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Abstract
In recent years, Large Language Models
(LLMs) have demonstrated remarkable capa-
bilities in parsing textual data and generating
code. However, their performance in tasks in-
volving tabular data, especially those requiring
symbolic reasoning, faces challenges due to
the structural variance and inconsistency in ta-
ble cell values often found in web tables. In
this paper, we introduce NormTab, a novel
framework aimed at enhancing the symbolic
reasoning performance of LLMs by normal-
izing web tables. We study table normaliza-
tion as a stand-alone, one-time preprocessing
step using LLMs to support symbolic reason-
ing on tabular data. Our experimental eval-
uation, conducted on challenging web table
datasets such as WikiTableQuestion and Tab-
Fact, demonstrates that leveraging NormTab
significantly improves symbolic reasoning per-
formance, showcasing the importance and ef-
fectiveness of web table normalization for en-
hancing LLM-based symbolic reasoning tasks.

1 Introduction

Tables are a fundamental format for structured data
representation and are widely used across vari-
ous sources, including relational databases, web
pages, and financial documents. However, many ta-
bles within documents and web pages are designed
for direct human consumption and often lack the
strict formatting that is expected in relational ta-
bles. This discrepancy poses significant challenges
when querying them using languages such as SQL,
integrating them with relational databases, and pro-
cessing them within applications.

Large Language Models (LLMs) (Brown et al.,
2020) have emerged as powerful tools for semantic
parsing both textual and tabular data and perform-
ing complex tasks such as code generation. Trained
on vast amount of Internet data, including both
text and tables, and employing techniques such as
Chain of Thought (CoT) prompting (Wei et al.,

2022) and self-consistency (Wang et al., 2023),
these models outperform many traditional models
on various table reasoning tasks (Gu et al., 2022;
Chen et al., 2020; Herzig et al., 2020; Wang et al.,
2019). However, their performance in tasks involv-
ing tabular data, particularly those requiring sym-
bolic reasoning, is often hindered by the structural
variability and inconsistencies commonly found in
web tables. Symbolic reasoning over tables neces-
sitates a clear understanding of the table structure
and values, and may involve constraining rows and
columns, which can be challenging when dealing
with unstructured or noisy web tables (Pourreza
and Rafiei, 2023; Ni et al., 2023; Cheng et al., 2022;
Zhang et al., 2023b). Our hypothesis is that normal-
izing ill-formatted tables can address this challenge,
enabling the execution of symbolic programs (such
as SQL or Python) on the tables and making rea-
soning tasks involving comparison, aggregation,
and mathematical calculations more manageable.
Moreover, normalization may enhance the explain-
ability by allowing the tracking of the intermediate
steps in reasoning.

Consider the table QA task shown in Figure 1.
Retrieving answers from the table on the left using
a symbolic approach such as SQL is challenging
due to the irregular structure of the data and the lim-
itations of SQL. While an LLM may handle simple
look-up questions, it struggles with tasks requir-
ing complex aggregation and arithmetic operations.
However, the normalized version of the same table,
shown on the right, can be easily analyzed, allow-
ing text-to-SQL approaches to effectively obtain
the answers to questions.

Existing models for table reasoning typically
rely on a multi-step framework, where an LLM
performs a sequence of actions such as adding
columns before additional scripts are invoked to
process data, retrieve cell values, or compute an-
swers to questions (Liu et al., 2023; Wang et al.,
2024; Zhang et al., 2023b). These models are of-
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row
number

week date opponent result
type 

result
score

attendance

0 1 1981-09-06 at los angeles rams w 27–20 63198 

1 2 1981-09-13 at cleveland browns w 9–3 79483 

--- --- --- --- --- --- ---

4 5 1981-10-04 cincinnati bengals w 17-10 44350 

5 6 1981-10-11 seattle seahawks w 35-17 42671 

6 7 1981-10-18 at new england patriots l 38-10 60474 

7 8 1981-10-26 at pittsburgh steelers l 26-13 52732 

--- --- --- --- --- --- ---

15 16 1981-12-20 pittsburgh steelers w 21–20 41056 

Q: what is the total attendance for October?

SQL: select sum(attendance) from T where strftime('%m', date) = '10' 

Answer: 200227 

Q: how many times did the oilers have consecutive wins? 

SQL: select count(*) from T where result_type = 'w' and row_number in (select row_number + 1 from T 

where result_type = 'w') 

Answer: 2 

row
number

week date opponent result attendance

0 1 september 6, 1981 at los angeles rams w 27–20 63,198 

1 2 september 13, 1981 at cleveland browns w 9–3 79,483 

--- --- --- --- --- ---

4 5 october 4, 1981 cincinnati bengals w 17-10 44,350 

5 6 october 11, 1981 seattle seahawks w 35-17 42,671 

6 7 october 18, 1981 at new england patriots l 38-10 60,474 

7 8 october 26, 1981 at pittsburgh steelers l 26-13 52,732 

--- --- --- --- --- ---

15 16 december 20, 1981 pittsburgh steelers w 21–20 41,056 

Q: what is the total attendance for october?
LLM Response: The total attendance for october is 147,497.  

Q: how many times did the oilers have consecutive wins?
LLM Response: The oilers had consecutive wins twice during the 1981 season. 

Q: what is the total attendance for october? 

SQL: select sum(attendance) from T where date like '%october%’ 

Answer: 198 

Q: how many times did the oilers have consecutive wins? 

