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Abstract

Natural language counterfactual generation
aims to minimally modify a given text such that
the modified text will be classified into a dif-
ferent class. The generated counterfactuals pro-
vide insight into the reasoning behind a model’s
predictions by highlighting which words signif-
icantly influence the outcomes. Additionally,
they can be used to detect model fairness issues
and augment the training data to enhance the
model’s robustness. A substantial amount of
research has been conducted to generate coun-
terfactuals for various NLP tasks, employing
different models and methodologies. With the
rapid growth of studies in this field, a system-
atic review is crucial to guide future researchers
and developers. To bridge this gap, this survey
provides a comprehensive overview of textual
counterfactual generation methods, particularly
those based on Large Language Models. We
propose a new taxonomy that systematically
categorizes the generation methods into four
groups and summarizes the metrics for evalu-
ating the generation quality. Finally, we dis-
cuss ongoing research challenges and outline
promising directions for future work.

1 Introduction

The recent advancements in Natural Language Pro-
cessing (NLP) are driven by a variety of Large
Language Models (LLMs), such as GPT-3 (175B)
(Brown et al., 2020), PaLM (540B) (Chowdhery
et al., 2023), and GPT-4 (1.7T) (Achiam et al.,
2023). These LLMs have demonstrated superior
performance on various downstream tasks. How-
ever, alongside the performance, there is a rising
concern about their occasionally undesired behav-
iors, like hallucinations in their responses (Ji et al.,
2023), and misalignment with human expectations
(Vafa et al., 2024). These phenomena coincide with
the long-standing issue of training deep learning
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models, which were known to be vulnerable to spu-
rious correlations with artifacts, shortcuts, and bi-
ases prevalent in real-world training data (Geirhos
et al., 2020; Hermann and Lampinen, 2020). Hence,
there is a growing demand for LLM explainability
to understand model decisions and enhance their
robustness, particularly in high-stakes applications.

Counterfactual generation has emerged as an ef-
fective way to probe and understand the reasoning
behind the prediction of a model by highlighting
which parts of the input influence the outcomes
(Wachter et al., 2017; Miller, 2019). It makes
minimal modifications to an original instance to
create counterfactual examples (CFEs) with differ-
ent predicted classes. CFEs can be used to detect
model fairness issues within minority groups (Kus-
ner et al., 2017; Russell et al., 2017), and enhance
the robustness and generalizability of the model by
augmenting the training dataset (Sen et al., 2021;
Wang and Culotta, 2021; Qiu et al., 2024).

In the field of NLP, early studies (Jung et al.,
2022; Robeer et al., 2021) were inspired by tradi-
tional CFE generators for tabular data. However,
due to the vast and discrete perturbation space of
each word, directly applying these techniques in
the NLP domain becomes less effective and inef-
ficient. Additionally, textual CFEs should adhere
to lexicon and grammar rules, and follow the lan-
guage context and logic (Sudhakar et al., 2019b;
Wu et al., 2021; Ross et al., 2021b). Subsequent
research has begun to utilize the controlled text gen-
eration model to either rewrite a given sentence for
the target label (Robeer et al., 2021; Madaan et al.,
2021) or replace influential words for the current
prediction with alternatives for the target prediction
(Ross et al., 2022; Zhu et al., 2023). Until recently,
the rise of LLMs has driven researchers to craft
sophisticated prompts to obtain CFEs on a one-off
basis (Chen et al., 2023; Sachdeva et al., 2024).

As research on textual CFE generation expands
rapidly, there is an urgent need for a systematic
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review specifically dedicated to this domain. How-
ever, existing surveys in counterfactual generation
primarily focus on tabular data (Verma et al., 2020;
Stepin et al., 2021; Karimi et al., 2022; Guidotti,
2022; Wang, 2023), and fail to offer comprehensive
guidelines for researchers and developers within
the NLP community.

The challenge of reviewing this area arises from
the following factors. Firstly, the generation meth-
ods are inherently tied to the task definitions;
different applications such as sentiment analysis
and question answering require tailored generation
strategies. Secondly, the formulation of the genera-
tion problem varies depending on the modification
strategies and language models chosen. Finally, to
fully comprehend and evaluate various algorithms,
a comprehensive and interdisciplinary understand-
ing that extends beyond NLP to include generative
modeling, causality, and AI explanation is essential.
This multidisciplinary requirement significantly en-
hances the complexity and challenge of conducting
an exhaustive systematic review.

In this survey, we review past research on nat-
ural language counterfactual generation and cate-
gorize these methods into four groups: (1) Manual
generation, where a human annotator is asked to
edit a limited number of words for a given text to
change its label (Kaushik et al., 2019); (2) Joint
learning-based generation involves training an end-
to-end model that jointly minimizes the desired
objectives using gradient descent (Robeer et al.,
2021; Yan et al., 2024); (3) Identify and then gen-
erate, a two-stage approach that pinpoints and then
substitutes words to alter the labels (Malmi et al.,
2020; Gilo and Markovitch, 2024; Martens and
Provost, 2014); and (4) LLMs prompting, which
directly create the counterfactuals via prompting
LLMs (Bhattacharjee et al., 2024; Gat et al., 2024;
Sachdeva et al., 2024). We also summarize the
qualitative and quantitative metrics used to eval-
uate the quality of the generated counterfactuals.
Finally, we discuss the remaining challenges in
this field and outline promising research directions,
particularly in the era of LLMs.

The rest of this paper is organized as follows:
Section 2 introduces the definition of CFEs and
practical considerations during generation. Section
3 presents our novel taxonomy and describes each
group. Section 4 summarizes the metrics used to
evaluate generation quality. Section 5 discusses on-
going challenges and promising research directions.
Finally, Section 6 concludes the paper.

2 Definition of Counterfactual Example

In machine learning, a counterfactual example
(CFE), was initially proposed to explain model de-
cisions on tabular data (Wachter et al., 2017; Miller,
2019; Verma et al., 2020). CFE explains why the
model predicts an instance x as the class y instead
of its alternative y′ by making minimal yet neces-
sary changes to x to obtain the desired change in
its prediction.

We assume a trained model f : X ⊂ Rd → Y is
employed to predict the label of an input instance x:
f(x) = y. Y represents a set of discrete labels for
a classification task; whereas for a regression task,
Y denotes a continuous real space. Given an input
sentence x ∈ X with its prediction y, a counterfac-
tual generation method g : f ×X → X modifies a
minimal subset of the words of x to produce a CFE
c, which alters the model’s prediction to a desired
class y′: f(c) = y′, where y′ ̸= y. Hence, gen-
erating counterfactual examples can be achieved
by solving the following constrained optimization
problem,

argmin
c

dist(x, c) (1)

s.t. f(c) = y′,

where dist(·, ·) is a distance function that measures
the cost of changes required to alter the prediction.
To concisely define our research scope, we distin-
guish between two similar yet distinct terms: ‘ad-
versarial examples’ and ‘style transfer’, in Section
A, Appendix.

