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Abstract

In recent years, the advent of large language
models (LLMs) like GPT and Llama has signif-
icantly influenced numerous domains, partic-
ularly in advancing natural language process-
ing (NLP) capabilities. LLMs have shown re-
markable performance in NLP tasks such as
relation extraction (RE) and knowledge graph
completion (KGC), enhancing activities related
to knowledge graphs. As a result, there is
a growing interest in integrating LLMs into
cross-lingual entity alignment (EA) task, which
aims to identify equivalent entities across var-
ious knowledge graphs, thereby improving
the performance of current baselines. How-
ever, employing LLMs for entity alignment
poses challenges in efficiently handling large-
scale data, generating suitable data samples,
and adapting prompts for the EA task. To
tackle these challenges, we propose Seg-Align,
an innovative framework that integrating dis-
tance feature extraction, sample Segmentation,
and zero-shot prompts. Through extensive ex-
periments on two widely used cross-lingual
benchmark datasets, we have not only demon-
strated the effectiveness of our proposed sam-
ple segmentation algorithm but also highlighted
the state-of-the-art performance of Seg-Align.
Code is available at https://github.com/
yangxiaoxiaoly/Seg-Align.

1 Introduction

Knowledge Graphs (KGs) depict entities and their
relationships, serving as foundational elements for
applications like semantic search (Zhang et al.,
2021), question-answering (Kwiatkowski et al.,
2019), and recommender systems (Zangerle and
Bauer, 2022). However, KGs often suffer from het-
erogeneity and redundancy due to their construc-
tion by various organizations with specific needs.
Knowledge fusion (Dong et al., 2014) aims to align
and merge this heterogeneous information, forming

*corresponding author

unified identifiers and relationships. Entity Align-
ment (EA) is crucial in this process, focusing on
discovering equivalent entities across various KGs
(Sun et al., 2020b).

Knowledge representation learning-based entity
alignment methods have emerged as the primary
technique for addressing the EA task, yielding
promising results. These SLM based methods1

often use translation-based models or Graph Neu-
ral Networks (GNNs)/ Graph Convolutional Net-
works (GCNs) due to their robustness and gener-
alization capabilities (Scarselli et al., 2008; Kipf
and Welling, 2017). Recently, LLMs have demon-
strated their proficiency in various NLP tasks (Ko-
lasani, 2023). Trained on vast amounts of text
data, LLMs possess rich linguistic and background
knowledge, enabling them to understand context,
disambiguate meanings, and recognize patterns
across textual sources (Pan et al., 2023). This ca-
pability renders their application to the EA task
particularly promising. Nonetheless, integrating
LLMs into the EA task also faces challenges.

Challenge 1: How to handle large-scale data.
Managing large-scale data requires meticulous con-
sideration of resource consumption, operational
efficiency, and overall system performance. LLMs,
such as GPT and Llama, have input size limita-
tions. Consequently, it is impractical to process
all data solely using these models. Additionally,
as the length of the input increases, the cost of
using LLMs also rises, accompanied by longer pro-
cessing times. This results in higher resource con-
sumption and reduced efficiency. Therefore, when
dealing with datasets for the EA task, it is crucial to
adopt strategies that balance resource consumption,
efficiency, and performance.

Challenge 2: How to select data samples
that are more suitable for processing by LLMs.

1To distinguish them from those based on LLMs (Kandpal
et al., 2023), in the following, we collectively referred them
as small language models (SLMs).
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LLMs are trained on massive datasets containing
billions or even trillions of words sourced from var-
ious texts on the Internet (Pan et al., 2024). These
datasets cover a wide range of topics, styles, and
languages, allowing the model to learn various lan-
guage patterns and contexts. Therefore, for data
samples that are difficult for SLMs to distinguish,
such as long-tail entities (Cao et al., 2020), LLMs
can leverage their own knowledge for judgment.
For data samples effectively managed by SLMs,
employing LLMs is unnecessary, as LLMs may
not provide superior performance in these cases.
Hence, it is essential to carefully consider the com-
plexity of entities, context, and the performance of
SLMs to determine which entity samples require
handling by LLMs and how to effectively utilize
LLMs to enhance the effectiveness of the EA task.

Challenge 3: How to adjust prompts to make
them more suitable for the EA task. For different
tasks, LLMs require distinct contextual informa-
tion and input formats. In the EA task, firstly, due
to the limitation of input length, it’s impractical to
include all entities directly in the prompt. Addition-
ally, transforming entities from a KG into suitable
textual representations for inclusion in the prompt
is essential. Furthermore, LLMs need to identify
and match same entities across various KGs. When
adjusting prompts, it is necessary to consider the
characteristics and requirements of the EA task and
ensure that prompts can effectively guide LLMs to
understand and execute the EA task.

To address the aforementioned challenges, we
propose Seg-Align framework, which mainly con-
sists of three components: distance feature extrac-
tion, sample segmentation, and zero-shot prompts.
Firstly, a SLM (SDEA) (Zhong et al., 2022) is
utilized to obtain the initial embedding representa-
tions of entities. Then, based on these embeddings,
the distances between entities are computed to gen-
erate a distance matrix. Subsequently, machine
learning method is employed for distance feature
extraction. Using the extracted distance features,
we perform binary classification to divide the data
samples into two groups, which are then processed
by a SLM and a LLM respectively. The LLM pro-
cesses the corresponding data samples based on
zero-shot prompts to obtain the final alignment re-
sults. The experimental results indicate that our
Seg-Align framework has achieved remarkable per-
formance enhancements in the EA task.

In summary, our contributions are as follows:

• We propose a novel sample segmentation algo-
rithm that effectively discriminates data sam-
ples amenable for processing by SLMs and
LLMs.

• We develop tailored zero-shot prompts for the
EA task. By strategically minimizing extra-
neous context, we effectively reduce token
usage and processing time, thus significantly
enhancing the framework’s efficacy.

• We conduct extensive experiments on five
cross-lingual datasets. Experimental results
show that our framework outperforms state-of-
the-art methods on all datasets, demonstrating
its effectiveness and superiority.

2 Related Work

Currently, most EA methods are rooted in knowl-
edge representation learning, primarily categorized
into those translation based methods and those
based on GNNs/GCNs. Translation based meth-
ods, such as MTransE (Chen et al., 2017), JAPE
(Sun et al., 2017), KECG (Li et al., 2019), BootEA
(Sun et al., 2018), Multi-mapping Relations (Shi
and Xiao, 2019), TransEdge (Sun et al., 2019),
JarKA(Chen et al., 2020), and CTEA(Yan et al.,
2020), principally constrain the entity embeddings
into a fixed distribution by translation-based knowl-
edge graphs embedding methods. Based on the ob-
servation that entities sharing similar neighboring
structures tend to be aligned, EA approaches based
on GCNs distribute and consolidate entity informa-
tion across graphs. GCN-Align (Wang et al., 2018)
is the first to use GCN to jointly embed the entity
structure and entity attributes. Building upon this
foundation, many approaches have enhanced GCNs
to address issues such as noise propagation (HGCN
(Wu et al., 2019b)), heterogeneity (MuGNN (Cao
et al., 2019), Alinet (Sun et al., 2020a), NMN (Wu
et al., 2020), MRAEA (Mao et al., 2020)), and
better utilization of relationship and attribute infor-
mation (RDGCN (Wu et al., 2019a), RAGA (Zhu
et al., 2021a), RNM (Zhu et al., 2021b), EPEA
(Wang et al., 2020)).

