ImageNet DTD Flowers102 SUN397 Caltech101 Food101 AVG

1shot
TaskRes Base 75.95±0.03 55.40±0.27 81.16±0.44 68.10±0.16 94.28±0.11 90.30±0.10 77.53
TaskRes Base+CuPL 74.69±0.04 65.66±0.82 90.07±0.79 73.52±0.49 95.89±0.57 90.35±0.36 81.70
SToRI (Ours) Base+CuPL 76.68±0.15 65.82±0.98 89.05±0.58 72.88±0.20 96.27±0.67 91.34±0.12 82.01

2shot
TaskRes Base 76.03±0.00 55.52±0.48 81.50±0.62 69.53±0.14 94.54±0.05 90.49±0.05 77.93
TaskRes Base+CuPL 75.55±0.04 66.45±1.57 92.38±0.69 75.69±0.29 96.96±0.27 90.64±0.38 82.95
SToRI (Ours) Base+CuPL 77.36±0.23 66.37±1.01 91.56±0.60 75.75±0.04 97.15±0.13 91.49±0.24 83.28

4shot
TaskRes Base 76.16±0.02 55.85±0.12 81.65±0.28 71.15±0.09 94.58±0.09 90.44±0.05 78.31
TaskRes Base+CuPL 76.42±0.03 70.76±1.12 93.22±0.37 77.20±0.08 97.40±0.21 91.45±0.15 84.41
SToRI (Ours) Base+CuPL 77.90±0.05 69.03±1.48 92.46±0.09 76.89±0.02 97.39±0.08 91.68±0.07 84.22

8shot
TaskRes Base 76.87±0.05 58.14±0.07 86.82±0.19 74.52±0.07 96.17±0.08 91.12±0.07 80.60
TaskRes Base+CuPL 77.97±0.02 73.42±0.86 98.17±0.25 77.54±0.16 97.00±0.28 91.27±0.11 85.89
SToRI (Ours) Base+CuPL 78.38±0.13 72.03±0.60 97.51±0.43 78.34±0.13 96.98±0.29 90.50±0.05 85.62

16shot
TaskRes Base 77.34±0.03 61.47±0.16 90.85±0.21 76.01±0.24 96.75±0.07 91.30±0.10 82.29
TaskRes Base+CuPL 79.18±0.10 77.05±0.65 99.07±0.11 78.98±0.10 97.65±0.23 91.49±0.08 87.24
SToRI (Ours) Base+CuPL 79.03±0.13 74.94±0.10 98.55±0.23 79.61±0.11 97.43±0.20 91.18±0.10 86.79

Table 2: Accuracy (%) on few-shot classification with CLIP ViT-L/14. The results include mean values with
standard deviation across three runs. The results of TaskRes are reproduced. The best performance is indicated in
bold, while the second-best performance is underlined.

Such residual embeddings exist in uninterpretable
space, rendering the final classifier also uninter-
pretable. In contrast, SToRI trains only weights, in-
dicating the degree to which each semantic element
within a given sentence should be emphasized, thus
maintaining interpretability.

Ensuring interpretability, SToRI achieves per-
formance comparable to TaskRes, as presented in
Table 2. “Base” refers to custom text prompts in-
cluding class names, which are generally used in
few-shot image classification tasks with CLIP (Yu
et al., 2023). We use both base and CuPL text
prompts, with weights trained exclusively on CuPL.
In the 1/2-shot setting, SToRI generally outper-
forms TaskRes across most datasets. In the 4/8/16-
shot setting, it exhibits only a marginal difference,
achieving nearly similar performance. This indi-
cates that SToRI provides substantial flexibility to
text embeddings, enabling it to be an enhanced
text classifier that effectively represents image data.
Please refer to Appendix C.2 for the MetaCLIP
results, which align closely with those from CLIP.

4.2 Retrieval with User-driven Control

To assess the effectiveness of SToRI in emphasiz-
ing or de-emphasizing specific information based
on applied weights, we compare the ordering of
retrieved images using text embeddings.