This definition outlines the fundamental princi-
ples of the CFE generation problem, which can be
adapted to a range of NLP tasks by specifying the
task-specific x and y′. For example, in question
answering, the goal is to minimally revise the ques-
tion x to satisfy a different answer y′. In Figure 1,
we present examples of counterfactual generation
across various NLP tasks. For detailed definition of
CFE generation for those NLP tasks, please refer
to Section B in the Appendix.

In practice, researchers typically impose various
constraints to guide the generation of CFEs for spe-
cific objectives. Below, we outline the commonly
accepted desiderata.
Validity: A CFE is valid if it correctly classified
as the desired prediction. Optimizing validity will
encourages a higher rate of successful label flips.
Proximity: It is the key constraint to create “close
possible worlds” that preserve most of the original
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Original Text: The film was boring.  (Negative)

Counterfactual Text: The film was barely boring.  (Positive)

(b) Natural Language Inference (NLI): (Kaushik et al., 2019)

(e) Domain Adaptation (DA): (Calderon et al., 2022)

(a) Sentiment Analysis (SA): (Kaushik et al., 2019)

(c) Question Answering (QA): (Geva et al., 2022)

(f) Relation Extraction (RE): (Miao et al., 2023)

(d) Story Rewriting (SR): (Chen et al., 2022)

Original Premise: A child is creating sculptures.
Original Hypothesis: A child is painting on canvas.(Contradiction)

Counterfactual Premise: A child is making something.
Unchanged Hypothesis: A child is painting on canvas.  (Neutral)

Given Context: Nintendo and The Pokémon Company debuted in    
the Super Bowl, celebrating Pokémon's 20th anniversary.

Question: What companies debuted in the Super Bowl?
Answer:  (Nintendo and The Pokémon Company)

Counterfactual Q:  What event was celebrated in the Super Bowl?
Counterfactual A: (Pokémon's 20th anniversary)

Given Premise: ① Kelly was playing her new Mario game.

Condition: (② She had been playing it for weeks.)
Ending: ③ She was playing for so long without beating the level.        
④ Finally she beat the last level. ⑤ Kelly was so happy to
finally beat it.

Counterfactua C: (②  She never beat the game through.)
Counterfactual E: ③ She was playing for so long without beating      
the level. ④ She never beat the last level.  ⑤ Kelly was so sad to     
be stuck at the end.

Original Text: The knife is slightly bent.  (Kitchen)
Counterfactual Text: The iPod is slightly flimsy.  (Electronics)

Original Text: Wine is in the bottle.  (Content-Container)
Counterfactual Text: Wine is from the bottle.  (Entity-Origin)

Figure 1: Use cases of counterfactual generation in various NLP tasks.

content while altering only the critical words to
have a different prediction (Wachter et al., 2017).
Diversity: A diverse set of CFEs contains multiple
possible revisions of a sentence to achieve the target
prediction where each revision reveals a different
prediction logic. Such broad reasoning analysis en-
hances users’ trust in a model’s prediction (Wachter
et al., 2017). A diverse set of CFEs also allows us
to augment a model training for stronger robustness
(Joshi and He, 2022; Qiu et al., 2024).
Fluency: It measures the smoothness and natu-
ralness of a CFE, similar to plausibility in tabular
CFE generation (Gilo and Markovitch, 2024). En-
couraging fluency results in texts that are grammat-
ically correct, semantically meaningful, and coher-
ent, which is crucial for ensuring that a textual CFE
is understandable.

Recent research also include desiderata such
as controllability (Ribeiro et al., 2020; Wu et al.,
2021) and stability (Gardner et al., 2020; Geva
et al., 2022) to better control or stabilize the gen-
eration process. However, these desiderata do not
directly describe the desired format of the final
CFEs (Guidotti, 2022). Due to page limit, detailed
discussion is omitted.

3 Counterfactual Generation Methods

In this section, we carefully collect 66 studies for
textual counterfactual generation. The detailed pro-
cess of collection is described in Section C of Ap-
pendix. After that, we propose a novel taxonomy

that categorizes existing methods into four groups.
Within each group, we further divide these meth-
ods into fine-grained subgroups or successive steps,
to ensure that the taxonomy is systematically or-
ganized. The full taxonomic structure is shown in
Figure 4 of the Appendix.

3.1 Manual Generation

Generating high-quality textual CFEs has proven to
be challenging for neural networks. Consequently,
early studies relied on domain experts or crowd-
sourcers to manually collect these CFEs (Kaushik
et al., 2019; Gardner et al., 2020; Yang et al., 2020;
Samory et al., 2021).

Before editing, human annotators are given de-
tailed instructions and examples. The editing prin-
ciples include: (1) Minimal Edits: using domain
knowledge to minimally edit the original text, such
as deletion, insertion, replacement, and reorder-
ing. (2) Fluency, Creativity, and Diversity: en-
sure that edits maintain fluency and grammatical
accuracy, while also introducing diverse modifi-
cations, including changes to adjectives, entities,
and events. (3) Adhere to task-specific rules. For
instance, in question-answering (QA) tasks, coun-
terfactual questions should be answerable based on
the given context (Khashabi et al., 2020).

To improve revision quality, multiple annota-
tors are often employed to cross-validate the re-
vised CFEs (Kaushik et al., 2019; Gardner et al.,
2020). Those with lower consensus are then filtered

4800



out. However, creating a high-quality CFE dataset
through human labor is both time-consuming and
expensive (Sen et al., 2023). For instance, Kaushik
et al. (2019) reported that modifying and verifying
a single CFE typically takes four to five minutes
and costs approximately $0.8.

3.2 Joint Learning-based Generation
The constrained problem in Equation (1) can be
converted to the Lagrange function below,

L = dist(x, c) + λ1 · ℓ(f(c), y′), (2)

where ℓ(·, ·) describes the difference between the
desired target y′ and current prediction f(c), and
λ1 ∈ R+ is the Lagrange multiplier. A larger
λ1 will encourage the CFEs to be closer to the
desired prediction. Additional desired properties or
constraints, such as diversity and fluency, can also
be formulated using corresponding mathematical
functions, which are appended after Equation (2).

Neural networks such as, BERT (Devlin et al.,
2019), GPT-2 (Radford et al., 2019), are differen-
tiable, and the distance function, denoted as dist(·),
typically employs either the L1 or L2 norm. Conse-
quently, researchers (Madaan et al., 2021; Hu and
Li, 2021; Jung et al., 2022) can employ gradient
descent to iteratively minimize the joint loss until
specific stopping conditions are met.