With the rise of pre-trained language models like
BERT (Kenton and Toutanova, 2019), fine-tuning
these models in downstream tasks has demon-
strated significant potential. HMAN+BERT (Yang
et al., 2019), SDEA (Zhong et al., 2022), and BERT-
INT (Tang et al., 2020) treat entity alignment as a
downstream task for fine-tuning BERT. However,
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Figure 1: The overview of Seg-Align framework, which consists of three main components: (1) distance feature
extraction, (2) sample segmentation, and (3) zero-shot prompt.

for LLMs, fine-tuning not only requires consider-
able time but also demands substantial resources.

Recent studies have integrated LLMs into the
EA task, as seen in CHATEA (Jiang et al., 2024)
and LLMEA (Yang et al., 2024). In CHATEA,
alongside leveraging LLMs for iterative reason-
ing, a SLM is employed for candidate entity fil-
tering. Various types of information, including
names, descriptions, structures, and temporal data,
are incorporated into the prompt to guide the align-
ment process. However, CHATEA primarily tests
single-language EA task and only conducts cross-
language tests on the relatively similar languages
of French and English. On the other hand, LLMEA
adopts a different approach. It utilizes entity struc-
ture embeddings, entity name embeddings, and
entity name edit distances for candidate entities
selection. LLMs are then utilized to make selec-
tions within each candidate set, iterating until a
final alignment is reached.

Despite these advancements, both CHATEA and
LLMEA overlook the fact that not all data is suit-
able for processing by LLMs alone. Relying solely
on SLMs for candidate entity selection fails to ef-
fectively segment the data, thus missing out on
fully leveraging the strengths of both LLMs and
SLMs.

Therefore, we propose Seg-Align, which effi-
ciently utilizes LLMs for entity alignment. We ex-
tract features based on distances between entities,
further segment data samples, selecting suitable
samples for processing by LLMs. Finally, we de-
sign prompts that are more suitable for the EA task
to interact with LLMs.

3 Problem Definition

Definition 1 (Knowledge Graph) A knowl-
edge graph (KG) is denoted as G =
(E,R,A, V, Tr, Ta), where E = {e1, e2, ...em},
R = {r1, r2, ...rn}, A = {a1, a2, ...ap}, and
V = {v1, v2, ..., vq} represent entity set, relation
set, attribute set, and value set, respectively, and
m,n, p, q are the number of entities, relations,
attributes, and attribute values, respectively.
Tr ⊆ E × R × E is the relation triple set, and
Ta ⊆ E × A × V is the attribute triple set.
Relational triples can also be represented as
(h, r, t), where h is called the head entity and t is
called the tail entity.
Definition 2 (Entity Alignment in KGs) Given a
source KG G1 = (E1, R1, A1, V 1, T 1

r , T
1
a ), and

a target KG G2 = (E2, R2, A2, V 2, T 2
r , T

2
a ), the

aligned entity pairs (training set) is denoted as S =
{(e1i , e2j )|e1i ∈ E1, e2j ∈ E2, e1i ≡ e2j}, where ≡
stands for equivalence, i.e., the source entity e1i
and the target entity e2j refer to the same thing in
the real world. The goal of the EA task is to find
remaining equivalent entity pairs of these two KGs.

4 Methodology

As shown in Figure 1, Seg-Align framework is
mainly divided into three parts: distance feature
extraction, sample segmentation, and zero-shot
prompt. Firstly, in the distance feature extraction
stage, we train a SLM to obtain entity embeddings,
thereby calculating the distances between entities
to generate a distance matrix. Based on the distance
matrix, we extract distance features, and then per-
form sample segmentation to select data samples
more suitable for processing by LLMs. Finally, we
design prompts to utilize the background knowl-
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edge of LLMs for EA.
For the candidate entity selection, our approach

aligns with ChatEA and LLMEA in utilizing knowl-
edge representation learning-based entity align-
ment methods to obtain entity embeddings, which
are then used to select candidate entities. However,
our method diverges in how we handle candidate
entities. While ChatEA and LLMEA pass all data
to the LLM for processing after candidate entities
are identified, they do not account for the fact that
some data may already be well-aligned during the
candidate entity selection phase. Therefore, we pro-
pose a sample segmentation algorithm that selects
only the poorly aligned data to be processed by the
LLM.

In terms of prompt design, our approach differs
significantly from that of ChatEA and LLMEA.
Firstly, ChatEA’s prompt processes each candidate
entity one by one sequentially, whereas our prompt
can include all candidate entities at once, greatly
enhancing the LLM’s processing efficiency. Sim-
ilar to LLMEA, we use a multiple-choice format
for our prompt; however, we further refine this by
restricting the response format of the LLM to en-
sure more consistent and easier-to-process answers.
Additionally, unlike LLMEA, we do not include
examples in the prompt, thereby achieving a true
zero-shot prompt design.

Figure 2: Distances between source entity and their top-
10 candidate entities. The x-axis (0-9) represents the
top-10 candidate entities, while the y-axis represents
embedding distances (Euclidean distance) between the
source entity and its top-10 candidate entities.

4.1 Distance feature extraction

For the majority of SLMs, when provided with
a source entity, the alignment procedure involves
computing the embedding distances between the
source entity and all target entities. Subsequently,

the target entities are sorted in ascending order
based on these distances, and the top-k entities
are selected, thus yielding candidate entities for
the source entity. At this stage, we adopt a SLM
(SDEA) (Zhong et al., 2022) for the EA task and
analyze the entity embeddings it produced.

We found that when the embedding represen-
tation of an entity is not well-distinguished from
other entities, i.e., when the embedding distances
between multiple target entities and the source en-
tity are similar, SLMs often produce erroneous
alignment results. As shown in Figure 2, we ran-
domly select ten source entities and their top-10
candidate entities, where the red ones indicate that
the initial answer chosen by the SLM is incorrect,
while blue signifies that the initial answer chosen is
correct. It can be observed that when the first can-
didate (coordinate 0 on X-axis) is the correct align-
ment result, there is a significant difference in the
embedding distances (Euclidean distance (Daniels-
son, 1980)) between the entities. Conversely, when
the first candidate is incorrect, the embedding dis-
tances between entities exhibit minimal variation.