SQL: select count(*) from T where result = 'w' and row_number in (select row_number + 1 from T where result = 'w') 

Answer: 0 

Normalized Table
Title: 1981 Houston Oilers season 

Original Unnormalized Table
Title: 1981 Houston Oilers season 

Figure 1: An example of a Table QA task, with the original unnormalized web table shown on the left and its
normalized version on the right. Retrieve answers using a symbolic approach from the unnormalized table poses
difficulties due to inconsistent formatting of date, result and attendance columns. Also, direct querying with LLMs
often fails for questions involving numerical operations. Normalization enables effective text-to-SQL conversion, as
shown by the normalized table on the right.

ten dependent on question and table structure and
do not address the root cause of table irregular-
ity, making them less scalable. An alternative is
normalizing tables, often part of a larger process
known as data wrangling, which involves process-
ing, cleaning and organizing data into a format
that is suitable for further analysis. Significant
progress has been made on data wrangling (Furche
et al., 2016; Abedjan et al., 2016; Rattenbury et al.,
2017), with recent approaches employing LLMs
for tasks such as error detection and data imputa-
tion (Narayan et al., 2022). Selected operations,
such as normalizing numbers and dates, may also
be introduced into data processing pipelines to fa-
cilitate further analysis (Nahid and Rafiei, 2024).
To the best of our knowledge, our work is the first
to study table normalization as an stand-alone one-
time preprocessing step using LLMs.

In this paper, we introduce NormTab, a frame-
work designed to normalize web tables to align
them with the structured format of relational
database tables. NormTab addresses challenges
such as structural variance, mixed data formats,
and extraneous information, thereby facilitating ac-
curate and efficient symbolic reasoning and query
processing using LLMs. Our work explores two

key research questions:

• RQ1: How can we leverage LLMs’ textual un-
derstanding to effectively clean and normalize
web tables?

• RQ2: How can web table normalization en-
hance table reasoning tasks, particularly in the
context of LLM-based symbolic reasoning?

Our proposed solution leverages the advanced
textual understanding capabilities of LLMs to inde-
pendently process and normalize web tables, with-
out relying on specific questions. By normalizing
tables in this manner, we enable a robust foundation
for any downstream task involving table reasoning.
This approach allows for multiple questions to be
asked from a single, normalized table, significantly
enhancing reasoning and query capabilities. More-
over, our normalization process only needs to be
performed once, unlike other models that require
repeated adjustments based on different questions,
highlighting a key advantage of our approach.

Through a comprehensive experimental evalua-
tion conducted on challenging web table datasets
such as WikiTableQuestions (Pasupat and Liang,
2015) and TabFact (Chen et al., 2020), we assess
the effectiveness of NormTab in improving table
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reasoning performance. These datasets provide
diverse examples of table structures and content,
allowing us to thoroughly investigate the impact of
web table normalization on LLM-based symbolic
reasoning tasks. By addressing RQ1 and RQ2,
we aim to demonstrate the importance of web ta-
ble normalization and its potential to enhance the
capabilities of LLMs in handling tabular data for
complex reasoning tasks.

Key Contributions of our paper are:

• We introduce NormTab, a novel framework
that enhances LLMs’ symbolic reasoning
on tabular data by normalizing web tables.
NormTab includes structure normalization
(e.g., transposing tables, flattening rows and
columns) and value normalization (e.g., re-
moving extraneous strings, standardizing the
formatting of dates and numbers) to ensure
consistency and accuracy in reasoning tasks.

• We demonstrate how LLMs’ textual under-
standing can be effectively utilized for data
cleaning and transformation tasks, addressing
challenges such as structural variance, mixed
values, noise, and substring extraction in web
tables

• We conduct extensive experimental evalua-
tions using challenging web table datasets, in-
cluding WikiTableQuestion and TabFact, to
assess the effectiveness of NormTab in im-
proving table reasoning performance, partic-
ularly in the context of LLM-based symbolic
reasoning tasks.

2 Related Work

Our work is related to a few areas as discussed
next.

General LLMs and CoT Related to our work
is the line of research aimed at improving the per-
formance of LLMs (Brown et al., 2020) on var-
ious reasoning tasks, with capabilities spanning
mathematics, common sense, and symbolic rea-
soning (Chen, 2023; Ye et al., 2023; Cheng et al.,
2022). These approaches often excel using few-
shot prompts without requiring fine-tuning. Their
reasoning abilities can be further enhanced by
breaking complex tasks into steps, employing meth-
ods like chain-of-thought (CoT) (Wei et al., 2022)
prompting and Zero-CoT. For instance, the Table-
CoT (Chen, 2023) model utilizes in-context learn-

ing and CoT prompting to generate answers for
table-based tasks.

Several studies have utilized instruction tun-
ing and supervised fine-tuning to enhance the
performance of LLMs on table reasoning tasks.
Notable examples include TableLLaMA (Zhang
et al., 2023a) and TableGPT (Zha et al., 2023),
which have shown significant improvements in
specific applications. In contrast, the BINDER
model (Cheng et al., 2022) extends the capabilities
of LLMs to programming language generation for
solving commonsense problems. Additionally, the
DATER approach (Ye et al., 2023) employs LLMs
to decompose tables and questions, facilitating
table-based QA and fact verification tasks. These
diverse approaches underscore the potential
of LLMs in handling complex reasoning tasks
involving tabular data.