Optimizing the joint loss in Eqn. (2) for a spe-
cific sentence x could help find its CFEs (Jung
et al., 2022), but this approach invokes the model
multiple times for each input, not efficient. There-
fore, a family of research (Madaan et al., 2021; Hu
and Li, 2021; Madaan et al., 2023; Yan et al., 2024)
directly learned a counterfactual generation model
by optimizing the joint loss over a collection of
annotated CFEs. During inference, the generation
model is fed the input text and its target class, and
it directly returns a CFE that belongs to the target
class. These generation models are built under the
following two frameworks:
(1) Controlled text generation framework (PPLM)
(Dathathri et al., 2020). It combines a frozen lan-
guage model with additional small attribute models
that guide the generation towards specific themes,
emotions, or styles of writing. In particular, the
attribution model is trained to perturbs the hidden
states of input texts to maximize the desired char-
acteristics. The follow-up studies GYC (Madaan
et al., 2021) and CASPer (Madaan et al., 2023) uti-
lize the PPLM framework for counterfactual gener-
ation.

(2) VAE and GAN frameworks. Counterfactual-
GAN (Robeer et al., 2021) uses the StarGAN (Choi
et al., 2018) to ensure that the CFEs adhere to the
data distribution. To prevent model learning spuri-
ous correlations, Hu and Li (2021) develop a causal
model using variational auto-encoders (VAEs). Yan
et al. (2024) disentangle content and style represen-
tations using a VAE model. They then intervene
in the style variable while maintaining the content
variable constant, enabling the generation of coun-
terfactual explanations through the decoder model.

As these generation models are trained in an end-
to-end manner, one limitation is that we cannot
concisely control the generation process, such as
which words should be revised. Additionally, the
model is trained by minimizing the loss over a
collection of samples, which may compromise the
quality of CFEs for certain sentences, such as those
pertaining to minority groups. Lastly, controlled
text generation does not necessarily produce CFEs
with minimal and diverse perturbations.

3.3 Identify and then Generate

A popular family of approaches decomposes the
generation task into two steps: (1) identifying the
words to be revised in the original text, and (2)
minimally editing those words to generate CFE
candidates with target predictions, as shown in Fig-
ure 2.

3.3.1 Identification step
The simplest strategy involves either selecting ran-
dom words (Fu et al., 2023) or revising all words
(Fern and Pope, 2021). However, such approaches
fail to discriminate between words that potentially
contribute to valid counterfactuals and those that do
not. Consequently, the subsequent generation step
may produce futile results, leading to unnecessary
costs. Therefore, researchers propose more deliber-
ately designed identifiers, which are summarized
as follows:
(1) Words statistics. This approach (Madaan et al.,
2020; Li et al., 2018) first calculates the frequency
of words or n-grams that appear in the target do-
main corpus using traditional term frequency (TF)
and/or inverse document frequency (IDF) measures.
It then marks those words or n-grams whose fre-
quency scores exceed a specific threshold.
(2) Syntactic parser. Syntax plays a crucial role in
model predictions across many tasks. For example,
adjectives (‘good’, ‘delicious’) and verbs (‘like’,
‘hate’) are often considered closely linked to senti-
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Original Text CFE 
CandidatesWord Statistics

Syntactic Parser
Word Importance

Identifier
Semantic Editing
Syntactic Editing

Retrieved Counterfactuals
Heuristic Search

Masked Language Model
Constrained Open-ended Infilling

Generator

Semantic Editing

Analyzed Text

The film was boring.   
(sentiment=negative)

The film was <mask> The film was exciting. 

(sentiment=positive)

. . .

CFE Candidates

Figure 2: Demonstration of the Identify-and-then-Generate CFE generation.

ment polarity. Subjects and objects are important
for understanding the logical relationship in the
NLI task. Consequently, researchers (Chen et al.,
2023; Geva et al., 2022) adopt a syntactic parser to
split a sentence into spans. Control codes (Ribeiro
et al., 2020; Wu et al., 2021) are incorporated into
parsers to produce different types of perturbations
for various purposes. Additionally, Tailor (Ross
et al., 2022) analyzes text syntax to extract high-
level and semantic control codes, enabling flexible
and meaningful perturbation strategies.

(3) Word importance. The approaches in this cat-
egory identify important words that significantly
contribute to the original prediction. For example,
given a positive text such as “It is a fantastic mo-
ment,” the word ‘fantastic’ would be identified as
the crucial word for the positive label. Compared
to identifiers based on word statistics and syntac-
tic parsers that only require an input sentence, the
word importance-based identifier additionally ne-
cessitates a pretrained model to judge word impor-
tance via prediction differences.

Conveniently, importance scores can be read-
ily obtained from current feature importance ap-
proaches such as gradients (Simonyan et al., 2014),
integrated gradients (Sundararajan et al., 2017),
LIME (Ribeiro et al., 2016), SHAP (Lundberg and
Lee, 2017), and CURE (Si et al., 2023). For in-
stance, MICE (Ross et al., 2021b) uses gradients
to determine which tokens to mask; LEWIS (Reid
and Zhong, 2021) identifies style-related tokens
with above-average attention weights; Polyjuice
(Wu et al., 2021) and AutoCAD (Wen et al., 2022)
incorporate LIME and SHAP as plugins to identify
mask positions; Martens and Provost (2014) iden-
tify a minimal set of words whose removal would
revert the current prediction. Typically, a higher
importance score indicates a greater significance to
the original prediction, and such tokens are more
likely to be replaced in the generation step.

The above techniques can be combined to
achieve more precise identification of editing lo-

cations. For instance, AC-MLM (Wu et al., 2019)
combines word frequency and attention scores to
obtain accurate locations.

For word statistics and word importance-based
identifiers, each word is assigned a score. Then,
we need to determine how many words should be
masked. Masking too many words compromises
CFE’s proximity, while masking too few may re-
sult in void CFEs. Empirically, recent studies often
employ predefined rules, such as selecting the top-
K words or spans (Malmi et al., 2020; Wen et al.,
2022), choosing words whose scores exceed a cer-
tain threshold (Wu et al., 2019; Hong et al., 2023),
or adaptively controlling the number of masked to-
kens (Reid and Zhong, 2021; Madaan et al., 2020).