Therefore, we regard well-distinguished sam-
ples as positive samples while others as negative
samples. In the next subsection, we will select ap-
propriate positive and negative samples from the
validation set to train a Support Vector Machine
(SVM) (Hearst et al., 1998) for binary classification
(Menon and Williamson, 2018) of data samples in
the test set, and adjust the proportion of positive
and negative samples to achieve high recall and
high accuracy. It is worth noting that the selec-
tion of SVM is not mandatory, other classification
methods are equally applicable.

Figure 3: The positive and negative samples in the vali-
dation set.
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4.2 Sample segmentation

To select data samples suitable for processing by
LLMs, we first conduct a statistical analysis of the
positive and negative samples in the validation set.
We find that there is a significant disparity in the
proportion of positive and negative samples in the
validation set, as shown in the Figure 3. Among
the 1,500 data samples in the validation dataset, the
vast majority are positive samples. Therefore, if
all data are fed into SVM for machine learning, it
would lead to a low recall for negative samples, i.e.,
it will not effectively segment data poorly handled
by SLMs. Hence, we screen out data from the
validation set with more distinct distance features
to serve as training data for SVM. We also adjust
the ratio of positive to negative samples to achieve
higher precision and recall.

Specially, when selecting the training set for
SVM, we first obtain the embedding representa-
tions of entities in the validation set. Then, we
compute the embedding distances between entities
and arrange the distance matrix in ascending order.
We select top-k distances (k is a hyperparameter
and will be detailed in 5.3.1). Next, we select posi-
tive and negative samples based on the difference
between the rank 1 and rank 2 distances. If the
difference is larger than a hyperparameter α, it is
selected as a positive sample; if it is smaller than a
hyperparameter β, it is selected as a negative sam-
ple. However, since the number of positive samples
in the validation set is much larger than that of neg-
ative samples, we select all negative samples, while
the number of positive samples is determined by
a hyperparameter θ. By adjusting θ, we aim to
achieve higher accuracy and recall rates. The detail
is illustrated in Algorithm 1.

We employ trained SVM to segment the test
set. To investigate the effect of different candidate
set sizes on LLMs, for each entity, we conduct
experiments with candidate set size of 5, 10, and
20, respectively. To maintain consistency in our
framework, when processing a set of five candidate
entities with LLMs, the data segmentation stage
selects the same five candidate entities as feature
inputs. In these experiments, labels of 0 are consid-
ered as negative samples, indicating samples (hard
samples) poorly handled by SLMs that needs to
be processed by LLMs. On the other hand, labels
of 1 are regarded as positive samples for SLMs,
representing samples (simple samples) effectively
processed by SLMs. Detailed experimental data

Algorithm 1 SVM Training Set Selection

Input: Validation set embeddings: emb1, emb2,
hyperparameters: k, α, β, θ

Output: Positive and Negative training samples:
P , N

1: Calculate the embedding distances between all
the entities in validation set: Dmatrix.

2: Select the top k distances: Topk(Dmatrix).
3: Let Drank1 and Drank2 represent the rank 1

and rank 2 distances, respectively.
4: Create sets P (for positive samples) and N (for

negative samples).
5: for dis in topkDmatrix do
6: if Drank2 −Drank1 > α then
7: add the corresponding sample to P
8: if arity(P ) == θ then
9: break

10: end if
11: end if
12: if Drank2 −Drank1 < β then
13: add the corresponding sample to N
14: end if
15: end for

can be found in Table 9, 10, 11 in Appendix A.

4.3 Zero-shot prompt
SLMs utilize relation, neighbor, and attribute in-
formation in KGs. For samples that SLMs do not
handle well, we refrain from feeding these informa-
tion into LLMs and instead rely on LLMs’ inherent
background knowledge for entity alignment. As
LLMs are generative interactive models, we guide
LLMs to provide expected answers by including
constraints in the prompt, as shown in Table 1. For
the form of the prompt, we adhere to the examples
provided in the official documentation of Llama2.

When interacting with LLMs, we employ a zero-
shot prompt, which means we do not provide any
demonstrations (Ma et al., 2023). This strategy
is chosen for two main reasons: firstly, it notably
reduces the length of the prompt, thereby boost-
ing LLMs’ respond speed; secondly, it enables us
to assess the influence of the inherent background
knowledge of LLMs on the EA task. Consequently,
we solely include the entity names in the prompt.
Additionally, we conduct comparative experiments
regarding the presence or absence of structural in-
formation of entities in the prompt. The details of
these experiments can be found in Appendix B. The

2https://github.com/meta-llama/llama3
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Entity Alignment Prompt
"role": "system", "content": "Answer me begin with
’The option is:’."
"role": "user", "content": "Choose the option
that is most similar to {ent1}
from the following options:
A:{ent2_dic[0]}, B:{ent2_dic[1]}, C:{ent2_dic[2]},
D:{ent2_dic[3]}, E:{ent2_dic[4]}, F:{ent2_dic[5]},
G:{ent2_dic[6]}, H:{ent2_dic[7]}, I:{ent2_dic[8]},
J:{ent2_dic[9]}".

Table 1: Prompt for entity alignment. Where {ent1} is
the entity from the source KG G1, and {ent2_dic[0-9]}
are candidate entities from the target KG G2.

Datasets Entities Rel. Rel.Triples Attr. Attr.Triples
DBP15K

ZH-EN
ZH 19388 1701 70414 7780 379684
EN 19572 1323 95142 6933 567755

JA-EN
JA 19814 1299 77241 5681 354619
EN 19780 1153 93484 5850 497230

FR-EN
FR 19661 903 105998 4431 528665
EN 19993 1208 115722 6161 576543

SRPRS

EN-DE
EN 15000 222 38363 275 62715
DE 15000 120 37377 185 142506

EN-FR
EN 15000 221 36508 274 70750
FR 15000 177 33532 393 56344

Table 2: Details of the datasets. Rel., Rel.Triples, Attr.,
and Attr.Triples represent relations, relation triples, at-
tributes, and attribute triples, respectively.

experimental results indicate that, both in terms of
performance and efficiency, omitting structural in-
formation from prompts proves to be the optimal
choice.

5 Experiment

5.1 Datasets

We perform experiments on two popular cross-
lingual benchmarks: DBP15K (Sun et al., 2017)
and SRPRS (Guo et al., 2019). Table 2 presents the
dataset statistics. DBP15K comprises three cross-
language entity alignment datasets sourced from
DBpedia: Chinese-English (ZH-EN), Japanese-
English (JA-EN), and French-English (FR-EN).
SRPRS, on the other hand, serves as a widely
utilized sparse benchmark (containing fewer rela-
tions) for entity alignment. It includes two multilin-
gual datasets also sourced from DBpedia, English-
German (EN-DE) and English-French (EN-FR).
Each dataset contains 15,000 aligned entity pairs.

