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Abstract

Watermarking involves implanting an imper-
ceptible signal into generated text that can
later be detected via statistical tests. A promi-
nent family of watermarking strategies for
LLMs embeds this signal by upsampling a
(pseudorandomly-chosen) subset of tokens at
every generation step. However, such signals
alter the model’s output distribution and can
have unintended effects on its downstream per-
formance. In this work, we evaluate the per-
formance of LLMs watermarked using three
different strategies over a diverse suite of
tasks including those cast as k-class classifi-
cation (CLS), multiple choice question answer-
ing (MCQ), short-form generation (e.g., open-
ended question answering) and long-form gen-
eration (e.g., translation) tasks. We find that
watermarks (under realistic hyperparameters)
can cause significant drops in LLMs’ effective
utility across all tasks. We observe drops of
10 to 20% in CLS tasks in the average case,
which shoot up to 100% in the worst case. We
notice degradations of about 7% in MCQ tasks,
10–15% in short-form generation, and 5–15%
in long-form generation tasks. Our findings
highlight the trade-offs that users should be
cognizant of when using watermarked models.1

1 Introduction

Large Language Models (LLMs), and derived chat-
bots of the likes of ChatGPT, can generate human-
like responses to a variety of requests like writing
emails, translating or summarizing content (Brown
et al., 2020; Chowdhery et al., 2022). As these sys-
tems gain popularity, there are looming concerns
about their misuse for spreading targeted misinfor-
mation, influencing public opinion (Panditharatne
and Giansiracusa, 2023) or conducting social engi-
neering attacks (Grbic and Dujlovic, 2023).

∗Work done during an internship at IISc, Bangalore.
1We make our code available at https://github.

com/FLAIR-IISc/watermark_tradeoffs.

Such concerns have spurred research towards
distinguishing human-written and LLM-generated
content. Naive approaches such as training post-
hoc classifiers for this purpose have been shown
to be ineffective, as they typically have large false-
positive rates that can lead to false accusations of
plagiarism (O’Neill, 2023; OpenAI, 2023). These
classifiers can further degrade in accuracy when
LLM developers like OpenAI continually finetune
and update their public models. Additionally, the
output distributions of future LLMs may grow even
more similar to that of human-written text causing
the efficacy of such approaches to wane.

A promising alternative is to intentionally embed
a watermark signal (Atallah et al., 2001; Chiang
et al., 2004; Topkara et al., 2006; Jalil and Mirza,
2009) into LLM-generated text that is impercep-
tible to unsuspecting readers but can be algorith-
mically detected using statistical tests. A popular
watermarking scheme, often referred to as KGW,
works by boosting the probabilities of a psuedo-
randomly chosen subset of the model’s vocabu-
lary at every generation step (Kirchenbauer et al.,
2023a). This scheme has been extensively stud-
ied and extended (Kirchenbauer et al., 2023b; Liu
et al., 2024; Lu et al., 2024). The original approach
and its derivatives, collectively called the KGW
family in the literature, comprise the most popular
watermarking strategies for LLMs today.

Previous works studying the trade-offs of wa-
termarking LLMs mostly restrict their analysis to
intrinsic evaluations of watermarked models gen-
eration quality such as perplexity or GPT4 judge-
ments (Singh and Zou, 2023), eschewing evalua-
tion on downstream task benchmarks. But since it
is likely that all strong LLMs made available to the
public (eg. through internet APIs) will be water-
marked in the near future (as promised by several
leading LLM developers (Press, 2023)), it is impor-
tant to understand how watermarks impact LLMs’
performance on downstream tasks.
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In our work, we evaluate the downstream impact
of 3 popular watermarks from the KGW family in-
cluding the original KGW approach (Kirchenbauer
et al., 2023a), EWD (Lu et al., 2024) and SIR (Liu
et al., 2024) over a diverse selection of tasks. Since
KGW-based watermarks perturb output probability
distributions at the token level, we categorize the
tasks as follows for our analysis:

1. CLS: Tasks framed as k-class classification
problems with static labels.

2. MCQ: Tasks framed as multiple choice
question-answering problems with choices
that differ across test examples.

3. SGEN: Tasks requiring generation of a short
output sequence via sampling.

4. LGEN: Tasks involving the generation of a
long output sequence by repeatedly sampling
from the LLM’s probability distributions.

We categorize the examined tasks into these four
buckets as we expect similar effects of watermark-
ing for tasks in a given category. For instance,
for CLS tasks, there is a possibility of systematic
bias against some labels for every test example. In
SGEN and LGEN tasks, the modifications to the
output distributions due to watermarking can di-
rectly impact the correctness of generated content.2

We evaluate the performance of watermarked
LLaMA (Touvron et al., 2023a), Mistral (Jiang
et al., 2023) and OPT (Zhang et al., 2022) models
and observe that, under realistic watermark settings,
watermarking can cause significant drops in LLMs’
effective utility across all tasks. We notice drops
of 10–20% in CLS tasks in the average case which
can rise up to 100% in the worst case. We see drops
of about 7% in MCQ tasks, 10–15% in short-form
generation, and 5–15% in long-form generation.