Reasoning over structured data/tables An-
other line of related work is reasoning over tabular
data. Several studies leverage symbolic reasoning
through text-to-SQL or Python code for table-based
reasoning tasks. However, for effectively utilizing
the symbolic code generation approach with LLMs
for table reasoning tasks, it is crucial to ensure
that the table is in the proper format (Pourreza and
Rafiei, 2023; Rajkumar et al., 2022; Ni et al., 2023;
Nahid and Rafiei, 2024; Cheng et al., 2022).

Chain-of-Table (Wang et al., 2024) enhances rea-
soning on tabular data by iteratively transforming
and evolving table structures through a series of rea-
soning steps, including row/column selection, cell
splitting to refine table representations for specific
reasoning tasks. Their method employs in-context
learning to direct LLMs in iteratively generating
operations and updating the table, thus forming a
chain of reasoning specific to tabular data. Liu et al.
(2023) explore the capabilities of LLMs in interpret-
ing and reasoning over tabular data, emphasizing
robustness to structural perturbations, comparing
textual and symbolic reasoning, and examining the
potential of aggregating multiple reasoning path-
ways. Their findings indicate that structural vari-
ations in tables presenting the same content can
significantly degrade performance, particularly in
symbolic reasoning tasks. They propose a method
for table structure normalization through transposi-
tion to mitigate this issue and find that while textual
reasoning slightly outperforms symbolic reasoning,
each approach has distinct strengths depending on
the task.
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Column Selection

-----------------------        ----------------------------------------------------------------------------------------------------------------------------

Value 
Normalization 

Structure 
Normalization

(a) NormTab Basic

(b) NormTab Targeted

row
numbe

r

week date opponent result
type 

result
score

attendance

0 1 1981-09-06 at los angeles rams w 27–20 63198 

1 2 1981-09-13 at cleveland browns w 9–3 79483 

--- --- --- --- --- --- ---

4 5 1981-10-04 cincinnati bengals w 17-10 44350 

5 6 1981-10-11 seattle seahawks w 35-17 42671 

--- --- --- --- --- --- ---

15 16 1981-12-20 pittsburgh steelers w 21–20 41056 

Normalized Table

row
number

week date opponent result attendance

0 1 september 6, 1981 at los angeles rams w 27–20 63,198 

1 2 september 13, 1981 at cleveland browns w 9–3 79,483 

--- --- --- --- --- ---

4 5 october 4, 1981 cincinnati bengals w 17-10 44,350 

5 6 october 11, 1981 seattle seahawks w 35-17 42,671 

--- --- --- --- --- ---

15 16 december 20, 1981 pittsburgh steelers w 21–20 41,056 

Original Table

row
numbe

r

week date opponent result
type 

result
score

attendance

0 1 1981-09-06 at los angeles rams w 27–20 63198 

1 2 1981-09-13 at cleveland browns w 9–3 79483 

--- --- --- --- --- --- ---

4 5 1981-10-04 cincinnati bengals w 17-10 44350 

5 6 1981-10-11 seattle seahawks w 35-17 42671 

--- --- --- --- --- --- ---

15 16 1981-12-20 pittsburgh steelers w 21–20 41056 

Merged Normalized Table

date result
type 

result
score

attendance

1981-09-06 w 27–20 63198 

1981-09-13 w 9–3 79483 

--- --- --- ---

1981-10-04 w 17-10 44350 

1981-10-11 w 35-17 42671 

--- --- --- ---

1981-12-20 w 21–20 41056 

Normalized subtable 

date result attendance

september 6, 1981 w 27–20 63,198 

september 13, 1981 w 9–3 79,483 

--- --- ---

october 4, 1981 w 17-10 44,350 

october 11, 1981 w 35-17 42,671 

--- --- ---

december 20, 1981 w 21–20 41,056 

Sub Table 2: 
Not Normalized 

row
number

week opponent

0 1 at los angeles rams 

1 2 at cleveland browns 

--- --- ---

4 5 cincinnati bengals 

5 6 seattle seahawks 

--- --- ---

15 16 pittsburgh steelers 

Sub Table 1: 
Already Normalized

Value 
Normalization 

Structure 
Normalization

Figure 2: Overview of NormTab. The methodology encompasses two distinct strategies: (a) Entire Table
Normalization (NormTabBasic): we provide the LLM with the entire web table along with specific instructions for
cleaning and normalizing. The LLM reads the table and the instructions, then returns a cleaned and normalized
version of the table. (b) Targeted Normalization (NormTabTargeted): In this approach the LLM identifies and targets
only the portions of the web table requiring normalization based on the table metadata and a few sample rows. The
original table is split into two subtables: one for normalization and one already clean. The LLM processes the
subtable that requires normalization then returned a cleaned version. Finally, the normalized subtable is merged
with the clean portion, resulting in a fully cleaned and normalized table.

StructGPT (Jiang et al., 2023) employs an iter-
ative reading-then-reasoning approach to enhance
LLM reasoning for structured data, but its scalabil-
ity is constrained by token limits when processing
large tables. The ReAcTable model (Zhang et al.,
2023b) adopts the ReAct paradigm, integrating
step-by-step reasoning, external tool-based code
execution, intermediate table generation, and ma-
jority voting to process tabular data. Similarly, the
LEVER model (Ni et al., 2023) improves language-
to-code generation by validating generated pro-
grams based on their execution results, enhancing
the accuracy and reliability of table reasoning tasks.