5.2 Baselines

Based on the variances in the embedding mod-
ules, methods are categorized into three groups:
Translation-based methods, GNN-based methods,
and BERT-based methods. We have chosen 11
SOTA cross-lingual EA methods that encompass
diverse embedding modules. Translation-based
methods: MTransE (Chen et al., 2017), KECG (Li
et al., 2019), BootEA (Sun et al., 2018), JAPE (Sun
et al., 2017). GNN-based methods: GCN-Align
(Wang et al., 2018), MuGNN (Cao et al., 2019),
RDGCN (Wu et al., 2019a), HGCN (Wu et al.,
2019b), CEA (Zeng et al., 2020). BERT-based
methods: BERT-INT (Tang et al., 2020), SDEA
(Zhong et al., 2022). Similar to SDEA, in BERT-
INT, we substitute entity descriptions with entity
names as not all benchmark datasets provide entity
descriptions.

5.3 Experimental Settings

5.3.1 Implement details
For each dataset, we divide the aligned entity pairs
into training, validation, and test sets with a ratio of
2:1:7. During the training phase of the SVM model
using the validation set, we conduct experiments by
varying the parameter k with values 5, 10, and 20,
while keeping the parameters α and β constant at
α = 10 and β = 10 (except for the FR-EN setting
where β = 20).

For the selection of LLMs, we opt for the GPT-
3.5 API and Llama (Touvron et al., 2023), the latter
of which has open-source code available. We de-
ploy Llama2-7b-chat and Llama3-8b-Instruct for
experimental testing. To ensure consistency in eval-
uation, models used in the experiments follow the
specifications provided in their original publica-
tions. Moreover, the temperature for both GPT and
Llama is set to 0.

5.3.2 Evaluation Metric
To facilitate comparison with previous methods,
we adopt ranking-based evaluation metrics for
entity alignment, specifically Hits@d and MRR.
Hits@d measures the proportion of correct align-
ments among the top d matches (d = 1, 10). How-
ever, in the processing of entity alignment data
by LLMs, our prompt constrains them to generate
solely a singular response, thereby resulting in the
acquisition of Hits@1 scores exclusively. Higher
scores in Hits@1 indicate better performance in the
EA task.
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Methods
ZH-EN JA-EN FR-EN

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR
MTransE 30.8 61.4 0.364 27.9 57.5 0.349 24.4 55.6 0.335

JAPE 41.2 74.5 0.490 36.3 68.5 0.476 32.4 66.7 0.430
KECG 47.8 83.5 0.598 49.0 84.4 0.610 48.6 85.1 0.610

BootEA 62.9 84.8 0.703 62.2 85.4 0.701 65.3 87.4 0.731
GCN-Align 41.3 74.4 0.549 39.9 74.5 0.546 37.3 74.5 0.532

MuGNN 49.4 84.4 0.611 50.1 85.7 0.621 49.5 87.0 0.621
RDGCN 70.8 84.6 0.746 76.7 89.5 0.812 88.6 95.7 0.911
HGCN 72.0 85.7 0.768 76.6 89.7 0.813 89.2 96.1 0.917
CEA 78.7 - - 86.3 - - 97.2 - -

BERT-INT 81.4 83.7 0.82 80.6 83.5 0.82 98.7 99.2 0.999
SDEA 87.0 96.6 0.91 84.8 95.2 0.89 96.9 99.5 0.98

Seg-Align 95.3 - - 90.7 - - 98.7 - -

Table 3: Entity alignment results on DBP15K

Methods
EN-DE EN-FR

H@1 H@10 MRR H@1 H@10 MRR
MTransE 10.7 61.4 0.364 27.9 57.5 0.349

KECG 47.8 83.5 0.598 49.0 84.4 0.610
BootEA 62.9 84.8 0.703 62.2 85.4 0.701

JAPE 41.2 74.5 0.490 36.3 68.5 0.476
MuGNN 49.4 84.4 0.611 50.1 85.7 0.621

GCN-Align 41.3 74.4 0.549 39.9 74.5 0.546
RDGCN 70.8 84.6 0.746 76.7 89.5 0.812
HGCN 72.0 85.7 0.768 76.6 89.7 0.813
CEA 78.7 - - 86.3 - -

BERT-INT 98.6 98.8 0.99 97.1 97.5 0.97
SDEA 96.8 98.9 0.98 96.6 98.6 0.97

Seg-Align 98.8 - - 98.2 - -

Table 4: Entity alignment results on SRPRS

5.4 Experimental Results

5.4.1 Main Results

The experimental results of our proposed Seg-
Align compare to other methods on two cross-
lingual datasets DBP15K and SRPRS are shown in
Table 3 and Table 4. In the primary comparative
experiments, we set the number of candidates in the
candidate set to 10. Observing the improvements
over the original SLM (SDEA), our method demon-
strate increases in Hits@1 metrics on the ZH-EN,
JA-EN, FR-EN datasets by 9.5, 5.9, and 1.8, re-
spectively. On the EN-DE and EN-FR datasets,
Hits@1 metrics increase by 2.0 and 1.6, respec-
tively. This underscores the effectiveness of our
sample segmentation algorithm in selecting suit-
able samples for processing by LLMs, particularly
in cases where SLMs struggled.

The latest models ChatEA and LLMEA both
utilize LLMs, while ChatEA focuses on single-
language entity alignment and similar-language
cross-language tests but lacks publicly available
code and data, limiting reproducibility. LLMEA
is evaluated only on the DBP15K dataset and also

Methods
ZH-EN JA-EN FR-EN
H@1 H@1 H@1

LLMEA 89.8 91.1 95.7
Seg-Align 95.3 90.7 98.7

Table 5: Results of LLM-based Entity alignment Meth-
ods on DBP15K.

lacks open-source code.

In table 5, Seg-Align outperforms LLMEA on
the ZH-EN and FR-EN language pairs in the
DBP15K dataset, although its performance on JA-
EN is slightly lower, Seg-Align’s LLM processes
far fewer entities. Compared to ChatEA, Seg-Align
processes fewer tokens and has much faster pro-
cessing times, achieving competitive performance
with markedly improved efficiency. Overall, Seg-
Align demonstrates superior performance and sig-
nificant advantages in computational efficiency and
scalability.

5.4.2 Ablation Results

We conduct ablation experiments to validate the
effectiveness of different LLMs and the segmenta-
tion algorithm (Seg). As shown in table 6, we se-
lect GPT-3.5 and Llama3-8b-Instruct as the LLMs
to verify the effectiveness of the segmentation al-
gorithm (Seg) and the LLM. From the table, it
is evident that the combination of GPT-3.5 and
the segmentation algorithm yields the best perfor-
mance. When using the segmentation algorithm,
even though the LLM only processes a small por-
tion of the data, it achieves **better results** than
using the LLM to process all the data. Therefore,
we not only significantly improve model efficiency
but also reduce unnecessary computational over-
head.
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settings ZH-EN JA-EN FR-EN
H@1 H@1 H@1

Seg-Align (-w/ GPT-3.5, -W/ Seg) 95.3 90.7 98.7
-w/ Llama3-8b-Instruct, -w/ Seg 93.7 89.8 97.3

-w/ GPT-3.5, -w/o Seg 93.2 90.6 98.6
-w/ Llama3-8b-Instruct, -w/o Seg 83.9 83.9 81.0

-w/o LLM, -w/o Seg 87.0 84.8 96.9

Table 6: The ablation results with a candidate set size
of 10 on DBP15K. ’w/o’ means without and ’w’ means
with.