We believe that our findings will allow model
developers and users to make informed choices
about watermarked models and spur interest into
developing novel watermarking schemes and
decoding strategies that may exhibit better perfor-
mance trade-offs. We make our code available
at https://github.com/FLAIR-IISc/
watermark_tradeoffs to facilitate research
in this area, and holistically evaluate future
watermarking approaches.

2We treat short-form and long-form generation tasks dif-
ferently due to differences in how they are evaluated.

2 Background

The KGW watermark (Kirchenbauer et al., 2023a)
is a deterministic algorithm parameterized by 3
hyperparameters γ, δ and k, and a keyed psuedo-
random function F· : N → {g, r}m.

Generation. The algorithm works by modifying
the logits obtained from the language model at
each generation step. Formally, given a model M
with vocabulary V , and a prefix comprising tokens
w1,w2, . . . ,wn the scheme involves first comput-
ing the logits M(w1 . . . ,wn) = (l1, . . . , l|V |) of
the language model that would ordinarily be used
to predict the subsequent token. The terminal pre-
fix token wn is then fed to F under the key k to
obtain a partition of V into a green list G and a red
list R such that |G| = ⌊γ|V |⌋. That is,

Fk(wn) ∈ {g, r}|V|

such that
∑

x∈Fk(wn)
1[x = g] = ⌊γ|V |⌋ . Finally,

watermarked logits (λ1, . . . , λ|V |) are computed
as λi = li + δ · 1[i ∈ G]. These watermarked
logits can then be used for sampling tokens (for
generation) or even computing the likelihood or
perplexity of a given sequence.

Detection. The detection scheme proposed by
Kirchenbauer et al. (2023a) works by assessing the
probability of a null hypothesis that the given text
was written without knowledge of the watermark-
ing scheme (specifically hash key k). Precisely,
given a token sequence x of length T that was writ-
ten without knowledge of the scheme, the number
of green list tokens in x, denoted by |x|G, can be
assumed to be normally distributed with a mean of
γT and a standard deviation of

√
Tγ(1− γ). The

detection algorithm computes a z-score,

z = (|x|G − γT )/
√
Tγ(1− γ), (1)

and rejects the null hypothesis if this z-score ex-
ceeds a chosen threshold.

Variations. Entropy-based Watermarking Detec-
tion (EWD) is a variation of the KGW approach
that uses the same generation algorithm but dif-
fers in its detection algorithm (Lu et al., 2024).
EWD seeks to improve the trade-off between wa-
termark detectability and language modeling abil-
ity by proposing a novel entropy-based detection
strategy that involves reweighting individual tokens
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using their entropies during detection. It computes
an adjusted z score as

z′ = (|x|G − γ

|T |−1∑

i=m

Wi)/

√√√√Tγ(1− γ)

|T |−1∑

i=m

W 2
i

where Wi is computed based on the entropy of the
ith token of the sequence x.

Another KGW-based derivative called Semantic-
Invariant and Robust (SIR) watermarking aspires
to improve the robustness against paraphrasing at-
tacks (Liu et al., 2024). The SIR watermarking
scheme computes G as a pseudorandom function
of a semantic embedding of its prefix, departing
from KGW’s strategy of computing G using the
prefix’s lexical properties. For SIR,

F ′
k(embed(w1 . . . ,wn)) = {g, r}|V |

Specifically, SIR utilizes a sentence encoder to gen-
erate a semantic embedding for the prefix and then
uses a learned ‘watermark model’ to transform this
embedding into a partition over the model’s vocab-
ulary. A notable feature of the SIR watermark is
that the γ hyperparameter cannot be set explicitly,
but instead is implicitly determined by the water-
mark model at every generation step. This model’s
training objective incentivizes the effective γ to
always take on values close to 0.5.

3 Evaluation Setup

Datasets. To assess watermarks’ effects on tasks
that are framed as classification tasks (CLS),
we work with SST-2, BoolQ and CB from
the GLUE (Wang et al., 2019b) and Super-
GLUE (Wang et al., 2019a) benchmarks. These
correspond to sentiment analysis, yes/no question
answering and textual entailment tasks respectively.
We select the commonsense NLI dataset called
HellaSwag (Zellers et al., 2019) and the question-
answering dataset PIQA (Bisk et al., 2020) as
MCQ tasks, the reading comprehension datasets
DROP (Dua et al., 2019) and SQuADv2 (Rajpurkar
et al., 2016) as SGEN tasks, and the WMT14-En-
Fr (Bojar et al., 2014) and WMT20-En-De (Bar-
rault et al., 2020) translation tasks as LGEN tasks.
We evaluate models’ performance on these tasks
using the metrics typically associated with them.
For instance, CLS and MCQ tasks are evaluated us-
ing accuracy while SGEN tasks are evaluated using
F1 scores and LGEN translation tasks are evaluated
using BLEU scores (Papineni et al., 2002).