4.2.1 Experimental Setup
Dataset We use CelebA (Liu et al., 2015) and
CUB (Wah et al., 2011) datasets. The CelebA
dataset contains over 200K face images, each an-

notated with 40 attributes. The CUB dataset con-
tains over 11K bird images, which are annotated
with 312 attributes. Three attributes are chosen to
create eight categories based on their presence or
absence. For the CelebA dataset, each category
comprises 100 randomly selected images, resulting
in a total of 800 images. For the CUB dataset, all
images are used. For more details, please refer to
Appendix A.2.

Image Retrieval with Preference We construct
a text prompt containing the selected attributes.
For instance, the text prompt becomes ‘a photo
of a woman with blonde hair, wearing
eyeglasses’ for the attributes female, blonde hair,
and eyeglasses. Using the text prompt and attribute
weights, we obtain a corresponding text embedding
through SToRI, followed by sorting the images in
descending order of similarity between their image
embeddings and the text embedding.

Model Most experiments are conducted using
CLIP ViT-L/14 (Radford et al., 2021), unless oth-
erwise specified. Experiments are also conducted
using various VLMs, including OpenCLIP (Cherti
et al., 2023) and MetaCLIP (Xu et al., 2023).
Reweighting is applied from the 7th block.

4.2.2 Metric for Preference Retrieval
Our primary focus is on observing how adjusting
weights for specific semantic elements affects the
image retrieval order. To facilitate this comparison,
we report the average precision score (AP) and pre-
cision at rank k (Pk) for images with the attributes
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with blonde hair: 1.0
wearing eyeglasses: 1.0

with blonde hair: 2.0
wearing eyeglasses: 0.2

Figure 4: Results of preference retrieval using the text
prompt ‘a photo of a woman with blonde hair,
wearing eyeglasses’. The first row shows density
plots with the retrieval order, and the second row visual-
izes the ratio of retrieved samples within each category.
The left column shows results from a plain text prompt,
whereas the right column depicts the results when the
weights are adjusted. Best viewed in color.

influenced by the adjusted weights. For instance,
when we modify the weight on ‘eyeglasses’, we
consider images with eyeglasses as positive sam-
ples and calculate AP and Pk.

Additionally, we introduce a novel metric to
quantify priority in preference retrieval. We gener-
ate a line plot illustrating the proportion of images
retrieved for each attribute combination up to the n-
th retrieved image (see the second row in Figure 4),
and calculate the Area Under the Curve (AUC) for
each plotted curve. A higher AUC value suggests
a faster retrieval of associated visual attribute set,
indicating a higher priority in the retrieval process.

4.2.3 Results

Effect of Emphasizing and De-emphasizing
Initially, we select three attributes, female, blonde
hair, and eyeglasses, and observe the ordering of
image retrieval as shown Figure 4. With the plain
text embedding, the initial bin predominantly con-
tains images featuring all selected attributes, fol-
lowed by a prevalence of images from the ‘female,
no blonde hair, eyeglasses’ category. When the
weight on ‘with blonde hair’ increases and
on ‘wearing eyeglasses’ decreases, images be-
longing to ‘female, blonde hair, no eyeglasses’ are

CelebA CUB
AP P400 AP

Plain (w = 1.0) 0.752±0.089 0.679±0.084 0.154±0.070

Emphasized 0.773±0.084 0.697±0.068 0.183±0.079
(w = 1.5) ∆0.021±0.011 ∆0.017±0.009 ∆0.029±0.018

De-emphasized 0.709±0.096 0.648±0.072 0.116±0.057
(w = 0.5) ∆-0.043±0.021 ∆-0.031±0.031 ∆-0.038±0.021

Table 3: Retrieval performance on attributes of the
CelebA and CUB datasets with CLIP ViT-L/14. The
results show mean values with standard deviation across
multiple controlled attributes.

retrieved more prominently. This suggests that the
‘blonde hair’ gains more representation in the text
embedding through reweighting. The groups with
two or more mismatched attributes still rank lower,
indicating that our method preserves the meanings
of the original text while appropriately reflecting
the intention of emphasis and de-emphasis.