5.4.3 Sample Segmentation Results
Ranking-based evaluation metrics assume a 1-1
correspondence, making it impossible to evalu-
ate cases where corresponding entities cannot be
found. Therefore, to further validate the effec-
tiveness of the segmentation algorithm, we follow
Paris’s (Leone et al., 2022) approach and proceed
with a method validated and evaluated based on
standard classification-based metrics, namely pre-
cision, recall, and F1-score, to evaluate the experi-
mental performance of LLMs and SLMs on hard
samples and simple samples.

Figure 4: Comparison of experimental results of LLMs
and SLM on hard samples (left) and simple samples
(right). Candidate set size: 10, X-axis represents differ-
ent methods, Y-axis represents precision.

As shown in Figure 4, we compare the precision
of different methods on hard samples and simple
samples. From the experimental results, we ob-
serve that overall, GPT-3.5 outperforms Llama2-
7B-Chat and Llama3-8B-Instruct. This can be at-
tributed to GPT having a larger and more diverse
training dataset, covering a wider range of lan-
guages, thus performing better in cross-lingual EA
task. Additionally, despite selecting the lightest ver-
sions of Llama2 and Llama3, the performance of
Llama3-8b-Instruct far exceeds that of Llama2-7B-
Chat. This indicates a linear relationship between
LLMs’ performance in cross-lingual EA task and
LLMs’ own capabilities.

Comparing LLMs’ and a SLM’s performance
on hard and simple samples allows us to demon-
strate the effectiveness of our segmentation algo-
rithm. First, analyzing the SLM’s performance on

Figure 5: The impact of different candidate set sizes on
GPT-3.5 (top) and Llama3-8b-Instruct (bottom). X-axis
represents different candidate set sizes (5, 10, 20), Y-
axis represents precision.

both hard and simple samples reveals that while
the SLM achieves exceptionally high accuracy on
simple samples (around 98-99%), its performance
declines significantly on hard samples (around 40-
50%). Second, LLMs demonstrate a notable ad-
vantage over the SLM on hard samples, yet their
performance on simple samples is comparatively
lower than that of the SLM. This further demon-
strates that our segmentation algorithm effectively
selects suitable data samples for LLM processing,
and the combination of a LLM and a SLM yields
better entity alignment results.

Additionally, to test the generalizability of the
segmentation algorithm, we conduct experiments
with another SLM, BERT-INT. In these experi-
ments, we employ fine-tuned BERT embeddings
for distance feature learning. The experimental re-
sults (which can be found in Table 15 in Appendix
B) similarly demonstrate the effectiveness of our
segmentation algorithm.

When comparing experimental results across
different languages, we can observe that the per-
formance gap between GPT-3.5 and Llama3-8b-
Instruct in various languages is not significant.
However, Llama2-7b-Chat performs notably poorly
in Chinese. This is due to the limited amount of
Chinese data in the Llama2 training dataset (Tou-
vron et al., 2023). In contrast, Llama3-8b-Instruct
shows a significant improvement. This demon-
strates that as LLMs advance, their proficiency in
handling cross-lingual EA task also improves.

The detailed results are summarized in Table 16
and Table 17 in Appendix C.
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Models ZH-EN JA-EN FR-EN EN-DE EN-FR
Llama2-7b-chat (hard) 0.77 0.76 0.62 0.73 0.75

Llama2-7b-chat (simple) 0.76 0.73 0.65 0.65 0.67
Llama3-8b-Instruct (hard) 0.24 0.25 0.22 0.24 0.25

Llama3-8b-Instruct (simple) 0.22 0.23 0.19 0.19 0.19

Table 7: The average time (seconds) it takes to process each entity. (Utilize Llama2-7b-chat and Llama3-8b-Instruct
with 10 candidate entities.)

Models ZH-EN JA-EN FR-EN EN-DE EN-FR
GPT-3.5 158 162 159 161 161

Llama2-7b-chat 186 191 185 185 185
Llama3-8b-Instruct 154 158 157 159 159

Table 8: The average tokens it takes to process each
entity. (Utilize GPT-3.5, Llama2-7b-chat and Llama3-
8b-Instruct with 10 candidate entities.)

5.4.4 The impact of candidate set size on
results

To test the impact of candidate set size on LLMs’
performance, we conduct experiments with GPT-
3.5 and Llama-8b-Instruct using candidate set sizes
of 5, 10, and 20. The results are also evaluated us-
ing standard classification-based metrics: precision,
recall, and F1-score.

As illustrated in Figure 5, we compare the pre-
cision of GPT-3.5 and Llama-8b-Instruct across
different candidate set sizes. For GPT-3.5, the high-
est precision for most datasets, whether for hard or
simple samples, is achieved with a candidate set
size of 10. We analyze this outcome and find that
if the candidate set is too small, it likely does not
contain the correct answer; if it is too large, it intro-
duces more distractions for GPT, making it harder
to select the correct answer. In contrast, for Llama3-
8b-Instruct, precision generally decreases as the
candidate set size increases, especially for simple
samples. This indicates that Llama-8b-Instruct’s
reasoning ability is inferior to GPT-3.5, struggling
to distinguish between entities as the candidate set
grows.

From the experimental results, we can see that
neither experimental cost nor effectiveness bene-
fits from larger candidate sets. Thus, selecting an
appropriate candidate set size is crucial. Detailed
experimental results are provided in Table 18 and
Table 19 of Appendix D.

5.4.5 Efficiency analysis
In addition to achieving good performance, we also
measure the average time each LLM takes to pro-
cess each entity. Since GPT-3.5 is accessed via an
API and its source code is not available, we only

record the processing times for Llama-7b-Chat and
Llama-8b-Instruct. These results are presented in
Table 7.

From the timing statistics, it is clear that our
model is highly efficient, with very short process-
ing times for individual entities. Moreover, we ob-
serve that Llama3 not only improves performance
compared to Llama2 but also significantly reduces
processing time, with an average speedup of 3.5
times.

Most importantly, we find that the average pro-
cessing time for simple samples is generally shorter
than that for hard samples. This indicates that
LLMs require more reasoning time for hard sam-
ples, further demonstrating the effectiveness of our
segmentation algorithm.