Models. We analyze the performance trade-offs
for the above tasks for watermarked and unwater-
marked versions of LLaMA 7B (Touvron et al.,
2023a), Mistral 7B (Jiang et al., 2023) and OPT
6.8B (Zhang et al., 2022) models.

Methodology. In KGW-based watermarks, the
γ and δ hyperparameters control the strength of
the watermark signal and accordingly, the shift in
watermarked models’ output distribution. However
due to differences among these algorithms, a spe-
cific (γ, δ) setting does not imply the same signal
strength (as measured by its empirical detectability)
or impact on an LLM’s language modeling ability.

To ensure a fair comparison of these schemes’
downstream implications, we find the settings of
hyperparameters for each watermarked model such
that the resulting signal is of the same strength. In
the watermarking literature, signal strengths are
typically evaluated by computing the True Positive
Rates (TPR) of their detection algorithm at a fixed
False Positive Rate (FPR). Generally, FPR is set to
a low value such as 0.01, to avoid the risk of false
accusing someone of plagiarism. In our evaluation,
we consider signal strengths of 0.5, 0.75 and 0.95
TPR@FPR=0.01 at 50 generated tokens to be light,
moderate and heavy intensity settings respectively.

For each watermark and model, we use 200 pre-
fixes sampled from the C4 corpus (Raffel et al.,
2020) as prompts to isolate the δ values corre-
sponding to light, moderate and heavy watermarks
for each γ ∈ {0.1, 0.25, 0.5, 0.75}. Next, we ob-
tain the perplexity values for each (γ, δ) setting
corresponding to a particular signal strength over
a disjoint sample of 200 C4 snippets. We then
choose the tuple which least impacts the model’s
perplexity scores as the canonical hyperparame-
ter setting for that signal strength. Through this
process, we select the pareto-optimal set of hyper-
parameters with respect to language modeling per-
formance under a target watermark strength. Some
contemporary work (Tu et al., 2024) that performs
downstream evaluations fails to conduct this type of
pareto-optimal hyperparameter search, and instead
arbitrarily chooses a (γ, δ) setting that achieves the
target signal strength. We believe that this limits
the practical applicability of their findings.

Measuring effective utility drop. We work un-
der the assumption that the metrics (e.g., accuracy,
F1, BLEU, etc.) that are typically used to evaluate
these tasks are representative of human perception
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Figure 1: Expected normalized scores for classification datasets. KGW and EWD show 10 - 20% drops in normalized
scores while while SIR can cause drops of 30 - 60%.

of performance on them. For CLS and MCQ tasks,
even a random classifier achieves a non-zero ac-
curacy in expectation while a random generator
achieves negligible F1 or BLEU scores on the gen-
eration tasks we study. To measure effective utility,
we compute how much the performance metric ex-
ceeds that of a random classifier/generator. Specif-
ically, we report normalized scores for each task
in section 4. A normalized score of 0 indicates
performance equivalent to that of a random classi-
fier/generator and a normalized score of 1 indicates
performance equivalent to the corresponding unwa-
termarked model. Specifically if M is an unwater-
marked model, Mw,i is the corresponding model
watermarked using watermark w at signal strength
i, if t is a downstream task and if M(t) denotes
model’s raw score on the task, then

normalized score(M, w, i, t) =
Mw,i(t)−R(t)

M(t)−R(t)

where R(t) indicates random performance on
t. Note that this quantity can be negative if
Mw,i(t) < R(t) < M(t). It can also exceed 1
if Mw,i(t) > M(t).

4 Results

We present our main results over all models, tasks
and watermarks under the moderate signal strength
and provide our full set of results in Table 4 in
Appendix B.1.

4.1 CLS tasks
When a fixed prompt template is used to prompt
LLMs to solve classification tasks (where all test
examples share a common label set), a systematic
bias over the tokens comprising the label set can
arise at the label generation position, and this bias

can persist over all test examples. This could be
true in the case of KGW and EWD if the terminal
tokens in the prompt template (such as Answer:)
remain fixed and in case of SIR if the semantic
embedding of the prompt turns out to be similar for
all test examples (e.g., on using fixed instructions
and few-shot demonstrations). How specifically
the label set tokens get segregated into green list G
and red list R however, depends on the choice of
the hash key k used with F .

Using the logits of the unwatermarked models
and knowledge of the tokens comprising the la-
bels for each CLS task, we compute the expected
classification task score under a uniform choice of
k for each watermarked model. In Figure 1, we
show that expected normalized scores can drop by
at least 10–20% in CLS tasks as is the case for
all models under the KGW and EWD watermarks.
However, these drops can be as high as 30–50% for
some models under the SIR watermark. We provide
some intuition for this discrepancy in Section 5.