We conduct quantitative validation across vari-
ous text prompts. Table 3 presents AP and P400

scores while controlling weights on attributes. We
generate image pools and text prompts from three
selected attributes. The reported scores are based
on adjusting the weight for one specific attribute,
considering the images containing that attribute
as positive samples. Various combinations of at-
tributes, totaling 20 text prompts for the CelebA
dataset and 58 text prompts for the CUB dataset,
are used to obtain scores, and their averages and
standard deviations are reported. Further details are
in Appendix A.2. The results show that modifying
the weight of tokens corresponding to a specific
attribute in the text prompt results in faster retrieval
of images with that attribute (both scores become
higher) when the weight increases and slower re-
trieval when decreases (both scores become lower).
This shows that adjusting the weight influences the
creation of text embeddings, effectively highlight-
ing or downplaying the corresponding attribute.
Additional results on more complex scenarios, in-
cluding those with MetaCLIP, are in Appendix C.4.

Effect of Weight Control Figure 5 demonstrates
the effects of weight control on the AUC scores for
the retrieval of each category. As the weight as-
signed to the ‘with blonde hair’ increases and
the weight for ‘wearing eyeglasses’ decreases,
there is a noticeable rise in the AUC scores for the
two categories that have blonde hair but no eye-
glasses. In contrast, categories characterized by
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a photo of a woman with blonde hair, wearing eyeglasses
1-

CLIP ViT-L/14CLIP ViT-B/16 OpenCLIP ViT-L/14 MetaCLIP ViT-L/14

Figure 5: AUC scores from preference retrieval with varying weights. The text prompt is ‘a photo of a woman
with blonde hair, wearing eyeglasses’. The weights on ‘with blonde hair’ and ‘wearing eyeglasses’
are w and (1− w), respectively, which are adjusted simultaneously in opposite direction. Best viewed in color.

the absence of blonde hair and the presence of eye-
glasses see a reduction in their AUC scores. When
the weight assigned to ‘with blonde hair’ is
set to zero, the differentiation between the ‘female,
blonde hair, eyeglasses’ and ’female, no blonde
hair, eyeglasses’ categories is effectively elimi-
nated, resulting in remarkably similar AUC scores.
The effect of weight control is consistent across
different CLIP models, such as CLIP ViT-B/16,
CLIP ViT-L/14, OpenCLIP (Cherti et al., 2023),
and MetaCLIP (Xu et al., 2023). This shows that
SToRI enables the emphasis or de-emphasis of spe-
cific semantics within a text when constructing text
embeddings across various models, showcasing its
versatility.

5 Related Works

VLMs and Interpretability In recent vision
tasks, interpretative analysis in natural language be-
comes popular rather than relying solely on visual
form. VLMs like CLIP have commonly been em-
ployed to connect the image and text feature spaces
for explanations. Kim et al. (2023) utilized CLIP to
derive concept activation vector (Kim et al., 2018)
in vision model, while Yuksekgonul et al. (2023)
and Oikarinen et al. (2023) leveraged CLIP to iden-
tify whether concepts defined in text are present
in images. Menon and Vondrick (2023) and Pratt
et al. (2023) crafted text prompts to explain image
classes using large language models (LLMs), ap-
plying them for zero-shot classification with CLIP.
Beyond simply utilizing CLIP’s shared embedding
space, several works have focused on enhancing
the interpretability of this space. Chen et al. (2023)
introduced the STAIR model, which improves inter-
pretability by fine-tuning CLIP to generate sparse,
more interpretable representations. Bhalla et al.

(2024), on the other hand, proposed decompos-
ing image embeddings into conceptual text embed-
dings, combining concepts within the embedding
space for clearer explanations. In contrast to these
methods, we ensure interpretability by manipulat-
ing token weighting within a given description’s
context, without the need for model fine-tuning or
embedding decomposition. This approach allows
for practical applications in controlling interpreta-
tion, such as adjusting token importance to reflect
user preferences or contextual emphasis, while also
enabling detailed analysis of interpretability.

Few-shot Image Classification CLIP exhibits
promising performance in image recognition tasks,
leading to the development of various few-shot
learning approaches. CoOp (Zhou et al., 2022b)
and CoCoOp (Zhou et al., 2022a) are represen-
tative methods based on prompt tuning. Tip-
Adapter (Zhang et al., 2022) integrates an extra
adapter unit following the encoders. TaskRes (Yu
et al., 2023) involves training task-specific residual
text embeddings for each category. While these
approaches incorporate extra trainable parameters
outside an interpretable framework and thus do
not guarantee interpretability, our framework en-
ables the training of classifiers while ensuring in-
terpretability.