Moreover, we count the token lengths of differ-
ent LLMs on various datasets (candidate set size:
10). From table 8, it can be observed that the aver-
age token length in Seg-Align across different large
language models (LLMs) ranges between 154 and
191. Seg-Align demonstrates exceptionally high
efficiency in both average token length and average
processing time.

Additionally, we measure the processing times
for different candidate set sizes using Llama-8b-
Instruct, with detailed results provided in Table 20
of Appendix E. We observe that as the candidate set
grows, processing time increases linearly, ensuring
efficiency with large-scale data.

6 Conclusion

In this paper, we focus on leveraging LLMs to im-
prove the performance of cross-lingual entity align-
ment. To better apply LLMs to the EA task, our
Seg-Align framework extends SLMs by introduc-
ing distance feature extraction, sample segmenta-
tion algorithm, and designing prompts tailored for
the EA task. Through experiments on two widely-
used cross-lingual datasets, we empirically show
that our sample segmentation algorithm effectively
identifies data for LLM or SLM processing, vali-
dating the framework’s effectiveness.
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Limitations

Although we have demonstrated that Seg-Align en-
hances the performance of cross-lingual EA task
and validated the effectiveness of our segmentation
algorithm in identifying data suitable for process-
ing by LLMs and SLMs, thereby laying the ground-
work for the integration of LLMs and SLMs, there
are still some limitations to our approach.

Firstly, LLMs are often treated as black boxes,
especially when utilized through APIs for down-
stream tasks, limiting autonomous control over
their outputs. Consequently, modifications to the
internal architecture or algorithms of LLMs can
significantly influence experimental outcomes and
results.

Secondly, despite our efforts to constrain the
output of LLMs, variations in the output formats
persist. Detailed cases are provided in Appendix
F Case study. These variations can influence the
interpretation of the experimental results, thereby
affecting the overall outcomes of the experiments.

Thirdly, in this study, to control costs and im-
prove efficiency, our prompts are kept very short,
relying solely on the background knowledge inher-
ent in LLMs without fully utilizing its reasoning
capabilities. In our future work, we plan to fur-
ther decompose the EA task, leveraging the LLMs’
reasoning abilities to derive the final answer step-
by-step.

Finally, our framework relies on SLMs for can-
didate selection, which depends on the accuracy
of SLMs. Therefore, in our future work, we will
explore more accurate and independent methods
for candidate selection.
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A Sample Segmentation with different
candidate set size

During the distance feature extraction and sample
segmentation stages, we conducted experiments
with candidate set sizes of 5, 10, and 20. As shown
in the Table 9, 10, 11, the differences in candi-
date set sizes result in variations in distance feature
extraction, which in turn affects the selection of
the SVM training set, leading to different sample
segmentation outcomes.

B Add structural information to prompt

To test the impact of incorporating the structural
information of entities into the prompt on the ex-
perimental results, we conduct comparative experi-
ments using Llama3-8b-Instruct on the hard sam-
ples in the DBP15K dataset.

B.1 Prompt
To include the structural information of entities in
the prompt, it is first necessary to convert the graph
structure, consisting of the central entity and its
neighbors, into a textual form. For each entity, we
identify all its related triples and then concatenate
these triples in the order of head entity, relation,
and tail entity. This process yields the structural
information of the entity. Due to the presence of nu-
merous neighboring entities, the resulting structural

Datasets Label TN P R SN
DBP15K

ZH-EN
0 80 44 91 2579
1 200 99 84 7921

JA-EN
0 150 61 92 2881
1 800 98 87 7619

FR-EN
0 12 32 83 1047
1 300 99 93 9453
SRPRS

EN-DE
0 11 49 80 387
1 620 100 98 10113

EN-FR
0 26 49 79 488
1 200 99 98 10012

Table 9: 5 candidate entities. "TN" represents the num-
ber of samples in the SVM training set, "P" represents
precision, "R" represents recall, and "SN" represents the
sample number on the test set.

Datasets Label TN P R SN
DBP15K

ZH-EN
0 80 45 91 2536
1 200 99 85 7964

JA-EN
0 150 60 92 2918
1 800 98 86 7582

FR-EN
0 12 32 85 1059
1 300 99 93 9441
SRPRS

EN-DE
0 11 50 80 380
1 620 100 98 10120

EN-FR
0 26 50 79 484
1 200 99 98 10016

Table 10: 10 candidate entities. "TN" represents the
number of samples in the SVM training set, "P" repre-
sents precision, "R" represents recall, and "SN" repre-
sents the sample number on the test set.

information text is typically very lengthy. Conse-
quently, it is not feasible to include all ten candidate
entities and their structural information in a single
prompt. Therefore, after incorporating the struc-
tural information, it is necessary to compare the
source entity with each candidate entity individ-
ually. The prompts used in the experiments are
shown in Table 12 and 13.

B.2 Results

As shown in Table 14, we not only test the per-
formance of prompts with and without structural
information but also record the processing time of
Llama3-8b-Instruct. From the results, we can see
that incorporating structural information into the
prompts achieves 100% accuracy, but the recall rate
is very low. We analyze that this is because, with
the addition of structural information, Llama be-
comes stricter in determining whether two entities
are the same. It only considers entities as identical
when their structural information is highly simi-
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Datasets Label TN P R SN
DBP15K

ZH-EN
0 80 45 91 2538
1 200 99 85 7962

JA-EN
0 150 59 93 2990
1 800 98 86 7510

FR-EN
0 12 41 62 617
1 300 98 96 9883
SRPRS

EN-DE
0 11 47 81 409
1 620 100 98 10091

EN-FR
0 26 41 81 603
1 200 99 97 9897

Table 11: 20 candidate entities. "TN" represents the
number of samples in the SVM training set, "P" repre-
sents precision, "R" represents recall, and "SN" repre-
sents the sample number on the test set.

lar. Therefore, for more heterogeneous entity pairs
(with different neighboring entities), Llama is less
likely to identify them as the same entity. In con-
trast, when structural information is not included,
the accuracy is slightly lower, but the recall rate
improves significantly. This indicates that without
structural information, Llama faces fewer distrac-
tions when handling heterogeneous entity pairs,
and its inherent background knowledge can better
address the task, as the examples in Table 12 and
Table 13.

Additionally, we observe that adding structural
information significantly increases Llama’s pro-
cessing time. When only processing entity names,
the processing times for different languages are
the same. However, once structural information is
added, the processing time correlates with the num-
ber of triples in the dataset (the number of triples
for different datasets is shown in Table 2). The
more triples there are, the longer the processing
time. Finally, comparing Table 14 and Table 16,
20 allows us to evaluate the performance and effi-
ciency of different prompts. When comparing the
source entity with each candidate entity individu-
ally, the accuracy is high, but the recall is low, and
the processing time is extended. Therefore, from
both performance and efficiency perspectives, hav-
ing Llama select the answer from a set of candidate
entities is more suitable for the entity alignment
task.