If the label set consists of L tokens for a given
task, then there could be 2|L| possible partitions
of this set into G and R. By enumerating these
partitions and evaluating the watermarked model
under each of these partitions independently, we
isolate the partition that yields the worst test ac-
curacy and plot the corresponding worst-case nor-
malized scores in Figure 2. We see that even wa-
termark signals of moderate strength can destroy
effective utility with normalized scores dropping to
near zero i.e. akin to random classifier performance
in OPT and LLaMA. In tasks such as CB dataset
where there is a class imbalance (the minority class,
Neither, constitutes only 6% of test examples),
placing the minority class token into G and the rest
into R causes accuracy to fall far below random.
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Figure 2: Normalized scores for classification datasets under the worst-case partition. For the 3 watermarking
variations, we find that the effective utility of a model can be nearly or completely lost even by moderate watermarks.
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Figure 3: OPT 6.8-B’s normalized scores on BoolQ and CB under various partitions of the corresponding class
labels. Labels are partitioned differently with significant probability. Effective utility of the model can be completely
destroyed even under moderate watermarks.

It is crucial to note that these types of worst-case
partitions are not rare (under a uniformly random
choice of k). In Figure 3, we show the impact of
watermarking OPT-6.8B when evaluating over the
BoolQ and CB datasets. We show all possible par-
titions of L into G and R, and the probabilities of
such partitions occurring under a randomly cho-
sen hash key. Since these labels are only single
token long, |L| ≪ |V |, we can approximate the
probability of a given partition using the binomial
distribution as

(|L|
nG

)
· γnG · (1− γ)|L|−nG

where nG = |L ∩ G|. We find that moderate
watermarks can reduce BoolQ accuracy to that of
a random classifier with an 19% probability and
the normalized score for the CB task to near-zero
with a similar probability. Also notice that boost-
ing the logits of the minority class (i.e., Neither)

without modifying the logits of the remaining two
classes causes accuracy to drop far below the ran-
dom guessing baseline. Imporantly, these observa-
tions about worst case performance are consistent
over all 3 the KGW-based watermarks we study.

4.2 MCQ tasks

We observe that watermarks leave model perfor-
mance on MCQ tasks relatively unaffected. We
usually see only 5–10% drops in normalized scores
(Figure 4) which is markedly lower than those ob-
served in CLS tasks (Figure 1). In fact, Figure 5
shows that the model’s preference ranking over all
provided choices often remains unchanged by the
watermark. We plot the proportion of examples
from the HellaSwag task where the model’s pref-
erence order over its top k most preferred choices
remains unchanged upon watermarking. Although
these proportions drop (as expected) on increasing
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Figure 6: Proportion of HellaSwag examples where
the model’s top k most preferred choices remains un-
changed on watermarking, stratified by average option
length. Rankings of examples with longer options are
more robust to watermarking.

k, they remain significantly higher than would be
expected from a random permutation.

This discrepancy in the score drops we observe
between CLS and MCQ tasks could be due to the
fact that systematic biases present in CLS tasks
with static label sets do not appear in MCQ tasks
(where labels differ across examples). Such an ef-
fect, however, would diminish on averaging perfor-
mance over multiple hash keys (as we do). This ob-
servation is instead due to the significantly longer
choice lengths in HellaSwag and PIQA (averag-
ing 34 and 17 words respectively). In a longer
token sequence, the fraction of tokens that occur
in G is more likely closely approximated by γ.
Hence, each choice sees an almost uniform increase
in perplexity on KGW-based watermark applica-
tion, leaving the ordinal relationship among the
the choices’ perplexities unchanged. In Figure 6,
we bucket HellaSwag examples by their average
choice length (in words) and show the proportion
of examples in each bucket whose top k most pre-
ferred choices (taken together) remains unchanged
on watermarking. Notice that the rankings of ex-
amples with longer options are more robust.

4.3 *GEN tasks

SGEN Figure 7 shows that models’ normalized
F1 scores drop by up to 10% across all watermarks
in SQuAD2 and by upto 15% on DROP. This im-
pact is noticeable, but milder than might be ex-
pected for short generation lengths (considering
our previous findings). However, it is unsurprising
since in (unwatermarked) LLMs, the logits of the
model’s predictions at a generation step typically
far exceed the logits over most other vocabulary
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Figure 7: Expected normalized scores for short-form generation (SGEN) tasks.
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Figure 8: Expected normalized scores for long-form generation datasets. The normalized BLEU scores for both
translation tasks remain almost unaffected by moderate KGW-based watermarks, with drops of about 5− 10%.

tokens (example in Figure 9). Since we use greedy
sampling to elicit a model’s predictions on SGEN
tasks, a watermark would only change these pre-
dictions when δ is large enough to boost the logits
of arbitrary tokens in G to values larger than those
of the original prediction. This appears to only
rarely occur in most cases we evaluate. SIR again
appears disproportionately impacted, especially in
the DROP task.