Enrich Textual Representation In text-to-
image generation, several approaches have been
developed to enrich textual representation. Prompt
weighting1 is a common technique in Stable Dif-
fusion (Rombach et al., 2022), which multiplies
weights to individual output token embeddings
prior to supplying them to the image generation

1https://huggingface.co/docs/diffusers/using-
diffusers/weighted_prompts
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model. Prompt-to-Prompt controls cross-attention
between noise images and text embeddings (Hertz
et al., 2022). Additionally, Ge et al. (2023) pro-
posed a richer text editor that allows users to de-
fine various input conditions for image generation,
such as coloring and footnotes. A similar approach
has been explored in text generation. Zhang et al.
(2024a) introduced a method that enables large
language models to process text with user-defined
emphasis by reducing attention to unspecified parts
of the text. Zhang et al. (2024b) proposed Prompt
Highlighter, which highlights tokens during gen-
eration process with Multi-Modal LLMs. While
prior works have focused on image and text gener-
ation, typically using only user-defined attention,
our work innovates by developing enriched textual
representations for image recognition and propos-
ing an approach for deriving these representations
from data. This distinctive approach establishes a
new avenue for incorporating linguistic context in
visual understanding.

6 Conclusion

We propose SToRI, a framework that builds inter-
pretable text embeddings by reweighting seman-
tic tokens in CLIP. This approach innovatively en-
hances the explanatory power of natural language
in vision tasks. Our control strategies enable tuning
of text embeddings for classification and retrieval
while maintaining interpretability. SToRI can be
easily applied to any model based on attention
mechanisms and has potential scalability across
various vision tasks. Additionally, our method of
reweighting text prompt tokens during text encod-
ing can similarly be applied to image encoding.
This approach can allow for the emphasis of spe-
cific image regions. The extension to multi-modal
tasks using diverse VLMs remains a topic for future
work.

7 Limitations

Our method is focusing on controlling the attention
of each semantic element within a given natural
language sentence, rather than generating new tex-
tual information. Therefore, one of the limitations
of our method is its dependence on the richness and
quality of the given texts. For example, when using
data to train a classifier, if the given text lacks suffi-
cient rich information, adjusting the attention may
not sufficiently enlarge the text embedding space.
This difficulty in expanding the embedding space

makes it challenging to establish a basis for im-
proving classification performance and explaining
data.

Additionally, we do not consider the inherent
black box characteristics of CLIP. However, if
this model has undergone sufficient testing and is
deemed reliable, the advantage of our method lies
in additional optimization and control being in a
reliable and controllable space.

8 Ethics Statement

Our goal is to employ contollability when building
text embeddings. This enables for users to em-
phasize or deemphasize a certain part of textual
information and improving text embeddings for vi-
sion tasks, ensuring interpretability. We believe
this work can be used to build trustful AI systems
by providing natural language interpretation.

If CLIP in use is biased towards the attributes
targeted for reweighting, it may also affect other
related attributes. The best approach to address
this issue is to use CLIP that has been trained to
reduce bias. However, if a biased CLIP must be
used, designing text prompts that can help mitigate
the bias could be a potential strategy to consider.
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A Experimental Details

A.1 Few-shot Image Classification

We use Adam optimizer with the cosine learning
rate scheduler (Loshchilov and Hutter, 2017) fol-
lowing the training scheme of TaskRes (Yu et al.,
2023). For CLIP, the learning rate is set to 1×10−2

for the ImageNet and SUN397 datasets, 0.1 for the
Food101 dataset and for 8/16-shot scenarios on the
DTD and Flower102 datasets, and 5 × 10−2 for
the other datasets. For MetaCLIP, the learning rate
is set to 1 × 10−2 for the ImageNet and SUN397
datasets, 0.1 for Flower102 dataset, and 5× 10−2

for the other datasets. The weight decay is set to
0 for both models. When reproducing TaskRes,
the learning rate is set to 2 × 10−5 for the Ima-
geNet dataset and 2× 10−4 for the other datasets.
The weight decay is set to 0.005 and α is set to
0.5. The training is conducted with a batch size
of 256. All experiments are implemented using
PyTorch (Paszke et al., 2017), and we use official
code base released by Yu et al. (2023) to reproduce
TaskRes.