3.3.2 Generation step
Once the words to be revised are identified, the next
step is to replace the these words with appropriate
alternatives to achieve the target prediction. We list
common generation methods below:
(1) Semantic editing. An intuitive solution is to
substitute the important words with their corre-
sponding semantic counterparts such as antonyms.
They can be readily obtained with existing lexical
databases like WordNet (Chen et al., 2021b; Wang
and Culotta, 2021; Chen et al., 2021a). Alterna-
tively, they can be searched within the dataset of the
target class (Li et al., 2018; Gilo and Markovitch,
2024). This strategy is limited to tasks related to
semantic understanding (Wen et al., 2022).
(2) Syntactic editing. These methods (Li et al.,
2020a; Zhu et al., 2023; Longpre et al., 2021; Geva
et al., 2022) leverage existing language parsers to
decompose a sentence into several syntactic spans,
then design customized rules to transform each
span into the desired output. Examples include in-
serting ‘not’ before verbs or adjectives, swapping
subjects and objects, modifying tense, substituting
a word with another entry from the corpus, or tam-
pering with factual evidence. Such approaches are
primarily designed for tasks like natural language
inference, named entity recognition, and fact veri-
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fication, where the model predictions are sensitive
to the tense, location of passive and subject, and
evidence.
(3) Retrieved counterfactuals. Retrieval-based
approaches (Li et al., 2018) first retrieve an open-
source database using the masked original sen-
tence. Subsequently, filtering techniques are used
to keep valid and minimally revised candidates.
RGF (Paranjape et al., 2022) directly generates
counterfactual questions based on retrieved context
and answers in QA task. Although RGF does not
need to identify word positions, we categorize this
method here due to its use of retrieval techniques.
The major concern with this approach is that the
retrieved counterfactuals may not be as similar to
the original sentence as other methods.
(4) Heuristic search. These methods (Fern and
Pope, 2021; Gilo and Markovitch, 2024) employ
heuristic search to find appropriate replacements
within a defined search space. The key contribu-
tions of these methods are the construction of the
search space and the development of search strate-
gies. Fern and Pope (2021) first identify the k
potential substitutions for each word and adopt a
Shapley-value guided search method. Gilo and
Markovitch (2024) start from a CFE in the training
dataset and leverage the weighted A∗ algorithm to
iteratively reduce the edit cost.
(5) Masked language models (MLMs). The iden-
tified word locations can be masked with specific
tags such as ‘[MASK]’. An MLM can then be
used to edit these tags to achieve the target pre-
diction. For example, consider a masked sentence
like “There is a [MASK] moment,” with a goal to
generate a negative expression, MLMs might fill in
the mask with words like ‘terrible’ or ‘dismal’.

The primary contributions of approaches in this
family revolve around how they leverage and train
MLMs for infilling tasks. (1) Some methods
(Ribeiro et al., 2020; Chen et al., 2022; Chemmen-
gath et al., 2022) directly leverage the pretrained
MLMs to infill the blanked words. While conve-
nient, the generated words may not always align
with the desired properties, often necessitating post-
hoc filtering to meet user expectations. (2) Other
approaches finetune MLMs on target domain data
(Malmi et al., 2020; Reid and Zhong, 2021) and
then use finetuned MLMs to infill the blanks. (3) A
widely adopted method (Wu et al., 2019; Ross et al.,
2021b; Hao et al., 2021; Calderon et al., 2022; Wen
et al., 2022) involves finetuning the MLM to realize
label-controlled generation from the masked sen-

tences and their conditional label. Here, the MLM
learns to infill the blank that is consistent with the
conditional label. (4) Some researchers directly
finetune an MLM to learn the counterfactual gener-
ation from the masked sentence to desired formats
(Wu et al., 2021; Ross et al., 2022). However, this
approach often requires a substantial amount of
training data. For instance, (Wu et al., 2021) rec-
ommends collecting 10,000 instances per control
code, which can be burdensome.

The primary drawback of these approaches is
that MLMs focus solely on revising the masked po-
sitions, which leads to a lack of linguistic diversity
in generated CFEs.
(6) Constrained open-ended infilling. This ap-
proach aims to infill the masked positions more flex-
ibly while restricted by a label flip rate constraint,
compared to MLM approaches that strictly infill
the mask locations with replacements. For exam-
ple, NeuroCFs (Howard et al., 2022) first identify
key concepts and then use a GPT-2 model, adapted
to the target prediction, to decode these concepts.
DeleteAndRetrieve (Li et al., 2018) concatenates
the embeddings of the masked original sentence
and a retrieved sentence with the target prediction,
then adopts a decoder to generate a CFE.

3.4 LLMs Prompting
In the past two years, LLMs have shown remark-
able proficiency in synthesizing natural languages
for downstream tasks (Meng et al., 2022; Ye et al.,
2022; Meng et al., 2023; Yu et al., 2024). Signif-
icant research has focused on designing effective
prompts to harness the advanced reasoning and un-
derstanding capabilities of these models for gener-
ating desired content, including CFEs (Dixit et al.,
2022; Gat et al., 2024; Chen et al., 2023). In recent
literature, two key technologies in enhancing the
generation results are In-Context Learning (ICL)
and Chain-of-Thought (CoT).

Introduced with GPT-3 (Brown et al., 2020),
ICL improves prompts by including examples that
demonstrate the expected type of reasoning or out-
put. To generate counterfactuals for a given in-
stance, the prompt typically consists of the task
requirement and one (Sachdeva et al., 2024) or
a few pairs of original and counterfactual exam-
ples as demonstrations (Dixit et al., 2022; Chen
et al., 2023; Gat et al., 2024; Sachdeva et al., 2024).
These in-context counterfactuals are either manu-
ally created (Chen et al., 2023; Gat et al., 2024) or
retrieved from an external unlabeled corpus (Dixit
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Table 1: Summary of the four categories of natural language CFEs generation.

Category Human Generation Joint Learning-based Generation Identify and then Generate LLMs Prompting
Description Instructing human anno-

tators to revise a sentence
Training an end-to-end model that
jointly minimizes the multiple objec-
tives associated with user desiderata.

Employing a divide-and-conquer
strategy, identifying important
words and replacing them with
alternatives

Prompting LLMs to
generate CFEs

Training No Yes Optional No
Pros Meaningful and minimal

revision, high quality
End-to-end, quantifiable objectives;
easy to optimize the joint objective

Explainability; high controllabil-
ity; precise edit

User-friendly; cheaper
than human; no train-
ing

Cons Time-consuming; labor-
intensive; expensive

Hard to quantify each objective;
trade-off over multiple objectives;
lower controllability

Complicated workflow Hard to tune prompts;
rely on prompt quality

et al., 2022).
CoT prompting, introduced by Wei et al. (2022),

elicits the emergent reasoning capability of LLMs
by incorporating a series of intermediate reasoning
steps into the prompt. For example, in sentiment
classification, generating counterfactuals for a pos-
itive sentence involves two steps: (1) identifying
and (2) altering words that convey positive sen-
timent (Bhattacharjee et al., 2024; Nguyen et al.,
2024; Li et al., 2024). This technique is more evi-
dent in question-answering tasks, where Sachdeva
et al. (2024) demonstrate that the counterfactuals
for an answer can be obtained by first generating
a counterfactual question based on the factual con-
text and then producing the corresponding answer.

3.5 Filter
Since the automatic counterfactual generators may
produce degenerate counterfactuals (incoherent, il-
logical, or invalid) for some input texts, post-hoc
filtering is typically employed to filter out these
degenerate cases.

Human filtering (Zhang et al., 2019) ensures
high-quality CFEs but it is time-consuming and
labor-intensive. Therefore, researchers use auto-
mated tools to remove undesired outputs. These
automated methods include eliminating CFE candi-
dates that are incorrectly predicted by state-of-the-
art (SOTA) models (Reid and Zhong, 2021; Zhang
et al., 2023; Chang et al., 2024); deleting degen-
erations with low fluency scores computed by lan-
guage models (Li et al., 2020a; Wu et al., 2021;
Ross et al., 2022; Gilo and Markovitch, 2024);
and selecting human-like counterfactuals based on
proximity scores (Yang et al., 2021).