Data wrangling and imputation Normalizing
tables is a crucial aspect of the broader data wran-
gling process, which involves processing, cleaning,
and organizing data into a format suitable for fur-
ther analysis. Considerable research has focused

on data wrangling, addressing challenges such as
error detection, data imputation, and standardiza-
tion of data formats (Furche et al., 2016; Abedjan
et al., 2016; Rattenbury et al., 2017). Recent ap-
proaches have leveraged the capabilities of LLMs
for these tasks. For instance, Narayan et al. (2022)
demonstrated the effectiveness of LLMs in identify-
ing errors and imputing missing data, showcasing
how these models can enhance the data wrangling
process. By integrating LLMs, the efficiency and
accuracy of preparing data for analysis can be sig-
nificantly improved, streamlining and automating
many aspects of data wrangling. Operations like
normalizing numbers and dates can be incorporated
into data processing workflows to aid in subsequent
analysis (Nahid and Rafiei, 2024).

All these works highlight the importance of table
normalization in improving LLMs’ performance
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on tabular data, paving the way for more effective
and accurate table reasoning models.

3 Methodology

Our methodology encompasses several essential
parts designed to ready web tables for proficient
reasoning by LLMs.

3.1 Normalization Operations

The normalization operations in NormTab can be
divided into two groups: (1) value normalization
and (2) structural normalization. The former in-
volves splitting cells to add new columns, handling
empty cells and value ranges, removing extraneous
strings, and normalizing data formats such as dates
and numerical values to ensure consistency and
accuracy in reasoning tasks. Structural normaliza-
tion, on the other hand, aims to detect structural
variance by analyzing the first row and first column
of a web table and determining whether a transpo-
sition is needed. If transposition is required, we
address this issue by flipping the rows and columns.

Value Normalization: Our value normalization
is based on the principle that every cell in a table
must contain an atomic value (e.g., string, date,
number), meaning that cell content cannot be com-
posite or multi-valued. This principle, known as the
first normal form in database systems (Kifer et al.,
2005), ensures that cell values can be smoothly
queried and updated without introducing anoma-
lies.

The process of value normalization involves sev-
eral critical steps to ensure data consistency and
accuracy. First, we focus on value splitting and
extraction, identifying and splitting all composite
columns. This may involve adding new columns as
necessary while ensuring that no existing columns
are deleted. Next, we standardize date and nu-
merical values to a uniform format, paying spe-
cial attention to any additional strings such as cur-
rency symbols, units or comma that may accom-
pany numerical values. Additionally, we normalize
all “N/A” and blank values to NULL to maintain
consistency throughout the dataset. In SQL, null
values signify an attribute value that is not avail-
able or missing, and they are treated differently
than any other values. SQL engines recognize the
semantics of null values and consider this when
processing queries. For columns containing value
ranges, such as “2010/11” or “2015-2018”, we split

these into two separate columns to facilitate clearer
data interpretation and processing.

An example of value normalization is shown in
Figure 1. The original table presents date columns
with dates in textual format, a result column
combining match outcomes with scores, and an
attendance column where numbers are written with
commas. The value representation in the original
table is more readable for humans; however, this
format poses challenges for symbolic programs
to process. Our normalization process converts
the date to the “YYYY-MM-DD” format and
attendance values to a pure numerical format by
removing commas. Additionally, NormTab splits
the composite result column into two separate
columns: “result_type” and “result_score”, thereby
organizing the data more effectively for analysis.
This standardization is crucial for maintaining data
integrity across the table.

Structural Normalization: Tables can be orga-
nized either row-oriented or column-oriented. In a
row-oriented table, each row typically represents
an entity or a relationship between entities, while
each column describes an attribute of the entity or
relationship. Column-oriented tables, on the other
hand, are stored in a transposed fashion. Most
traditional databases store data in a row-oriented
format, which is well-supported across relational
databases.

Our structure normalization primarily focuses
on addressing structural differences between ta-
bles to enhance their usability for reasoning tasks.
Initially, we carefully examine the table structure
to determine if the first row resembles a header,
indicating the table is row-oriented and requires
no structural changes. However, if the first col-
umn appears to serve as the header, we transpose
the table to normalize its structure, ensuring that
the layout aligns with our adopted tabular format.
Additionally, web tables sometimes include aggre-
gated rows or columns, which can pose challenges
if specific rows or columns need aggregation to
answer a query. We handle these aggregated rows
by disregarding any information present in the last
row that pertains to aggregated data, such as “total”,
“sum”, or “average”. This step prevents redundant
or misleading data from affecting subsequent anal-
yses and ensures that the table remains clean and
focused on the relevant data points.
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3.2 Normalization Approach: NormTab

As depicted in Figure 2, our methodology for
normalizing web tables involves two distinct ap-
proaches to leverage the capabilities of LLMs for
enhancing symbolic reasoning and query capabili-
ties.

Entire Table Normalization (NormTab-
Basic): In the first approach, we provide the
LLM with the entire table along with specific
instructions for cleaning and normalizing. The
LLM reads the table and the instructions, then
returns a cleaned and normalized version of the
table. However, we observed that many web tables
contain portions already in a well-structured form,
with only a few columns requiring normalization.
To optimize this process, we developed a modified
approach.

Targeted Normalization(NormTab-Targeted):
To improve efficiency, we developed a modified
approach that targets only the portions of the table
requiring normalization. Our analysis of web ta-
bles revealed that often only a few columns need
the normalization process. This realization led to
a more optimized methodology. In this more re-
fined approach, we first ask the LLM to identify
which columns require normalization and cleaning,
based on the table metadata (such as column head-
ers and titles) and a few sample rows. Once these
columns are identified, we split the original table
into two subtables: one that requires normalization
and cleaning, and one that is already normalized
and clean. We then send only the subtable that
needs normalization to the LLM along with the
instructions. The LLM processes this subtable and
returns a cleaned and normalized version. After
normalization, we merge the normalized subtable
with the already clean portion of the table. This
approach not only improves the efficiency of the
normalization task by reducing the amount of data
sent to the LLM but also ensures that the resulting
table is in a consistent and accurate format suitable
for subsequent reasoning and querying tasks.