A.2 Image Retrieval

CelebA. We initially select 11 attributes with a
zero-shot classification performance of AUROC
0.75 or higher with CLIP on test set. For zero-shot
classification, we create text prompt for each at-
tribute and calculate AUROC using the similarity
between the test set images and the text prompt.
For example, when evaluating the attribute smiling,
we use the text prompt ‘a photo of a smiling
person’. Among the identified 11 attributes, we
create combinations of three and five attributes,
each including either female or male. For the com-
binations of three attributes, we filter out the com-
binations where all eight categories contain fewer
than 100 images. We conduct image retrieval with
total 20 numbers of text prompts based on the com-
binations of attributes, as shown in Table 9. Details
on combinations of five attributes can be found in
Appendix C.4.
CUB. Following the filtering process described
by Koh et al. (2020), we initially retain 112 at-
tributes. We then select 15 attributes that achieve a
zero-shot classification performance with AUROC
0.75 or higher using CLIP. Notably, the attribute
labels in the CUB dataset are finely detailed and
related to various parts of birds, which poses a
challenge for CLIP in differentiation. With the
chosen attributes, we form combinations of three

attributes that do not share the same color, yield-
ing 58 combinations. The text prompt we use is
‘a photo of a bird, which has [text for
attribute1], has [text for attribute2],
and has [text for attribute3]’. Table 10
presents 15 attributes and their corresponding texts.

We use all the datasets and models solely for
academic research purposes and do not employ
them for improper intentions.

B Metric for Preference Retrieval

To quantify priority in preference retrieval, we in-
troduce a novel metric using the area under the
curve (AUC). First, we obtain the top n images
with the highest similarity to the text embedding.
We then calculate the proportion of images from
each category that fall within rank n and plot these
proportions as a function of n, as shown in the
second row of Figure 4. The AUC of these plots
represents how quickly images from each category
are retrieved, providing a measure of retrieval effi-
ciency for each category.

C Additional Experimental Results

C.1 Comparison to Prompt Weighting
We compare SToRI with prompt weighting, a tech-
nique often used in text-to-image generation via
Stable Diffusion (Rombach et al., 2022). Prompt
weighting multiplies weights by the difference in
output token embeddings when provided with a
text prompt versus an empty one. Unlike Stable
Diffusion, which utilizes all output token embed-
dings, we aim to build a vector form of text em-
bedding from [EOS] token. Therefore, we modify
prompt weighting for use at an intermediate layer,
which we refer to as modified prompt weighting,
and compare it with SToRI on preference-based
image retrieval.

As depicted in Figure 6(a), the modified prompt
weighting influences the significance of tokens sim-
ilarity to SToRI. However, the change in AUC is not
gradual; it remains nearly static when weights fall
below 0.5 or above 1.5. As shown in Figure 6(b),
even when the weight for ‘with blonde hair’
increases significantly, SToRI consistently raises
the AUC for the category ‘female, blonde hair,
no eyeglasses’. In contrast, the AUC with mod-
ified prompt weighting initially increases but sub-
sequently decreases, indicating augmented weight
fails to heighten emphasis. This could stem from
the scaling of intermediate embeddings which,
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Modified Prompt WeightingSToRI

(a) a photo of a woman with blonde hair, wearing eyeglasses
1-

(b) a photo of a woman with blonde hair, wearing eyeglasses

weight on ‘with blonde hair’ weight on ‘with blonde hair’

Figure 6: AUC scores from preference retrieval with
varying weights. The text prompt is ‘a photo of a
woman with blonde hair, wearing eyeglasses’.
(a) The weights on ‘with blonde hair’ and ‘wearing
eyeglasses’ are w and (1 − w), respectively, which
are adjusted simultaneously in opposite direction. (b)
Only the weight on ‘with blonde hair’ is adjusted.
Best viewed in color.

when overextended, surpasses the scale that the
text encoder is pre-trained to deal with, lessen-
ing the intended effect of emphasis. SToRI, on
the other hand, adjusts normalized attention scores
within the self-attention mechanism, ensuring that
as weight escalates, the relevant tokens consistently
obtain attention scores approaching 1, thus preserv-
ing the desired impact.