3.6 Summary
We summarize the characteristics, strengths, and
weaknesses of each category of natural language
CFE generation approaches in Table 1. Owing to

page limit, we only discuss a few of the most perti-
nent studies for each category to ensure that the es-
sential information is conveyed clearly. Complete
discussion of relevant references for each category
can be found in Appendix Section E.

4 Evaluation Metrics

Validity. It measures the proportion of CFEs that
achieve the desired target among all generated
CFEs. Formally, the validity over N test samples
is defined by,

V alidity =
1

N

N∑

i=1

I(f̂(ci) = y′i), (3)

where y′i is the desired target of a CFE ci. The
predictor f̂ can be human annotation (Wu et al.,
2021; Chen et al., 2021b), fined-tuned SOTA mod-
els (e.g., RoBERTa (Ross et al., 2021b; Wen et al.,
2022; Betti et al., 2023; Balashankar et al., 2023;
Gat et al., 2024), or BERT (Betti et al., 2023; Bhat-
tacharjee et al., 2024) in sentiment analysis, and
DeBERTa (Chen et al., 2023) in natural language in-
ference), or voting with multiple models (Sachdeva
et al., 2024). A higher validity is preferred.

Similarity. Similarity measures the editing ef-
fort required of a CFE during generation (Wu et al.,
2021; Kaushik et al., 2019), formally defined as,

Similarity =
1

N

N∑

i=1

dist(xi, ci). (4)

For lexical and syntactic similarity evaluations,
widely used methods include the word-level Leven-
shtein edit distance (Levenshtein et al., 1966) and
the syntactic tree edit distance (Zhang and Shasha,
1989). For assessing semantic similarity, models
1 like SBERT (Reimers and Gurevych, 2019) and

1pretrained models and not finetuned on evaluation tasks.
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the Universal Sentence Encoder (USE) (Cer et al.,
2018) are commonly used. They encode both the
CFE and the input text and then calculate the cosine
similarity between their sentence representations.

Diversity. This score is measured as the average
pairwise distance between K returned CFEs for a
sentence x, defined as follows,

Diversity =
1(
K
2

)
K−1∑

i=1

K∑

j=i+1

dist(ci, cj). (5)

For lexical diversity, Self-BLEU (Zhu et al., 2018)
reports the average BLEU score between any two
CFEs, while Distinct-n (Li et al., 2016) gauges di-
versity by calculating the ratio of unique n-grams
to the total number of n-grams in the generated
CFEs. When semantic diversity is assessed, the
dist(·) function can be metrics like SBERT em-
bedding similarity (Reimers and Gurevych, 2019),
BERTScore (Zhang et al., 2020), semantic uncer-
tainty (Kuhn et al., 2023).

Fluency. As fluency describes the resemblance
of a CFE to human writing, a simple measurement
is to ask human raters to evaluate a CFE based on
cohesiveness, readability, and grammatical correct-
ness (Robeer et al., 2021; Madaan et al., 2021).
Due to the irreproducibility and high cost of human
evaluation, automated fluency evaluations such as
the likelihood and the perplexity score have be-
come popular in recent studies (Ross et al., 2021b;
Sha et al., 2021; Treviso et al., 2023).

(1) Likelihood (Salazar et al., 2020). Given a
sentence of length n, we create n copies by individ-
ually masking each of the n tokens. We then use a
masked language model (MLM), such as T5-based
models, to compute the loss for both the original
sentence and its n masked copies. The likelihood
is calculated as the average ratio of the loss of each
masked copy to the loss of the original sentence.

(2) Perplexity score (Jelinek et al., 2005). This
score evaluates whether the produced CFEs are
natural, realistic, and plausible. In practice, we
quantified this using the powerful generative LMs
(e.g., GPT-2 (Radford et al., 2019)), formally de-
scribed as follows,

perplexity = exp

[
− 1

n

n∑

i=0

log pθ(ti|t<i)

]
, (6)

where pθ(ti|t<i) is the probability of the i-th token
of a CFE c, given the sequence of tokens ahead.

Model Performance. As revision in CFEs ide-
ally reveal important features, we can either in-
corporating CFEs into training to enhance model
robustness (Chen et al., 2021b; Qiu et al., 2024)
or leverage CFEs as test sets to evaluate existing
model’s generalization (Ribeiro et al., 2020; Ross
et al., 2021b). Researchers then report the classi-
fication performance, such as accuracy, F1-score,
and the standard deviation of these metrics on out-
of-domain datasets or counterfactual test sets.

The evaluation mentioned above can also be con-
ducted by human evaluators where humans are in-
structed to rate CFEs from various aspects (Wu
et al., 2019; Madaan et al., 2021). In Appendix
Section D, we summarize the commonly used eval-
uation metrics. Additionally, we also list the evalu-
ation metrics used in experiments of each paper in
Appendix Section E.

5 Challenges and Future Directions

Fair evaluation. The absence of ground truth
makes it difficult to compare CFEs generated from
different methods. This challenge arises from two
main aspects: (1) Existing metrics evaluate CFEs
from various, often non-comparable perspectives.
For example, prioritizing higher proximity (mini-
mal changes to the original text) typically results in
lower flip rate. Optimizing one metric may compro-
mises another metric, making it difficult to domi-
nate across all metrics and conclusively identify the
best method. (2) Many methods use filtering tech-
niques to discard undesired results. Direct compar-
isons between filtered and unfiltered CFEs may in-
troduce bias in the evaluation process. For instance,
methods employing GPT-2 to filter out grammati-
cally incorrect or nonsensical sentences (Radford
et al., 2019; Ross et al., 2022) often outperform
those that do not use such filters on fluency score.
Model privacy and security. Privacy and security
are crucial considerations in the model develop-
ment and deployment. As CFEs reveal sensitive
changes near the decision boundary, researchers
exploited CFEs to efficiently extract high-fidelity
surrogate models (Aïvodji et al., 2020; Wang et al.,
2022), which poses high risks to model privacy and
security. Future research should focus on strategies
to mitigate model extraction risks while maintain-
ing the utility of CFEs.

In recent years, there has been an increasing
trend toward using LLMs to generate counter-
factuals. Following this, we outline and discuss
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the research challenges associated with prompting
LLMs.

Long-context CFEs generation. Although LLMs
can produce fluent and reasonable CFEs, our em-
pirical studies reveal that when input sentences
become longer, the quality of the generated CFEs
quickly deteriorates. Even when running within the
maximum token limit, LLMs can produce CFEs
that are invalid, truncated, and overly summarized.
Future work should investigate the generation of
CFEs for long-context inputs.