LGEN The models we study show normalized
BLEU score drops of 5–10% under KGW and
EWD watermarks, and up to 15% under SIR water-
marks. We also observe qualitatively that moder-
ate KGW-based watermarks can lead to occasional
factual errors in model generations (examples in
Tables 5 and 6 in Appendix B).

5 Analysis

Why does SIR perform worse? In Section 4, we
evaluate the performance drops on various differ-
ent tasks due to applying moderate strength KGW,
EWD and SIR watermarks over 3 models, each of
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Figure 9: LLaMA 7B’s logit-magnitudes for the top-kth
token sorted in descending order, averaged over outputs
at every generation step for SQuAD2 examples. We
observe that at each generation step, a few tokens have
significantly higher values than most others.

about 7 billion parameters. As explained in Sec-
tion 3, we define the ‘moderate’ intensity as the
watermark strength required to obtain an empirical
TPR @ FPR = 0.01 of 0.75 using 50-token long
freeform generations. Despite this uniformity in
calibration, we find that the SIR watermark con-
sistently leads to worse downstream tradeoffs than
KGW and EWD over each CLS (Figure 1), MCQ
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(Figure 4), SGEN (Figure 7) and LGEN (Figure 8)
task we study.

One aspect that makes SIR different from KGW
and EWD is that its γ hyperparameter cannot be
explicitly set by the user, but instead varies dynami-
cally around 0.5. As Table 3 in the appendix shows
however, the γ settings for KGW and EWD we
obtain through the calibration procedure described
in Section 3 are all either 0.1 or 0.25. Noticing
that the likelihood of an arbitrary (independently
chosen) pair of tokens being segregated differently
into G and R is given by 1−γ2− (1−γ)2 and that
this expression is maximized at γ = 0.5, we hy-
pothesize that SIR’s systematic underperformance
may be due to the fact that γ = 0.5 “maximally"
perturbs the model’s output distribution. To verify
this claim, we evaluate the performance drops due
to KGW and EWD when (γ, δ) are set to the values
that realize the ‘moderate’ intensity when γ = 0.5.

moderate γ γ = 0.5

Dataset KGW EWD SIR KGW EWD

BoolQ 0.91 0.93 0.70 0.88 0.93
SST2 0.84 0.86 0.51 0.82 0.81
CB 0.89 0.89 0.69 0.85 0.84
HellaSwag 0.99 1.00 0.92 0.97 0.98
PIQA 0.97 1.00 0.94 1.00 0.96
SQuAD2 0.93 0.96 0.91 0.89 0.86
DROP 0.86 0.87 0.69 0.87 0.85
WMT14-En-Fr 0.93 0.97 0.85 0.91 0.93
WMT20-En-De 0.92 0.95 0.87 0.91 0.94

Average 0.92 0.94 0.79 0.90 0.90

Table 1: Normalized scores for LLaMA 7B under the
pareto-optimal ‘moderate’ calibration and under γ =
0.5. The effective γ for SIR is 0.5 by default.

Although Table 1 shows that the normalized
scores under KGW and EWD become somewhat
closer to those under SIR when enforcing γ = 0.5,
they still remain significantly higher suggesting
that the choice of γ cannot be the only reason for
SIR’s underperformance.

Effect of model strength. In Table 2, we show
the effect of applying KGW-, EWD- and SIR-based
watermarks to two stronger models in the LLaMA
family: the larger LLaMA 13B and the similarly
sized 7B model from the subsequent LLaMA2
generation (Touvron et al., 2023b). Both stronger
models show slightly larger normalized scores than
LLaMA 7B, suggesting that stronger models may
see smaller utility drops upon watermarking.

6 Related Work

Watermarking text. Watermarking discrete-
valued text data has classically been considered
difficult (Petitcolas et al., 1999; Katzenbeisser and
Petitcolas, 1999). Early attempts involved rule-
based synonym substitutions and parse-tree modifi-
cations (Chiang et al., 2003; Topkara et al., 2006;
Venugopal et al., 2011). Seeing that implant-
ing strong watermarks without severely degrading
text quality was challenging for these approaches,
later work utilized LSTMs (Fang et al., 2017) and
masked language-models (Ueoka et al., 2021) for
generating watermarked text. The popularity of
autoregressive LLMs has spurred fresh interest in
text-watermarking techniques. Kirchenbauer et al.
(2023a) introduced a method for implanting wa-
termarks into LLM generations by upsampling a
subset of tokens during the decoding phase. This
has inspired much followup work to make LLM-
watermarks robust to paraphrase attacks (Kirchen-
bauer et al., 2023b; Hou et al., 2024; Ren et al.,
2024; Liu et al., 2024; Zhao et al., 2024), en-
code multibit information (Yoo et al., 2024; Qu
et al., 2024; Wang et al., 2024), distill watermarks
into standalone language models (Gu et al., 2024),
and reduce the degree of watermark-induced text
degradation (Wu et al., 2024; Takezawa et al.,
2024; Lu et al., 2024; Chen et al., 2024). Al-
though these works, collectively called the KGW
family of watermarks are by far the most popu-
lar LLM watermarks used today, there also ex-
ist other cryptographically-inspired watermarking
schemes (Christ et al., 2023; Aaronson and Kirch-
ner, 2023; Kuditipudi et al., 2024).