Following this, we analyze the overall structure
of the merged table. With the assistance of the
LLM, we determine whether the table needs to be
transposed based on its layout. If needed, table
transposition is performed outside of the LLM.
Additionally, we check if the last row contains
summarized or aggregated values and if so,
NormTab ignore this row. This selective column

normalization method reduces the workload
on the LLM, enhances efficiency, and ensures
that only the necessary parts of the table are
processed, thereby preserving the integrity of
already structured data.

4 Experimental Setup

4.1 Dataset

We conduct experimental evaluations using two
challenging web table datasets: WikiTableQuestion
(WikiTQ)(Pasupat and Liang, 2015) and TabFact
(Chen et al., 2020). These datasets are specifically
curated to test the reasoning capabilities of models
on complex tabular data. WikiTQ comprises tables
extracted from Wikipedia along with corresponding
natural language questions, while TabFact consists
of tables sourced from Wikipedia paired with tex-
tual facts. These datasets provide a diverse range
of table structures and content, allowing us to thor-
oughly evaluate the performance of NormTab in
enhancing table reasoning tasks.

The WikiTQ standard test set comprises 416
unique tables and 4,344 samples, while the Tab-
Fact standard test set includes 298 unique tables
with 2,003 samples. By utilizing these datasets, we
aim to demonstrate the effectiveness of web table
normalization in improving the symbolic reason-
ing performance of LLMs, thereby highlighting the
importance of addressing the challenges posed by
web table irregularities.

4.2 Baselines and Evaluation Metrics

We compare our approach with several robust base-
line methods, including TableCoT (Chen, 2023),
BINDER (Cheng et al., 2022), DATER (Ye et al.,
2023), StructGPT (Jiang et al., 2023), ReAcTable
(Zhang et al., 2023b), Rethinking-Tab-Data (Liu
et al., 2023), TabSQLify (Nahid and Rafiei, 2024),
and Chain-of-Table (Wang et al., 2024).

For the WikiTQ dataset, exact match (EM) ac-
curacy was used to check if the predicted answers
matched the correct ones. To address varying text
formats, a pre-matching check using LLMs was in-
corporated (Cheng et al., 2022). The accuracy for
TabFact was assessed using binary classification
accuracy.

4.3 Implementation

We utilized gpt-3.5-turbo-0125 as the Language
Model which supports 16k context window. We
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were inspired by the prompting style from (Liu
et al., 2023; Nahid and Rafiei, 2024) in our im-
plementation of NormTab. To compare perfor-
mance, we employ few-shot in-context learning.
This involves supplying the LLM with the table
title, table header, question, and three example
rows of the table, along with the question, to gen-
erate an SQL query. The SQL query is then ex-
ecuted on the table to obtain the answer. Fur-
ther details can be found in Appendix C, and
all our code and prompts are available at https:
//github.com/mahadi-nahid/NormTab.

5 Results

In this section, we analyzed the performance of
NormTab. To evaluate its impact, we conducted
few-shot in-context learning experiments to gener-
ate SQL queries for answering specific questions.
First, we performed experiments on unnormalized
tables without any modifications. Then, we com-
pared the performance on normalized tables. Addi-
tionally, we reported the performance of different
normalization processes.

5.1 Results on Downstream Tasks

Table 1 and Table 2 presents a comparison between
the performance of NormTab and the other base-
lines on WikiTQ and TabFact datasets.

In the WikiTQ dataset, the results showed that
after applying the targeted version of NormTab,
we achieved 61.2% accuracy, surpassing the per-
formance of other baseline models. The targeted
NormTab approach performs slightly better than
the basic version, where the entire table is passed
to the LLMs. This suggests that LLMs may be
more effective at normalization tasks when deal-
ing with targeted smaller tables. Additionally, we
gained about 10% improvement compared to the
Text-to-SQL (Rajkumar et al., 2022) model and
SQL (gpt-3.5-turbo) model. Notably, Rethinking-
Tab-Data (Liu et al., 2023) achieved an accuracy
of 56.87% by addressing structural varience using
LLMs and a Python agent. Chain-of-Table (Wang
et al., 2024) employed an iterative sequence of oper-
ations to tailor complex tables to specific questions,
achieving 59.94% accuracy. However, these and
other baseline models are question-dependent. In
contrast, our model adopts a straightforward and
simple approach: it normalizes the table only once,
irrespective of the question, enabling answers to be
derived from the normalized table using program-

aided symbolic reasoning.

Model Acc (%)
TableCoT (Chen, 2023) 52.40
BINDER 56.74
DATER 52.80
ReAcTable 52.40
Rethinking-Tab-Data 56.87
Chain-of-Table 59.94
Text-to-SQL (Rajkumar et al., 2022) 52.90
Text-to-SQL (gpt-3.5-turbo) 51.30
NormTabBasic + SQL (ours) 60.80
NormTabTargeted + SQL (ours) 61.20

Table 1: Performance comparison of NormTab on
WikiTQ dataset. The results clearly demonstrate that
NormTab significantly surpasses other models in accu-
racy when employing symbolic reasoning.