Hard to improve CFE quality. With the aid of
ICL and CoT prompting, LLMs can produce high-
quality CFEs. However, it is still unclear which spe-
cific prompts are crucial for enhancing CFE quality.
Although we observe certain issues, they do not
offer clear guidance on how to address them. We
should cultivate a deeper understanding of LLMs
and strategically design prompts to target and re-
solve specific issues during CFE generation.

Specific LLMs for CFEs. Modern LLMs are pri-
marily trained on autoregressive tasks and then are
fine-tuned with human feedback to enhance their
ability to follow instructions. The commonly used
tasks for instruction tuning are question answering
and semantic understanding. The LLM potential
of CFE generation may not be fully exploited dur-
ing fine-tuning. We believe that fine-tuning LLMs
specifically for the CFE generation task could en-
hance their performance.

LLM hallucinations. LLMs can generate incor-
rect, misleading, or entirely fabricated content with
high confidence, a phenomenon formally known
as LLM hallucination. When counterfactual data
is used as ground truth to test or improve model
robustness, this hallucinated content can inject mis-
leading and incorrect relationships. Therefore,
we should implement post-processing and fact-
checking techniques to filter out hallucinated con-
tent by verifying against known facts and identify-
ing internal contradictions.

Lower controllability. LLMs may not always ef-
fectively determine the degree of change or the
specific elements that should be altered in a given
sentence, even with clear instructions. Without fine
controllability, we cannot achieve the diversity that
is possible when instructing human annotators. A
nuanced understanding of LLM internal mecha-
nisms is necessary to generate CFEs both flexibly
and effectively.

6 Conclusion

In this survey, we systematically review recent ad-
vancements, including the latest LLM-assisted gen-
eration approaches. Based on algorithmic differ-
ences, we propose a novel taxonomy that catego-
rizes these methods into four groups, providing
an in-depth comparison, discussion, and summary
for each group. Additionally, we summarize the
commonly used metrics to evaluate the quality of
counterfactuals. Lastly, we discuss research chal-
lenges and aim to inspire future directions.

With the widespread use of black-box LLMs,
issues such as explanations, fairness, and robust-
ness have gained increasing attention. We believe
this survey can serve as a comprehensive guideline
to inspire future advancements that address these
concerns.

7 Limitations

While this survey provides a systematic overview
of counterfactual generation in the NLP domain, it
has several limitations. Firstly, this survey predom-
inantly focuses on generating CFEs, but it omits
extensive descriptions like counterfactual thinking
or reasoning from cognitive psychology and phi-
losophy, which could help readers understand the
necessity of CFE generation. Secondly, although
counterfactual generation in NLP intersects with
fields like causality, linguistics, and social sciences,
this survey centres on NLP-specific aspects and
may not fully explore these interdisciplinary con-
nections, potentially limiting a deeper understand-
ing in those areas. Lastly, although this survey
acknowledges that counterfactual generation offers
several benefits such as enhancing explainability,
model debugging, and training data augmentation,
it does not delve deeply into how CFEs function
in these scenarios. Understanding these impacts
is crucial for researchers deploying CFEs in real-
world applications.
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Figure 3: Proportion of papers in each task among all
collected papers. The term ‘CLASS’ refers to papers
applicable to general text classification tasks, including
SA and NLI.

A Terminology Clarification

In this section, we clarify two terms related to
Counterfactual Examples (CFEs) to ensure a pre-
cise review scope.
Adversarial Example v.s. CFE. Both text adver-
sarial examples (Li et al., 2020b; Garg and Ramakr-
ishnan, 2020) and CFEs aim to change model pre-
dictions with minimal modifications. However, ad-
versarial examples are designed to deceive human
perception, altering only the model’s prediction
without necessarily being human-perceivable as
different. In contrast, CFEs should ideally change
both human and model predictions simultaneously.
Style Transfer v.s. CFE. Style transfer (Sudhakar
et al., 2019a; Hu et al., 2017) aims to revise the
input sentence to achieve a target style. Unlike
CFE generation, which sought for minimal per-
turbations, style transfer may involve complete
sentence modifications to ensure the sentence con-
forms to the target style. However, when minimal
perturbation is also required in some style transfer
research, we treat both tasks the same and include
these studies.

B CFE Generation in NLP Tasks

Here, we present the formulation of CFE gener-
ation across various NLP tasks. In Figure 3, we
report the proportion of papers in each task relative
to all collected papers.
Sentiment Analysis (SA) involves determining the
emotional polarity y given a text x. Counterfactual
generation in SA refers to minimally modify the
input text x such that the new sentence c has a
different prediction y′, i.e., (x, y) → (c, y′).
Natural Language Inference (NLI) is to deter-
mine whether a given hypothesis x1 can be inferred
from a given premise x2, and return a logical rela-

tionship y. CFE generation in NLI aim to revise
hypothesis or premise or both to change current log-
ical relationship y to another different relationship
y′, i.e., (x1,x1, y) → (c1, c2, y

′).
Question Answering (QA) aims to automatically
produce an answer a for a given question q and
context x. The counterfactual QA task seeks to
minimally modifies either the context or the ques-
tion, or both to generate counterfactual context cx
or question cq such that (cx, cq,a′) holds for a
different answer a′, i.e., (x, q,a) → (cx, cq,a

′).
Story Rewriting (SR). The example in SR task in-
cludes a 5 sentence tuple {s1, s2, s3, s4, s5} where
s1 is the story premise, s2 is the initial context, and
s3−5 are original story endings. Given a contrastive
context s′2, counterfactual SR aims to minimally
revise the original endings, such that the revised
endings s′3−5 still keep narrative coherency to the
new context and original premise.
Domain Adaptation (DA). Given a sentence x
that belongs to the source domain ds, counterfac-
tual DA aims to minimally intervene the original
sentence such that the edited sentence c belongs to
a different target domain dt.
Relation Extraction (RE) involves extracting the
relationship r between entities in a given sentence
x. In counterfactual RE, we aim to minimally re-
vise the x such that a different relationship r′ can
be obtained between these entities from the revised
sentence c.

C Paper Collection

This section outlines the approach we employed
to collect relevant papers in this survey. We first
retrieve papers from arXiv and Google Scholar
with keywords “counterfactually augmented data”,
“counterfactual explanation”, “counterfactual gen-
eration”,“contrast set”, and “contrastive explana-
tion”, and finally we obtain over 200 publications.
We then filter out papers that merely apply CFE
on specific applications or generally discuss CFE,
retaining approximately 40 papers as our seed ref-
erences. We then applied backward and forward
snowballing techniques, examining the references
and citations of these seed papers to identify ad-
ditional relevant studies. We carefully reviewed
all identified papers, focusing on those introducing
novel counterfactual generation methods, which
finally form this survey.

Our research paper list is available on GitHub 2

2https://github.com/Siki-cloud/Awesome-CF-Generation
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Table 2: Commonly used metrics for evaluating coun-
terfactuals, where ↑ (↓) indicates higher (lower) scores
are better, and (→ 1) indicates closer to 1 is better.