Downstream effects of watermarking. Most
prior work on watermarking has evaluated their
resulting models using perplexity of the generated
text. Kirchenbauer et al. (2023a) evaluates the per-
formance of watermarked models on a single ques-
tion -answering task. Some follow-up work (Fer-
nandez et al., 2023) conducts small-scale evalua-
tions but does not attempt to uncover the causes for
observed performance drops. One contemporane-
ous work (Tu et al., 2024) performs a similar study
to ours over a broad range of tasks but in contrast to
our work, chooses watermark hyperparameters rel-
atively arbitrarily (see Section 3) which we believe
limits the practical applicability of their findings.
To the best of our knowledge, our study is the first
to conduct a principled analysis on the downstream
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Dataset LLaMA 7B LLaMA 13B LLaMA2 7B

KGW EWD SIR KGW EWD SIR KGW EWD SIR

BoolQ 0.91 0.93 0.70 0.96 0.97 0.87 0.96 0.98 0.90
SST2 0.84 0.86 0.51 0.94 0.97 0.84 0.93 0.93 0.79
CB 0.89 0.89 0.69 0.92 0.93 0.77 0.97 0.97 0.92
HellaSwag 0.99 1.00 0.92 1.02 0.99 0.95 1.00 1.00 0.97
PIQA 0.97 1.00 0.94 0.98 0.99 0.97 0.96 1.00 1.00
SQuAD2 0.93 0.96 0.91 0.91 0.95 0.89 0.87 0.97 0.83
DROP 0.86 0.87 0.69 0.81 0.72 0.58 0.79 0.92 0.69
WMT14-En-Fr 0.93 0.97 0.85 0.94 0.97 0.90 0.95 0.97 0.92
WMT20-En-De 0.92 0.95 0.87 0.95 0.98 0.93 0.91 0.99 0.94

Average 0.92 0.94 0.79 0.94 0.94 0.86 0.93 0.97 0.88

Table 2: Normalized scores of LLaMA 7B, LLaMA 13B and LLaMA2 7B models with KGW, EWD and SIR
watermarks, along with the average scores (in the last row). Normalized scores appear slightly larger for LLaMA
13B and LLaMA2 7B (compared to LLaMA 7B), suggesting that stronger models do not see as much utility drop.

effects of watermarking schemes over a broader
spectrum of tasks, shedding light on underlying
reasons for the observed trade-offs.

7 Conclusion

We evaluate the extent to which watermarks from
the KGW family hurt downstream performance
by examining three watermark and three LLMs
over a diverse suite of NLP tasks. We motivate a
categorization of tasks into 4 buckets and analyze
causes for the observed trade-offs in each category.

We find the performance trade-offs for each cat-
egory vary in a manner that simple perplexity mea-
surements cannot capture or predict (an assumption
implicit in prior work). Watermarks, under realis-
tic hyperparameters, can cause significant drops in
LLMs’ effective utility across all tasks. We observe
drops of 10 to 20% in CLS tasks in the average
case, which shoot up to 100% in the worst case.
We notice degradations of about 7% in MCQ tasks,
10–15% in short-form generation, and 5–15% in
long-form generation tasks. We also find some
evidence that the downstream trade-offs posed by
the KGW family of watermarks may diminish with
increasing model strength.

We believe that our work will (i) allow devel-
opers and practitioners to make informed choices
about watermarked LLMs and their adaptations, (ii)
spur research into novel watermarking strategies
that present better trade-offs, and (iii) inspire tech-
niques for maintaining model performance under
existing watermarking schemes.

Limitations

We restrict our analysis in this work to empiri-
cally evaluating the downstream performance of

three representatives from the KGW family of wa-
termarks. While we perform some analyses and
give some theoretical intuitions, it may be possible
to establish a concrete theoretical framework for
(KGW-based) watermarked models’ downstream
trade-offs. We leave such analyses to future work.

Although our findings likely transfer to most
KGW-based watermarks, unrelated schemes such
as Aaronson and Kirchner (2023) and Christ et al.
(2023), lie outside the scope of our work.

We only analyze the effect of watermarking un-
der the typical decoding strategies used for each of
the tasks. It is plausible that not all decoding strate-
gies would be similarly affected by KGW-based wa-
termarks. There may also exist watermark-aware
decoding strategies designed to mitigate perfor-
mance drops. This possibility presents an exciting
avenue for future work.
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A Watermark Hyperparameters

We show the watermark hyperparameters we use
for our main experiments (arrived at through our
calibration procedure described in Section 3) in
Table 3.