In Table 2, we can observe a similar performance
enhancement compared to the original table in
table-based fact verification tasks. We achieved ap-
proximately a 6% performance improvement com-
pared to the results of Text-to-SQL on the original
table. It is worth noting that table-based fact verifi-
cation differs from table-based question answering
tasks. Generating a SQL query to verify a fact is
more complex than simply retrieving an answer
from the table. Although other models not employ-
ing program-aided symbolic reasoning perform bet-
ter in this task, these models utilize LLMs for the
verification task providing the whole table to the
model. Our experimental results show promise for
utilizing symbolic reasoning in such scenarios.

Model Acc (%)
TableCoT-chatgpt 73.10
BINDER 79.17
DATER 78.01
Chain-of-Table 80.20
ReAcTable 73.10
Text-to-SQL (Rajkumar et al., 2022) 64.71
Text-to-SQL (gpt-3.5-turbo) 62.32
NormTabBasic + SQL (ours) 67.10
NormTabTargeted + SQL (ours) 68.90

Table 2: Performance comparison of NormTab on Tab-
Fact dataset with other models.

In this study, we also evaluated the effectiveness
of our method using Gemini-1.5-flash and GPT-
4-turbo. The results showed a improvement on
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the WikiTableQuestions dataset, demonstrating that
our model’s performance is not heavily dependent
on specific language models (see Table 3).

Model Acc (WTQ)
NormTabBasic (gemini-1.5-flash) 61.36
NormTabTargeted (gemini-1.5-flash) 61.24
NormTabBasic (gpt-4-turbo) 61.57
NormTabTargeted (gpt-4-turbo) 62.28

Table 3: Performance of NormTab on WikiTQ dataset
using Gemini-1.5-flash and GPT-4-turbo.

5.2 NormTab Evaluation
To assess the accuracy of various normalization
operations, we evaluated the performance on 100
tables, with 50 tables from each dataset, WikiTQ
and TabFact. Table 4 summarizes the accuracy
of different normalization processes. NormTab
demonstrated strong performance in normalizing
dates and numbers, detecting transposition require-
ments, and handling aggregated summaries in the
last row effectively. However, NormTab faced diffi-
culties in extracting and cleaning values in certain
critical tables where value extraction from the origi-
nal table was particularly challenging. The column
selection accuracy indicates that LLMs can be very
effective in identifying columns where values are
not in the proper format. However, the accuracy
of splitting columns was low. Additional errors in-
cluded managing value cleaning and handling "n/a"
values. Although these tasks are challenging, the
performance in these areas shows the potential for
utilizing LLMs to address these tasks effectively.

Type Accuracy
Columns Selection 91.0%
Transpose Detection 97.0%
Last Row Aggregation 100.0%
Split Column 87.0%
Date and Number 100.0%
N/A value 93.0%
Value Cleaning 82.0%

Table 4: Accuracy of NormTab in various types of
normalization.

NormTab has shown superior performance com-
pared to several robust models, demonstrating its
efficacy in table normalization. A key advantage
of NormTab is its use of program-aided symbolic
reasoning, which streamlines code generation with-

out requiring the entire table to be passed to the
LLM. This enhances efficiency and eliminates de-
pendencies on table size and answer position. With
NormTab, only key elements like the title, header,
and a few example rows are needed to generate
SQL queries and obtain accurate answers. This
approach reduces computational overhead while
maintaining high accuracy, highlighting its practi-
cal utility in various table-based tasks.

Our normalization method, NormTab, can be
beneficial for a variety of table reasoning tasks, es-
pecially those employing symbolic methods. For
the same reason, we have integrated NormTab with
a recent table reasoning method TabSQLify (Nahid
and Rafiei, 2024), which utilizes symbolic tech-
niques. Our evaluation reveals that integrating
NormTab with TabSQLify leads to a notable 4%
improvement in performance. This demonstrates
NormTab’s potential to enhance other symbolic
frameworks by serving as an effective preprocess-
ing step. The results is summarized in Table 5.

Model Acc (WTQ)
TabSQLify 64.7
NormTab+TabSQLify 68.63

Table 5: Performance of TabSQLify integrated with
NormTab on the WikiTableQuestions dataset (gpt-3.5-
turbo).

In our work, each table is normalized once, as
a preprocessing step, irrespective of the number
and the type of questions asked. Our approach
does not depend on the specific question or task.
While using Self-Consistency (Wang et al., 2023;
Liu et al., 2023) might seem beneficial, it requires
generating multiple responses per question, which
can increase costs and reduce efficiency. For in-
stance, if we need answers to 10 questions and
apply Self-Consistency with 6 paths, we end up
with 60 samples (10 questions × 6 paths). Addi-
tionally, we need to send the entire table with each
question, resulting in a higher number of tokens. In
contrast, our method requires just a few prompts to
normalize the table initially. After normalization,
we do not need to pass the entire table to generate
the SQL query for each question; only table meta-
data such as the table title, column names, and a
few example rows, is needed. This one-time pre-
prossessing step significantly reduces the overall
number of tokens passed to the LLM, potentially
lowering costs compared to using Self-Consistency.
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5.3 Analysis
We conducted a detailed analysis of the impact of
NormTab on the WikiTQ dataset. Table 6 shows
that in 67% of cases (Category A), performance
improved after applying NormTab. In 24% of cases
(Category B), performance remained unchanged,
indicating no improvement. Additionally, in 9%
of cases (Category C), performance actually de-
creased. The detailed experimental findings are
summarized in Table 7.