C Sample Segmentation Results

Table 16 and Table 17 present detailed experimen-
tal results of LLMs and SLM (SDEA) on hard and
simple samples of DBP15K and SRPRS datasets,
respectively. Table 15 present the sample segmen-

tation results with another SLM (BERT-INT).

D Different candidate set size

Table 18 and Table 19 present the experimental re-
sults on the DBP15K and SRPRS datasets, respec-
tively, using standard classification-based metrics:
precision, recall, and F1-score.

E Efficiency of different candidate set size

Based on Llama3-8b-Instruct, we measure the pro-
cessing times for different candidate set sizes. As
shown in Table 20, and as mentioned in Section
5.4.5, the processing time for most hard samples is
significantly shorter than for simple samples. This
indicates that hard samples require more reasoning
time for LLMs, further proving that our segmenta-
tion algorithm effectively extracts more challeng-
ing entity alignment data. Additionally, we observe
that as the candidate set size increases, the process-
ing time does not grow exponentially, ensuring the
efficiency of handling large-scale data.

F Case study

In the process of interacting with LLMs, most of
the responses are given in the multiple-choice for-
mat specified by the prompt. However, there were
still some variations in the output. These variations
can be categorized into three main types: (1) The
output did not follow the specified format and pro-
vided an answer without any option. As shown in
Table 21. (2) The candidate set do not contain the
correct answer. As shown in Table 22. (3) The
entity included sensitive terms from LLMs. As
shown in Table 23.
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Entity Alignment Prompt
"role": "system", "content": "Answer me ’Yes’ or ’No’."
"role": "user", "content": "This is source entity:The_Heat_(album_de_Toni_Braxton),
and it’s neibours: [’The_Heat_(album_de_Toni_Braxton) genre RnB_contemporain’,
’The_Heat_(album_de_Toni_Braxton) writer Jazze_Pha’,
’The_Heat_(album_de_Toni_Braxton) writer Diane_Warren’,
’The_Heat_(album_de_Toni_Braxton) writer Kenneth_Edmonds’,
’The_Heat_(album_de_Toni_Braxton) writer Toni_Braxton’,
’The_Heat_(album_de_Toni_Braxton) extra Jazze_Pha’,
’The_Heat_(album_de_Toni_Braxton) label LaFace_Records’,
’The_Heat_(album_de_Toni_Braxton) albumPrécédent Secrets_(album_de_Toni_Braxton)’,
’The_Heat_(album_de_Toni_Braxton) extra Kenneth_Edmonds’,
’The_Heat_(album_de_Toni_Braxton) albumSuivant Snowflakes’,
’The_Heat_(album_de_Toni_Braxton) extra Rodney_Jerkins’,
’The_Heat_(album_de_Toni_Braxton) artiste Toni_Braxton’,
’Secrets_(album_de_Toni_Braxton) albumSuivant The_Heat_(album_de_Toni_Braxton)’,
’Snowflakes albumPrécédent The_Heat_(album_de_Toni_Braxton)’].
And this is the target entity: The_Heat_(Toni_Braxton_album),
and it’s neibours: [’The_Heat_(Toni_Braxton_album) artist Toni_Braxton’,
’The_Heat_(Toni_Braxton_album) label LaFace_Records’,
’The_Heat_(Toni_Braxton_album) writer Diane_Warren’].
Are the two entities the same entity?"
Output: No.

Table 12: Prompt for entity alignment with structural information and the output. The example is from dataset
DBP15KFR−EN .

Entity Alignment Prompt
"role": "system", "content": "Answer me ’Yes’ or ’No’."
"role": "user", "content": "This is source entity: The_Heat_(album_de_Toni_Braxton).
And this is the target entity: The_Heat_(Toni_Braxton_album). Are the two entities the same entity?"
Output: Yes.

Table 13: Prompt for entity alignment without structural information and the output. The example is from dataset
DBP15KFR−EN .

Methods
ZH-EN JA-EN FR-EN

P R F1 T P R F1 T P R F1 T
-w/ Structure 100 45.78 62.81 0.90 100 40.01 57.24 0.96 100 22.66 36.95 1.06
-w/o Structure 99.57 73.50 84.57 0.48 99.67 62.37 76.73 0.48 100 78.19 87.76 0.48

Table 14: The experimental results of Llama3-8b-Instruct on hard samples in the DBP15K dataset (candidate set
size: 10). P: precision, R: recall, F1: F1-score, T: time. (The average time (seconds) it takes to process each entity.)

Methods
ZH-EN JA-EN FR-EN

P R F1 P R F1 P R F1

Llama3-8b-Instruct(hard) 63.48 63.07 63.27 73.68 73.51 73.60 73.37 73.31 73.34
SLM(hard) 55.76 55.76 55.76 64.40 64.40 64.40 68.89 68.89 68.89

Llama3-8b-Instruct(simple) 71.35 71.30 71.32 75.04 74.95 75.00 68.08 68.07 68.07
SLM(simple) 97.74 97.74 97.74 98.75 98.75 98.75 99.57 99.57 99.57

Table 15: The experimental results of LLM and SLM (BERT-INT) on hard samples and simple samples in the
DBP15K dataset (candidate set size: 10). P: precision, R: recall, F1: F1-score.
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Methods
ZH-EN JA-EN FR-EN

P R F1 P R F1 P R F1

GPT-3.5(hard) 85.97 85.29 85.63 72.60 72.1 72.35 93.3 93.3 93.3
Llama2-7b-chat(hard) 51.21 50.91 50.06 52.48 52.12 52.30 77.58 75.83 76.70

Llama3-8b-Instruct(hard) 79.98 78.75 79.36 71.22 68.68 69.92 79.43 79.13 79.28
SLM(hard) 55.13 55.13 55.13 40.06 40.06 40.06 67.52 67.52 67.52

GPT-3.5(simple) 98.05 98.00 98.03 98.76 98.71 98.73 99.25 99.25 99.25
Llama2-7b-chat(simple) 44.23 43.90 44.06 61.87 61.74 61.80 77.35 76.69 77.02

Llama3-8b-Instruct(simple) 85.64 85.50 85.57 89.94 89.78 89.80 81.28 81.25 81.26
SLM(simple) 98.51 98.51 98.51 97.92 97.92 97.92 99.34 99.34 99.34

Table 16: The experimental results of LLMs and SLM (SDEA) on hard samples and simple samples in the DBP15K
dataset (candidate set size: 10). P: precision, R: recall, F1: F1-score.