KGW EWD SIR
Model γ δ γ δ γ δ

OPT-6.8B 0.25 1.21 0.1 1.41 0.5 0.86
LLaMA-7B 0.1 2.13 0.1 1.72 0.5 1.31
Mistral-7B 0.1 1.8 0.1 1.5 0.5 1.02

Table 3: We show the (γ, δ) hyperparameters obtained
through the calibration procedure described in Section 3
for each model and moderate watermark. Note that the
effective γ values for SIR are determined dynamically
at each generation step, but we empirically verify that
they always take values very close to 0.5.

B Additional Results

B.1 Results for Light, Moderate and Heavy
settings

We provide evaluation results for each task, model
and watermark we study in Table 4.

B.2 LGEN Examples
We present representative examples for LGEN
tasks. Examples from the WMT14-En-Fr task are
tabulated in Table 5 and examples from WMT20-
En-De are tabulated in Table 6.

C Task Evaluation Details

C.1 Decoding
1. CLS tasks are tasks framed as k-class classifi-

cation problems with static (and often short)
labels that are common across all test exam-
ples. These are evaluated by picking the class
label that the model assigns the highest prob-
ability to. Formally, the input text x is for-
matted using a suitable prompt template T
and the class y which maximizes p(y|T (x))
is chosen as the model’s prediction.

ŷ = argmax
y∈L

p(y|T (x))

These tasks are also typically evaluated using
accuracy metrics.

2. The MCQ category includes several
open-book question-answering, reading-
comprehension and common-sense reasoning

tasks that are posed as multiple-choice
question-answering tasks to language models.
In these tasks, every test input x is associated
with a set of possible answer choices L(x).
When a test input x is formatted using a
suitable template T , the answer choice that
the language model assigns the highest
average log likelihood to,

argmax
y∈L(x)

avg-log-likelihood(y|T (x))

is chosen as the model’s prediction. These
tasks are also typically evaluated using accu-
racy metrics.

3. SGEN includes open-domain question-
answering and reading-comprehension tasks
are posed to language models as short-form
conditional generation tasks and require
models to output concise free-form responses.
Given a test input x formatted using a
prompt template T , the model produces a
sequence y∗ which maximizes the conditional
likelihood p(y|T (x)).

y∗ = argmax
y

p(y|T (x))

Typically, the generated sequence is bounded
by a certain length or concludes when the
model outputs an end-of-sequence token. The
generated sequences are typically evaluated
against gold sequences using F1 scores.

4. LGEN represents all long-form generation
tasks including machine translation and sum-
marization. For an input text x, formatted
using an appropriate prompt template T , the
model is tasked with producing an extended
sequence y∗ that maximizes the conditional
likelihood p(y|T (x)).

y∗ = argmax
y

p(y|T (x))

The generated sequences are often evaluated
against multiple ground truth references using
metrics such as ROUGE and BLEU, allowing
for some flexibility for paraphrases.
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Model Watermark Intensity BoolQ SST2 CB HellaSwag PIQA SQuADv2 DROP WMT14-En-Fr WMT20-En-De

OPT-6.8B KGW light 0.92 0.91 1.11 0.97 0.98 0.93 0.98 0.98 0.99
moderate 0.86 0.83 0.81 0.93 0.98 0.93 0.97 0.98 0.96

heavy 0.85 0.83 0.80 0.90 0.94 0.81 0.96 0.89 0.88
EWD light 1.15 0.91 0.96 1.12 1.06 1.00 0.97 1.01 0.97

moderate 0.92 0.91 0.90 0.93 1.00 1.00 0.95 0.98 0.96
heavy 1.04 0.83 0.83 1.08 0.94 0.90 0.87 0.95 0.91

SIR light 0.86 0.85 1.06 0.96 1.06 0.96 0.98 0.98 0.98
moderate 0.69 0.64 0.70 0.94 1.10 0.92 1.01 0.90 0.95

heavy 0.50 0.50 0.56 0.68 0.82 0.22 0.65 0.42 0.63

LLaMA-7B KGW light 0.93 0.86 0.89 1.00 0.97 0.95 0.88 0.96 0.93
moderate 0.91 0.84 0.89 0.99 0.97 0.93 0.86 0.93 0.92

heavy 0.86 0.82 0.89 0.99 0.97 0.84 0.78 0.83 0.76
EWD light 0.92 0.81 0.90 0.99 1.04 0.97 0.94 0.97 0.98

moderate 0.93 0.86 0.89 1.00 1.00 0.96 0.87 0.97 0.95
heavy 0.84 0.73 0.89 0.97 0.97 0.81 0.78 0.89 0.90