Categories Description % of Tables

A
Where performance
enhanced after
applying NormTab

67%

B
Where no change in
performance after
applying NormTab

24%

C
Where the performance
decreased after
applying NormTab

9%

Table 6: Categories of tables on WikiTQ test dataset.

- Tables (A) Tables (B,C) Overall (A,B,C)
Original 46.28% 59.62% 51.30%
NormTab 62.55% 56.76% 61.20%
Change +16.27 -2.86 +9.9

Table 7: Result breakdown on WikiTQ dataset.

Table 7 demonstrates that NormTab can improve
overall performance by 9.9%. Notably, in Cate-
gory A, we observed a substantial enhancement of
16.27%. However, Categories B and C saw a slight
decline in performance due to highly complex table
values and structures.

The basic NormTab approach involves only one
LLM call, but it requires passing the entire table
to the language model as a prompt. This means
the LLM must process a larger number of tokens,
which can impact the overall normalization perfor-
mance. Research indicates that more tokens can
increase the likelihood of hallucination and can be
more costly (Chen, 2023; Ye et al., 2023; Ji et al.,
2023). In contrast, the targeted NormTab approach
first filters out the parts of the table that are al-
ready well-formatted, thereby reducing the number
of tokens sent to the LLM by focusing only on
the columns that need normalization. For example,
consider a table with 15 rows and 8 columns, result-
ing in a total of 15 * 8 = 120 table cells. In the basic
NormTab approach, all 120 cells are sent to the lan-
guage model along with the instructions. However,
if we identify that only 5 out of 8 columns require

normalization, we only need to send 15 * 5 = 75
table cells. This reduction translates to 45 fewer
table cells, which is a 37.5% reduction in table
size. Table 8 illustrates that we can achieve a 72%
reduction in table size for both datasets by employ-
ing the targeted NormTab approach, which is quite
substantial.

Dataset NormTab
(Basic)

NormTab
(Targeted) Reduction

WikiTQ 152.26 41.82 72.53%
TabFact 106.19 29.11 72.58%

Table 8: Table cell reduction in NormTab-Targeted com-
pared to NormTab-Basic

Although the targeted NormTab approach re-
quires additional LLM calls for tasks such as col-
umn selection and transposition detection, the to-
tal number of tokens processed is still lower than
in the basic NormTab approach. While the basic
approach may be suitable for smaller tables, the
reduction in table size is crucial for normalizing
larger tables effectively. The targeted strategy in-
volves multiple queries, but it refines the normal-
ization process by concentrating on specific sub-
tasks, which may help reduce hallucination and
errors. While the performance improvement ap-
pears marginal, the significant token size reduction
makes the targeted NormTab approach highly ben-
eficial for larger tables.

6 Conclusion

In conclusion, our study introduces NormTab,
a framework aimed at enhancing LLMs’ perfor-
mance on tabular data by normalizing web tables.
Through our investigation, we have shown the sig-
nificance of web table normalization in overcom-
ing challenges such as mixed values and structural
variance. By leveraging LLMs’ textual understand-
ing in data cleaning and normalization, NormTab
improves table reasoning. Our experiments on
challenging datasets demonstrate its effectiveness.
Our work contributes to advancing techniques for
LLMs in handling tabular data, emphasizing the
importance of addressing web table challenges for
improved performance. Further research can ex-
plore additional normalization strategies and ex-
tend NormTab’s applicability across various do-
mains. This would establish a robust foundation
for a wide range of downstream tasks involving
table reasoning.
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Limitations

Despite the advancements brought by NormTab,
there are several limitations. First, while our frame-
work significantly enhances the symbolic reasoning
capabilities of LLMs on tabular data, there remains
room for improvement in the normalization pro-
cess, particularly with more complex table struc-
tures. Additionally, for larger tables, LLMs may
sometimes produce hallucinated results, leading to
inaccuracies in the normalized output, indicating
a need for better handling of extensive datasets.
Moreover, when working with tables containing
highly noisy data, LLMs often struggle to clean
and normalize the information effectively, and may
generate output in an incorrect format, making it
challenging to parse. The presence of excessive
noise and inconsistencies can hinder the normal-
ization process and negatively impact overall per-
formance. Addressing these limitations is crucial
for further enhancing the robustness and reliability
of NormTab. As we measure the accuracy using
the results obtained from LLM based Text-to-SQL
model, it is important to note that some questions
in the dataset may not directly map to SQL queries
which may affect the performance.
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scalability, as they enforce normalization principles
and allow for efficient querying through SQL.

However, Web Tables may lack the flexibility
and adaptability required to handle the diverse and
unstructured nature of web data. While relational
database tables excel in maintaining structured data
integrity, web tables present challenges related to
variability and noise, necessitating specialized tech-
niques for effective processing and analysis.

B Comparison with Other Models

Chain-of-Table (Wang et al., 2024) enhances rea-
soning on tabular data by iteratively transforming
and evolving table structures through a series of
reasoning steps, including row/column selection
and cell splitting. Their method uses in-context
learning to guide LLMs in generating operations
and updating the table, forming a reasoning chain
specific to tabular data. Liu et al. (2023) explore
LLM capabilities in interpreting and reasoning over
tabular data, emphasizing robustness to structural
changes and comparing textual and symbolic rea-
soning. They find that structural variations can
significantly degrade performance, especially in
symbolic reasoning tasks, and propose table struc-
ture normalization through transposition to mitigate
this issue. Their study concludes that while textual
reasoning slightly outperforms symbolic reasoning,
both have distinct strengths depending on the task.