Methods
EN-DE EN-FR

P R F1 P R F1

GPT-3.5(hard) 80.53 80.53 80.53 79.09 78.93 79.01
Llama2-7b-chat(hard) 61.73 60.26 60.99 65.20 64.26 64.72

Llama3-8b-Instruct(hard) 71.54 69.47 70.49 67.65 66.12 66.88
SLM(hard) 50.26 50.26 50.26 48.14 48.14 48.14

GPT-3.5(simple) 98.40 98.40 98.40 98.59 98.59 98.59
Llama2-7b-chat(simple) 63.28 62.97 63.13 70.24 69.88 70.06

Llama3-8b-Instruct(simple) 83.87 83.38 83.62 78.42 78.31 78.37
SLM(simple) 99.53 99.53 99.53 99.44 99.44 99.44

Table 17: The experimental results of LLMs and SLM (SDEA) on hard samples and simple samples in the SRPRS
dataset (candidate set size: 10). P: precision, R: recall, F1: F1-score.

Candidate set size Methods
ZH-EN JA-EN FR-EN

P R F1 P R F1 P R F1

5

GPT-3.5(hard) 80.32 80.22 80.27 64.32 64.32 64.32 90.74 90.74 90.74
Llama3-8b-Instruct(hard) 79.96 78.60 79.27 66.22 63.76 64.97 86.11 85.29 85.70

SLM(hard) 55.60 55.60 55.60 39.43 39.43 39.43 67.62 67.62 67.62
GPT-3.5(simple) 97.46 97.46 97.46 98.50 98.50 98.50 85.82 85.82 85.82

Llama3-8b-Instruct(simple) 94.48 94.41 94.44 96.50 96.36 96.43 92.19 92.17 92.18
SLM(simple) 98.59 98.59 98.59 97.87 97.87 97.87 99.29 99.29 99.29

10

GPT-3.5(hard) 85.97 85.29 85.63 72.60 72.1 72.35 93.3 93.3 93.3
Llama3-8b-Instruct(hard) 79.98 78.75 79.36 71.22 68.68 69.92 79.43 79.13 79.28

SLM(hard) 55.13 55.13 55.13 40.06 40.06 40.06 67.52 67.52 67.52
GPT-3.5(simple) 98.05 98.00 98.03 98.76 98.71 98.73 99.25 99.25 99.25

Llama3-8b-Instruct(simple) 85.64 85.50 85.57 89.94 89.78 89.80 81.28 81.25 81.26
SLM(simple) 98.51 98.51 98.51 97.92 97.92 97.92 99.34 99.34 99.34

20

GPT-3.5(hard) 87.95 87.16 87.55 79.09 77.79 78.44 89.76 89.47 89.61
Llama3-8b-Instruct(hard) 72.50 72.42 72.46 68.05 68.03 68.04 65.91 65.80 65.86

SLM(hard) 54.93 54.93 54.93 40.84 40.84 40.84 59.32 59.32 59.32
GPT-3.5(simple) 97.80 97.59 97.69 98.67 98.54 98.60 98.57 98.54 98.56

Llama3-8b-Instruct(simple) 68.74 68.69 68.71 74.76 74.73 74.74 63.73 63.71 63.72
SLM(simple) 98.58 98.58 98.58 98.16 98.16 98.16 98.43 98.43 98.43

Table 18: The experimental results of LLM and SLM (SDEA) on hard samples and simple samples in the DBP15K
dataset. P: precision, R: recall, F1: F1-score.
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Candidate set size Methods
EN-DE EN-FR

P R F1 P R F1

5

GPT-3.5(hard) 60.72 60.72 60.72 62.09 62.09 62.09
Llama3-8b-Instruct(hard) 77.19 75.19 76.18 70.82 68.65 69.72

SLM(hard) 50.90 50.90 50.90 50.61 50.61 50.61
GPT-3.5(simple) 74.42 74.42 74.42 79.33 79.33 79.33

Llama3-8b-Instruct(simple) 92.98 92.64 92.81 88.84 88.75 88.80
SLM(simple) 99.53 99.53 99.53 99.34 99.34 99.34

10

GPT-3.5(hard) 80.53 80.53 80.53 79.09 78.93 79.01
Llama3-8b-Instruct(hard) 71.54 69.47 70.49 67.65 66.12 66.88

SLM(hard) 50.26 50.26 50.26 48.14 48.14 48.14
GPT-3.5(simple) 98.40 98.40 98.40 98.59 98.59 98.59

Llama3-8b-Instruct(simple) 83.87 83.38 83.62 78.42 78.31 78.37
SLM(simple) 99.53 99.53 99.53 99.44 99.44 99.44

20

GPT-3.5(hard) 67.57 67.24 67.40 73.42 73.30 73.36
Llama3-8b-Instruct(hard) 66.50 66.50 66.50 65.34 65.34 65.34

SLM(hard) 53.30 53.30 53.30 58.54 58.54 58.54
GPT-3.5(simple) 71.87 71.83 71.85 80.49 80.40 80.44

Llama3-8b-Instruct(simple) 69.46 69.39 69.43 63.63 63.60 63.61
SLM(simple) 99.54 99.54 99.54 99.42 99.42 99.42

Table 19: The experimental results of LLM and SLM (SDEA) on hard samples and simple samples in the SRPRS
dataset. P: precision, R: recall, F1: F1-score.

Candidate set size Models ZH-EN JA-EN FR-EN EN-DE EN-FR

5
Llama3-8b-Instruct(hard) 0.23 0.24 0.20 0.21 0.22

Llama3-8b-Instruct(simple) 0.21 0.21 0.16 0.15 0.15

10
Llama3-8b-Instruct(hard) 0.24 0.25 0.22 0.24 0.25

Llama3-8b-Instruct(simple) 0.22 0.23 0.19 0.19 0.19

20
Llama3-8b-Instruct(hard) 0.29 0.29 0.29 0.28 0.28

Llama3-8b-Instruct(simple) 0.28 0.30 0.25 0.23 0.24

Table 20: The average time (seconds) it takes to process each entity.

Output of LLM.

The option is: Écully. The option is: D_Never_Let_Me_Down_Again
The option is: DIC (Diffusion, Information, Communication)

Table 21: Case1: The output did not follow the specified format and provided an answer without the options.

Output of LLM.

I apologize, but I cannot provide an answer to your question as the entity "Tom Ford (chanson)" does
not exist in any of the options provided. "Tom Ford" is a well-known fashion designer,
but there is no information available about him creating a song or being a political figure.
Therefore, the option that is most similar to "Tom Ford (chanson)" is
"Fiction Records" since it is a record label that does not exist.

Table 22: Case2: The candidate set do not contain the correct answer.
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Output of LLM.

I apologize, but I cannot provide answers to questions that promote or glorify harmful or offensive
content, including rape. The option "Rape Me" is not a valid or appropriate choice, and I cannot
provide information that may be harmful or offensive to any individual or group.’, ’It is important
to recognize that rape is a serious crime that can cause significant harm to victims, and it is never
acceptable or justifiable. It is essential to always prioritize respect, consent, and the well-being of
all individuals involved in any sexual activity.’, ’If you have any other questions or concerns,
please feel free to ask.

Table 23: Case3: The entity included sensitive terms from the LLM.
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