SIR light 0.91 0.75 0.73 0.97 1.06 0.91 0.86 0.96 0.99
moderate 0.70 0.51 0.69 0.92 0.94 0.91 0.69 0.85 0.87

heavy 0.50 0.50 0.48 0.26 0.42 0.37 0.37 0.40 0.46

Mistral-7B KGW light 0.97 0.98 0.94 1.01 1.01 1.01 1.26 0.99 0.98
moderate 0.96 0.97 0.90 0.99 1.01 0.97 1.29 0.97 0.97

heavy 0.92 0.95 0.83 0.98 0.97 0.96 1.22 0.93 0.92
EWD light 0.93 0.97 0.94 1.06 0.98 0.97 0.94 0.99 0.99

moderate 0.97 0.98 0.93 0.99 0.99 0.99 0.93 0.98 0.98
heavy 0.90 0.95 0.90 1.03 0.98 0.98 0.81 0.96 0.96

SIR light 0.97 0.98 0.92 1.02 0.97 0.96 0.89 0.99 1.00
moderate 0.85 0.90 0.69 0.96 0.88 0.90 0.68 0.93 0.94

heavy 0.50 0.50 0.45 0.30 0.37 0.44 0.24 0.30 0.37

Table 4: Normalized scores for all Model, Watermark, Intensity, Dataset combinations we evaluate.

Model Content

Input Repainted Traffic Lights: MP Asks Brigitte Grouwels to Resign
Ground Truth Feux repeints: un député demande la démission de Brigitte Grouwels [Re-

painted lights: a deputy calls for the resignation of Brigitte Grouwels]

LLaMA 7B Output Les feux de circulation ont été repeints: le député a demandé à Brigitte
Grouweels de démissionner. [The traffic lights have been repainted: the MP
asked Brigitte Grouweels to resign.]

+ moderate KGW Output Les feux de circulation sont rénovés, mais c’est la ministre qui se trouve sur le
gril, demande à être relevée de ses fonctions. [The traffic lights are renovated,
but it is the minister who is on the grill, asking to be relieved of her duties.]

Input This really is a must for our nation.
Ground Truth Cela est vraiment indispensable pour notre nation. [This is truly essential for

our nation]

Mistral 7B Output Cela est vraiment indispensable pour notre nation. [This is truly essential for
our nation]

+ moderate SIR Output C’est une chose qui nous manque réellement. [This is something we really
miss.]

Table 5: Moderate watermarks can cause increase factual errors in model outputs in the WMT14-En-Fr task. We
provide the input, the gold output, the unwatermarked model’s output and the output generated by a model with a
moderate watermark. We also provide the English back-translation (from Google Translate) for each of these.
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Model Content

Input He is now facing 10 counts of murder in Canada and 16 counts of attempted
murder following the attack on April 23, 2018.

Ground Truth Nach dem Attentat vom 23. April 2018 wurden in Kanada nicht weniger als
10 Anklagepunkte wegen Mordes und 16 Anklagepunkte wegen versuchten
Mordes gegen ihn erhoben. [Following the assassination attempt on April
23, 2018, no fewer than 10 charges of murder and 16 charges of attempted
murder were brought against him in Canada.]

OPT 6.8B Output Der Mann ist jetzt auf 10 Mordverdachtsfälle in Kanada und 16 Mordver-
dachtungen gegenüber der Tat am 23. April 2018. [The man is now facing 10
counts of murder in Canada and 16 counts of murder for the crime on April
23, 2018.]

+ moderate EWD Output [The man is now convicted of 10 counts of murder and 16 attempted murders
in Canada.]

Input However, despite fans being eager for the upcoming release, it seems we all
need to sit tight as it won’t be dropping on our screens until 2021.

Ground Truth Selbst wenn seine Fans die bevorstehende Ausstrahlung der Serie kaum
erwarten können, bleibt Geduld angesagt, da diese erst für 2021 angekündigt
wurde. [Even if his fans can hardly wait for the upcoming broadcast of the
series, patience remains as it has only been announced for 2021.]

Mistral 7B Output Trotzdem, obwohl Fans eifrig auf die kommende Veröffentlichung warten,
scheint es so, als würden wir alle auf die Sitze sitzen müssen, bis es 2011 auf
unseren Bildschirmen erscheint. [Nevertheless, although fans are eagerly
awaiting the upcoming release, it seems we will all have to sit on the edge of
our seats until it hits our screens in 2011.]

+ moderate KGW Output Jedoch, obwohl Fans einschließlich mich ehrgeizig auf die nächste Veröf-
fentlichung warten, müssen wir alle auf die nächstjährige Veröffentlichungs-
datum warten. [However, although fans including myself are eagerly waiting
for the next release, we all have to wait for next year’s release date.]

Table 6: Moderate watermarks can cause increase factual errors in model outputs in the WMT20-En-De task. We
provide the input, the gold output, the unwatermarked model’s output and the output generated by a model with a
moderate watermark. We also provide the English back-translation (from Google Translate) for each of these.
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