C.2 Additional Results for Few-shot
Classification

Table 8 compares few-shot classification perfor-
mances of SToRI and TaskRes (Yu et al., 2023) on
MetaCLIP ViT-L/14. Similar to the results on CLIP,
the results show that SToRI achieves performance
comparable to TaskRes, which uses uninterpretable
classifiers. These experiments further support our
findings, demonstrating our approach’s effective-
ness across models and highlighting its adaptability
and scalability.

C.3 Additional Examples for Interpretation

Figures 7 and 8 present examples of text prompts
and the corresponding trained weights for each
token within the ImageNet and DTD datasets, re-
spectively. Higher weights are assigned to word

AP P400

Plain (w = 1.0) 0.752±0.089 0.679±0.070

Emphasized

Attribute 0.754±0.085 0.681±0.064
with w = 1.5 ∆0.003±0.017 ∆0.002±0.016

Attribute 0.776±0.082 0.698±0.064
with w = 2.0 ∆0.024±0.019 ∆0.019±0.016

Table 4: Retrieval performance on attributes of the
CelebA dataset when two attributes are assigned dif-
ferent weights. The results show mean values with
standard deviation across multiple controlled attributes.

CelebA CUB
AP P400 AP

Plain (w = 1.0) 0.753±0.088 0.681±0.062 0.148±0.055

Emphasized 0.774±0.086 0.699±0.063 0.195±0.074
(w = 1.5) ∆0.021±0.011 ∆0.018±0.009 ∆0.047±0.026

De-emphasized 0.709±0.087 0.647±0.057 0.098±0.035
(w = 0.5) ∆-0.044±0.022 ∆-0.035±0.016 ∆-0.051±0.026

Table 5: Retrieval performance on attributes of the
CelebA and CUB datasets with MetaCLIP ViT-L/14.
The results show mean values with standard deviation
across multiple controlled attributes.

tokens that effectively represent images.

C.4 Additional Results for Retrieval

We assess SToRI in the context of preference-based
retrieval by assigning different weights to multiple
attributes to explore how varying weight magni-
tudes affect emphasis. We create combinations of
three attributes and assign them different weights:
one attribute is assigned a weight of 2.0, another
a weight of 1.5, and the remaining one a weight
of 1.0. We then compare the retrieval performance
for attributes with weights of 1.5 and 2.0. Table 4
demonstrates that the retrieval performance of the
attribute with a weight of 1.5 increases, while the
attribute with a weight of 2.0 shows an even greater
increase in retrieval performance. This indicates
that when semantic tokens are assigned different
weights, the emphasis effect increases proportion-
ally with the assigned weights compared to plain
text. This highlights the significance of the magni-
tude of weights.

Table 5 presents the results on MetaCLIP ViT-
L/14 when adjusting the weight of one attribute
among three within combinations of three attributes
(as outlined in Section 4.2). The results demon-
strate that emphasizing or de-emphasizing an at-
tribute in MetaCLIP leads to increased or decreased
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AP P80

CLIP

Plain (w = 1.0) 0.684±0.097 0.627±0.062

Emphasized 0.705±0.099 0.643±0.069
(w = 1.5) ∆0.021±0.009 ∆0.015±0.012

De-emphasized 0.643±0.086 0.601±0.054
(w = 0.5) ∆-0.041±0.019 ∆-0.026±0.012

MetaCLIP

Plain (w = 1.0) 0.689±0.074 0.631±0.062

Emphasized 0.713±0.078 0.646±0.062
(w = 1.5) ∆0.023±0.008 ∆0.015±0.011

De-emphasized 0.644±0.064 0.602±0.057
(w = 0.5) ∆-0.045±0.020 ∆-0.029±0.014

Table 6: Retrieval performance on the CelebA dataset
with CLIP and MetaCLIP ViT-L/14 when five attributes
are combined. The results show mean values with stan-
dard deviation across multiple controlled attributes.

Method Plain Text Embeddings SToRI

Relative Run Time 1.00 1.02

Table 7: Relative compuational cost

retrieval performance for images with the speci-
fied attribute, showcasing the scalability of SToRI
across models.