Property Metric Trend

Validity Flip Rate ↑

Proximity

Lexical

BLEU (Papineni et al., 2002) ↑
ROUGE (Lin, 2004) ↑
METEOR (Denkowski and Lavie, 2011) ↑
Levenshtein Dist. (Levenshtein et al., 1966) ↓
Syntax Tree Dist. (Zhang and Shasha, 1989) ↓

Semantic
MoverScore (Zhao et al., 2019) ↑
USE Sim. (Cer et al., 2018) ↑
SBERT Sim. (Reimers and Gurevych, 2019) ↑

Diversity

Lexical
Self-BLEU (Zhu et al., 2018) ↓
Distinct-n (Li et al., 2016) ↑
Levenshtein Dist. (Levenshtein et al., 1966) ↑

Semantic
SBERT sim. (Reimers and Gurevych, 2019) ↓
BERTScore (Zhang et al., 2020) ↓

Fluency
Likelihood Rate (Salazar et al., 2020) (→ 1)
Perplexity Score (Radford et al., 2019) ↓

Model Performance
Accuracy / F1-Score ↑
Std of accuracy / F1-score in multiple runs ↓

D Summary of Evaluation Metrics

The evaluation metrics for comparing different
CFEs are summarized in Table 2. Here, we only
list metrics that have been used in at least three
publications.

E Summary of CFE Generation

In this section, we summarize all collected papers
for each group in Section 3. Due to the distinct
characteristics of different method groups, we or-
ganized them into four separate tables, rather than
merging them into one large table. For methods
within a table, we can conveniently understand a
method or compare it with another. The detailed
summary are shown in Table 3, Table 4, Table 5,
and Table 6.
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Table 3: Summary of CFE generation based on manual annotation.

Method Task: Dataset Annotators Project Link

(Kaushik et al., 2019) SA: IMDB; NLI: SNLI Crowd worker https://github.com/acmi-lab/counterfactually-augmented-data

(Qin et al., 2019) SR: TIMETRAVEL Crowd worker https://github.com/qkaren/Counterfactual-StoryRW

(Khashabi et al., 2020) QA: BOOLQ Master worker https://github.com/allenai/natural-perturbations

(Gardner et al., 2020)

SA: IMDB;

NLI: PERSPECTRUM;

QA: DROP,QUOREF,ROPES,

MC-TACO, BOOLQ;

RE: MATRES

Domain expert https://allennlp.org/contrast-sets

(Sathe et al., 2020) NLI: WIKIFACTCHECK Crowd worker http://github.com/WikiFactCheck-English

(Samory et al., 2021) Sexism: CMSB Crowd worker https://doi.org/10.7802/2251

(Sha et al., 2021) QA: WIKIBiOCTE linguistics https://sites.google.com/view/control-text-edition/home

Table 4: Summary of CFE generation based on joint learning-based generation. ‘MP’ means model performance.
For the unique formula in validity evaluation, we list the models applied. Symbols ✗ and ✓ depict “not included”
and “included” respectively. Papers are organized chronologically.

Method Task
Solution Evaluation

Objectives Filter Validity Diversity Proximity Fluency MP

GYC (Madaan et al., 2021) CLASS Val.+Pro.+ Div. ✗ XL-Net BERTScore ↓ Syntax Dist. ↓
SBERT Sim. ↑ Human ✓

CounterfactualGAN (Robeer et al., 2021) CLASS Val.+Pro. Val. BERT 1-USE ↑ ✗ Human ✗

Hu and Li (2021) CLASS Val.+Pro.+Flu. ✗
GPT-2
Human

Distinct-2 ↑ BLEU ↑ GPT-2 Perplexity ↓ ✗

GradualCAD (Jung et al., 2022) CLASS Val.+Pro. ✗ ✗ ✗ ✗ ✗ ✓

CASPer (Madaan et al., 2023) CLASS Val.+Flu.+Pro. ✗ ✗ BLEU ↓ SBERT Sim. ↑ GPT-2 Perplexity ↓ ✓

MATTE (Yan et al., 2024) SA Val.+Pro.+Flu. ✗ CNN Diversity-2 ↑ BLEU ↑
Human

GPT-2 Perplexity ↓
Human

✓

Table 5: Summary of CGE generation based on LLM prompting. ‘MP’ represents model performance, and for
the unique formula in validity evaluation, we list the models applied. Symbols ✗ and ✓ depict “not included” and
“included” respectively. Papers are listed chronologically.

Method Task
Solution Evaluation

Prompting Filter Validity Diversity Proximity Fluency MP

CORE (Dixit et al., 2022) CLASS ICL ✗ Human
Self-BLEU ↓
#Perturb Type ↑ Levenshtein ↓ ✗ ✓

DISCO (Chen et al., 2023) CLASS ICL Val.+Flu. Human
Self-BLEU ↓
OTDD ↑ ✗ ✗ ✓

(Zhou et al., 2023) CLASS ICL ✗ ✗ ✗ ✗ ✗ ✓

(Sachdeva et al., 2024) QA
ICL
+ CoT

Val.

FLAN-UL2
+ GPT-J
+ GPTNeoX
+ LLaMA

Self-BLEU ↓
Levenshtein ↑
SBERT Sim. ↓
Semantic Equ.↓

✗ ✗ ✓

(Gat et al., 2024) CLASS ICL Val. ✗ ✗ ✗ ✗ ✓

(Nguyen et al., 2024) CLASS ICL+CoT ✗ BERT ✗ Levenshtein ↓ GPT-2 Perplexity ↓ ✓

(Li et al., 2024) CLASS CoT Val.+Flu. ✗ ✗ ✗ ✗ ✓

(Bhattacharjee et al., 2024) CLASS CoT ✗ DistilBERT ✗
Levenshtein ↓
USE ↑ ✗ ✗

(Miao et al., 2024) RE ICL+CoT ✗ ✗ ✗ ✗ ✗ ✓
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Table 6: Summary of CFE generation within Identify-and-then-Generate framework. “W.I.” means word importance
techniques, “W.S.” is the word statistic techniques, and “ALL” is to leverage all words of a text. Papers are listed
chronologically.

Method Task
Solution Evaluation

Identify Generate Filter Validity Diversity Proximity Fluency MP

SEDC (Martens and Provost, 2014) CLASS W.I. Delete ✗ SVM ✗ #Delete Word ↓ ✗ ✗

DeleteAndRetrieve (Li et al., 2018) CLASS W.S.
Retrieve
Semantic Edit
Open Infilling

Flu.
Bi-LSTM
Human

✗
BLEU ↑
Human

Human ✗

AC-MLM (Wu et al., 2019) SA W.S.+W.I. MLM Infilling ✗
Bi-LSTM
Human

✗ BLEU ↑ Human ✗

PAWS (Zhang et al., 2019) NLI Parser MLM Infilling Val. Human ✗ ✗ Human ✓

Tag-and-Generate (Madaan et al., 2020) SA W.S. MLM Infilling ✗
AWD-LSTM
Human

✗

BLEU ↑
ROUGE ↑
METEOR ↑
Human

Human ✗

MASKER (Malmi et al., 2020) CLASS W.I. MLM Infilling ✗ BERT ✗ BLEU ↑ ✗ ✗

LIT (Li et al., 2020a) NLI Parser Syntax Edit Flu. Human ✗ ✗ Human ✓

CheckList (Ribeiro et al., 2020) CLASS Parser
MLM Infilling
Semantic Edit

✗ ✗ ✗ ✗ ✗ ✓

REP-SCD (Yang et al., 2020) CLASS W.I. MLM Infilling ✗ ✗ ✗ ✗ Human ✓

(Ramon et al., 2020) CLASS W.I. Delete ✗ SVM ✗ #Delete Word ↓ ✗ ✗

(Asai and Hajishirzi, 2020) QA Parser Semantic Edit Val. ✗ ✗ ✗ ✗ ✓

LEWIS (Reid and Zhong, 2021) SA W.I. MLM Infilling Val.
RoBERTa
Human

✗

BLEU ↑
BERTScore ↑
Human

Human ✓

Polyjuice (Wu et al., 2021) CLASS Parser MLM Infilling Flu. Human Self-BLEU ↓ Levenshtein ↓
Syntax Dist. ↓ Human ✓

MiCE (Ross et al., 2021b) CLASS W.I. MLM Infilling ✗ RoBERTa ✗ Levenshtein ↓ T5 Likelihood ✗

(Wang and Culotta, 2021) SA W.I. Semantic Edit ✗ ✗ ✗ ✗ ✗ ✓

CrossAug (Lee et al., 2021) NLI W.I.
Open Infilling
+Syntactic Edit

✗ ✗ ✗ ✗ ✗ ✓

SentimentCAD (Yang et al., 2021) SA W.I. MLM Infilling Pro. ✗ ✗ ✗ ✗ ✓

(Longpre et al., 2021) QA Parser Syntactic Edit ✗ Human ✗ ✗ Human ✓

SMG (Sha et al., 2021) QA W.I. MLM Infilling ✗ Human ✗ BLEU ↑ KNM Perplexity ↓
Human

✗

KACE (Chen et al., 2021b) NLI W.I. Semantic Edit
Val.+Pro.
+Div.

Human ✗ Human ✗ ✓

RCDA (Chen et al., 2021a) SA Parser Semantic Edit ✗ ✗ Distinct-2 ↑ ✗ ✗ ✓

PARE (Ross et al., 2021a) CLASS Parser Semantic Edit ✗ ✗ ✗ ✗ ✗ ✓

CLOSS (Fern and Pope, 2021) CLASS ALL Heuristic Search ✗
RoBERTa
BERT

✗
BLEU ↑
Edit Fraction ↓ GPT-J Perplexity ↓ ✗

Sketch-and-Customize (Hao et al., 2021) SR W.I. MLM Infilling ✗ Human ✗

BLEU ↑
ROUGE-L ↑
Human

✗ ✗

Tailor (Ross et al., 2022) CLASS Parser MLM Infilling Flu. Human Edit Fraction ↑ F1 Score ↓ GPT-2 Likelihood
Human

✓

RGF (Paranjape et al., 2022) QA ✗
Retrieved Context
+ Open Infilling

Val. + Pro.
T5
Human

#Edit Type ↑ Levenshtein ↓ Human ✓

BPB (Geva et al., 2022) QA Parser
Syntactic Edit
Open Infilling

✗ Human ✗ ✗ ✗ ✓

AutoCAD (Wen et al., 2022) CLASS W.I. MLM Infilling Val. RoBERTa Distinct-n ↑ ✗ ✗ ✓

CAT (Chemmengath et al., 2022) CLASS W.I. MLM Infilling
Val.+Div.
+Flu.+Pro.

RoBERTa
Human

✗
Levenshtein ↓
BERTScore ↑ GPT-2 Likelihood ✗

NeuroCFs (Howard et al., 2022) SA Parser Open Infilling ✗ ✗ Distinct-n ↑
Levenshtein ↓
BLEU-2 ↑
MoverScore ↑

GPT-J Perplexity ↓ ✓

DoCoGen (Calderon et al., 2022) DA W.S. MLM Infilling Val.+Pro. Human ✗ Human Human ✓

EDUCAT (Chen et al., 2022) SR W.I. MLM Infilling ✗
RoBERTa
Human

✗

BLEU ↑
BERTScore ↑
Human

✗ ✗

RACE (Zhu et al., 2023) NLI W.I.
Syntactic Edit
+Open Infilling

Val.+Pro.
RoBERTa
Human

1/BLEU ↑
Human

MoverScore ↑
Human

GPT-2 Perplexity ↓
Human

✓

RELITC (Betti et al., 2023) CLASS W.I. MLM Infilling ✗ RoBERTa ✗

Levenshtein ↓
BLEU ↑
SBERT Sim ↑
Mask Fraction↓

GPT-2 Likelihood ✓

CREST (Treviso et al., 2023) CLASS W.I. MLM Infilling ✗
RoBERTa
Human

Self-BLEU ↓ Levenshtein ↓ GPT-2 Perplexity ↓
human

✓

CoCo (Zhang et al., 2023) RE Parser Syntax Edit Val.
PA-LSTM
AGGCN
R-BERT

✗ ✗ ✗ ✓

SCENE (Fu et al., 2023) QA Random MLM Infilling Val. ✗ ✗ ✗ ✗ ✓

CCG (Miao et al., 2023) RE W.I.+Parser MLM Infilling Flu.+Val. Human ✗ Human Grammarly Tool ✓

Remask (Hong et al., 2023) DA W.S.+W.I. MLM Infilling ✗ Human ✗ Human Human ✓

CLICK (Li et al., 2023) SR W.I. MLM Infilling ✗ RoBERTa ✗
BLEU ↑
BERTScore ↑ ✗ ✗

TCE-Search (Gilo and Markovitch, 2024) CLASS W.I. Heuristic Search Flu.
RoBERTa
Human

✗

Levenshtein ↓
Syntax Dist. ↓
SBERT Sim. ↑

GPT-2 Likelihood
Human

✗

(Wu et al., 2024) SA W.I. MLM Infilling Val. ✗ ✗ ✗ ✗ ✓

CEIB (Chang et al., 2024) SA Random MLM Infilling Val. ✗ ✗ ✗ ✗ ✓

(Wang et al., 2024) SR W.I. Open Infilling ✗
FactScore↑
Human

✗

human
ROUGH ↑
BERTScore ↑
BERT-FT ↑
WMS ↑

NSPScore↑
Human

✓
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Figure 4: The complete taxonomy proposed for existing literature on natural language counterfactual generation.
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