To evaluate SToRI in more complex attribute
combinations, we perform retrieval using com-
binations of five attributes. Only the following
five attributes result in images for all 32 possible
categories formed by combinations of the five at-
tributes: male or female, smiling, bangs, gray hair,
and eyeglasses. We use two text prompts for male
and female. We randomly select five images for
each category, resulting in a total of 160 images.
Table 6 presents the results on CLIP and Meta-
CLIP ViT-L/14 when adjusting the weight of one
attribute among five. These findings underscore a
consistent trend of increasing retrieval scores when
attributes are emphasized and decreasing scores
when attributes are de-emphasized, across different
attribute combinations.

C.5 Computational Cost

We calculate runtime for applying SToRI compared
to plain text embeddings, as reported in Table 7.
The experiment is done on RTX A5000 and the
reported values are mean values from 28K runs.
Since SToRI only multiplies predefined weights
when calculating attention scores, the runtime is
not significantly different from that of plain text
embeddings.

C.6 Position for Reweighting
Figure 9(a) compares the changes in AUC scores
when we start reweighting at various positions. The
reweighting process is applied to all blocks follow-
ing a specific block. There is not a significant differ-
ence when we initiate token reweighting at interme-
diate positions. However, when token reweighting
is applied to all blocks (from 1st block), a sharp
bend is observed at 0.1 when the weight decreases.
This is unlike other cases, which show a smooth
decrease or increase in all scenarios. It is presumed
that this abrupt occurrence is due to tokens in the
specified position being completely disregarded
when the weight becomes 0, leading to sudden
gaps in those areas.

Figure 9(b) illustrates that when reweighting is
applied only within a single specific intermediate
block, the effects of emphasis or de-emphasis are
scarcely observed. This suggests that if reweight-
ing is confined within a single intermediate block,
its effects in the subsequent blocks are counter-
acted, indicating that it should be applied in the
subsequent blocks to emphasize or de-emphasize
semantic tokens.

Figure 10 shows the changes in few-shot classi-
fication performance when we start reweighting at
various positions. The reweighting process is ap-
plied to all blocks following a specific block. Like
the results in image retrieval, there is not a signifi-
cant difference when we initiate token reweighting
at intermediate positions.

C.7 Studies on Failure Cases
There are some cases where non-semantic elements
are assigned high weights in differentiating classes,
which may appear illogical to a human observer.
For example, in Figure 7, ‘.’ is assigned a high
weight. This occurrence likely results from the
training process, where it’s advantageous to em-
phasize not only the semantic meaning but also
to differentiate from other classes. Hence, ‘.’ is
not emphasized for other classes but is for this spe-
cific class. This can also be observed in Figure 3,
where in the comparison of Blue headed Vireo vs.
Warbling Vireo, ‘bird’ is emphasized only for Blue
headed Vireo, and ‘reo’ is more emphasized only
for Warbling Vireo.
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Method Text ImageNet DTD Flowers102 SUN397 Caltech101 Food101 AVG

1shot
TaskRes Base 79.38±0.02 67.91±0.26 83.75±0.16 74.89±0.08 97.21±0.15 90.63±0.04 82.29
TaskRes Base+CuPL 79.59±0.22 72.79±0.54 92.26±0.10 76.16±0.2 97.59±0.19 90.28±0.15 84.78
SToRI (Ours) Base+CuPL 79.44±0.17 72.66±0.73 92.38±0.75 76.05±0.38 97.46±0.23 90.12±0.22 84.68

2shot
TaskRes Standard 79.46±0.01 67.93±0.18 84.03±0.13 75.71±0.13 97.48±0.07 90.83±0.03 82.57
TaskRes Base+CuPL 80.23±0.14 74.27±1.08 94.42±0.08 77.64±0.28 98.20±0.08 90.68±0.22 85.91
SToRI (Ours) Base+CuPL 79.98±0.16 73.76±1.38 95.09±0.45 78.21±0.27 98.04±0.02 90.57±0.18 85.94

4shot
TaskRes Standard 79.58±0.00 68.34±0.22 84.07±0.12 76.66±0.06 97.44±0.06 90.82±0.02 82.82
TaskRes Base+CuPL 80.68±0.04 76.91±1.24 94.94±0.18 78.88±0.11 98.16±0.11 90.85±0.07 86.74
SToRI (Ours) Base+CuPL 80.53±0.09 75.91±0.39 96.28±0.31 79.38±0.14 98.01±0.33 90.73±0.13 86.81

8shot
TaskRes Standard 80.03±0.08 69.7±0.45 90.12±0.07 78.87±0.04 97.84±0.10 91.30±0.03 84.64
TaskRes Base+CuPL 81.30±0.12 78.88±0.10 98.55±0.17 78.87±0.17 98.22±0.07 90.81±0.18 87.77
SToRI (Ours) Base+CuPL 81.01±0.18 78.39±0.27 98.04±0.05 80.24±0.09 98.23±0.10 90.71±0.16 87.77

16shot
TaskRes Standard 80.46±0.01 72.03±0.46 93.72±0.13 79.92±0.13 98.00±0.08 91.47±0.05 85.93
TaskRes Base+CuPL 81.78±0.02 81.28±0.82 99.22±0.12 79.92±0.17 98.47±0.08 91.19±0.11 88.65
SToRI (Ours) Base+CuPL 81.40±0.02 79.89±0.70 98.58±0.06 81.43±0.16 98.47±0.12 91.25±0.04 88.50

Table 8: Accuracy (%) on few-shot classification with MetaCLIP ViT-L/14. The results include mean values with
Standard deviation across three runs. The results of TaskRes are reproduced. The best performance is indicated in
bold, while the second-best performance is underlined.

Selected Attributes Text prompts

Female/Male, Smiling, Bangs a photo of a smiling [woman/man] with bangs
Female/Male, Smiling, Blond Hair a photo of a smiling [woman/man] with blond hair
Female/Male, Smiling, Gray Hair a photo of a smiling [woman/man] with gray hair
Female/Male, Smiling, Wearing Hat a photo of a smiling [woman/man] wearing hat
Female/Male, Smiling, Eyeglasses a photo of a smiling [woman/man] wearing eyeglasses
Female/Male, Bangs, Wearing Hat a photo of a [woman/man] with bangs, wearing hat
Female/Male, Bangs, Eyeglasses a photo of a [woman/man] with bangs, wearing eyeglasses
Female/Male, Blond Hair, Eyeglasses a photo of a [woman/man] with blond hair, wearing eyeglasses
Female/Male, Gray Hair, Eyeglasses a photo of a [woman/man] with gray hair, wearing eyeglasses
Female/Male, Wearing Hat, Eyeglasses a photo of a [woman/man] wearing hat and eyeglasses

Table 9: All combinations of attributes and corresponding text prompts on the CelebA dataset.

Attributes Texts

has_bill_shape::hooked_seabird hooked seabird bill
has_shape::duck-like duck-like shape
has_crown_color::blue blue crown
has_forehead_color::blue blue forehead
has_wing_color::yellow yellow wing
upperparts_color::yellow yellow upperparts
has_underparts_color::yellow yellow underparts
has_back_color::yellow yellow back
has_breast_color::yellow yellow breast
has_throat_color::yellow yellow throat
has_forehead_color::yellow yellow forehead
has_nape_color::yellow yellow nape
has_belly_color::yellow yellow belly
has_primary_color::yellow yellow color
has_crown_color::yellow yellow crown

Table 10: Candidates of attributes and corresponding texts on the CUB dataset.

14344



1

0

Red king crabGreat grey owl

Tiger shark Electrical ray

Figure 7: Text prompts and corresponding weights on the ImageNet dataset are provided as examples after training
with data. For visualization, the weights are normalized to sum up 1. The figures on the right display an example
image for each class.
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Figure 8: Text prompts and corresponding weights on the DTD dataset are provided as examples after training with
data. For visualization, the weights are normalized to sum up 1. The figures on the right display an example image
for each class.

From 2nd blockFrom 1st block From 7th block
(a)

At 7th block
(b)

Figure 9: The change of AUC scores for preference retrieval with weight control when diversifying blocks that
semantic token reweighting is applied. (a) The results when reweighting is applied within the subsequent blocks as
well. (b) The result when reweighting is applied within a single block.

Caltech101 DTD Food101

Figure 10: The change of accuracy for few-shot classification when diversifying blocks that semantic token
reweighting is applied. The experiments are run three times, with the mean shown by a line and the standard
deviation indicated by shading.
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