The ReAcTable model (Zhang et al., 2023b) fol-
lows the ReAct paradigm, incorporating step-by-
step reasoning, external tool-based code execution,
intermediate table generation, and majority voting
to process tabular data. Recent approaches lever-
age LLM capabilities for these tasks. For instance,
Narayan et al. (2022) demonstrated LLM effec-
tiveness in identifying errors and imputing missing
data, enhancing the data wrangling process. Inte-
grating LLMs can significantly improve the effi-
ciency and accuracy of preparing data for analysis,
streamlining and automating many aspects of data
wrangling. Operations like normalizing numbers
and dates can be incorporated into data processing
workflows to aid subsequent analysis (Nahid and
Rafiei, 2024; Cheng et al., 2022).

Existing models and methods typically rely on
multi-step frameworks where LLMs select actions,
such as adding columns, and additional scripts pro-
cess values based on specific questions (Liu et al.,
2023; Wang et al., 2024; Zhang et al., 2023b). How-
ever, these approaches are question-dependent and

do not comprehensively address the root issue of ta-
ble normalization. NormTab differs by focusing on
normalizing tables once, regardless of the question,
allowing answers to be derived from the normal-
ized table using program-aided symbolic reasoning.
This approach reduces dependencies on table size
and answer position, enhancing efficiency and ver-
satility in table reasoning tasks.

C Implementation Settings

The dataset we used contains only the gold an-
swers and lacks the original SQL queries needed
to extract these answers. Additionally, the dataset
does not include normalized or cleaned versions of
the tables. Data contamination can indeed impact
methods where the question and table are provided
to the LLM, which might then rely on knowing the
gold answer directly. In our approach, however,
we focus on converting tables into a normalized
format. Since the dataset does not provide such
cleaned versions, data contamination does not af-
fect our method. Moreover, our approach generates
SQL queries based on the question and table meta-
data, rather than relying on pre-existing gold SQL
queries. We obtain the answers by executing these
generated SQL queries. Therefore, data contamina-
tion does not impact our method.

Our implementation of NormTab was inspired
by the prompting techniques used in (Liu et al.,
2023; Nahid and Rafiei, 2024). We configured the
in-context learning hyperparameters for gpt-3.5-
turbo-0125 according to the specifications outlined
in Table 9.

Parameter Coll
Selection

Transpose
Detection NormTab

temperature 0.3 0.3 0.7
top_p 1 1 1
sample_n 1 1 1
max_tokens 100 100 4500
num_shots 6 1 1

Table 9: The hyper-parameters we set in NormTab

D Example Prompts

The prompt used in NormTab is described in the
following Figures.
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You are an advanced AI capable of analyzing and understanding information within tables. 
Your task is to normalize a web table so that it can be converted as a relational database table.

### Instructions: Identify the columns based on the following instructions

1. Identify the columns If some of the values of a column needed to be extracted then extract the string and add it in new 
columns.
2. Identify the columns that has date type value and the numerical value.
3. Identify the columns that has numerical values containing extra string such as ‘$’ or units.
4. Identify the columns that has ‘N/A’,  blank or null.
5. Identify the columns that contain ranges  such as (20-2), 2010/11, 2015-2018 etc.

### Task: Your task is to identify which columns needed to be  normalized to convert this table as a regular normalized 
relational database table so that we can run sqlite sql query over this table.

### Table:
Read the table below regarding "2008 Clásica de San Sebastián"

rank | cyclist | team | time | uci_protour_points
1 | alejandro valverde (esp) | caisse d'epargne | 5h 29' 10" | 40
2 | alexandr kolobnev (rus) | team csc saxo bank | s.t. | 30
3 | davide rebellin (ita) | gerolsteiner | s.t. | 25

Table Coll: (rank, cyclist, team, time, uci_protour_points)

### Response: normalize_coll = ['cyclist']

### Table:
Read the table below regarding "Sky Track Cycling"

date | competition | location | country | event | placing | rider | nationality
31 october 2008 | 2008–09 world cup | manchester | united kingdom | sprint | 1 | victoria pendleton | gbr
31 october 2008 | 2008–09 world cup | manchester | united kingdom | keirin | 2 | jason kenny | gbr
1 november 2008 | 2008–09 world cup | manchester | united kingdom | sprint | 1 | jason kenny | gbr

Table Coll: (date, competition, location, country, event, placing, rider, nationality)

### Response: normalize_coll = ['date', 'competition’]
--- --- --- --- --- 
--- --- --- --- ---
### Table:
Read the table below regarding "[TITLE]”

[3 ROWS OF THE TABLE]

### Output: Let's think step by step, and generate the final output based on the instructions without any explanation. Ensure 
the final output is only “normalize_coll = [col1, col2, col3,…]”form, no other form.
### Response:

Column Selection Prompt

Figure 3: Column Selection prompt.
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You are an advanced AI capable of analyzing and understanding information within tables.

### Task: You are given the last row of a table. Your task is to detect if the last row has any information like aggregated rows 
such as ‘total’, ‘sum’ or 'average’.

### Last row: [LAST ROW AS A LIST]

Directly give your choice. Ensure the format is only "YES or NO" form, no other form, without any explanation.

### Response:

Summarized Last Row Detection Prompt

You are an advanced AI capable of analyzing and understanding information within tables. 

Read the first 3 rows of the table regrading "[TITLE]"

## Table:

[3 ROWS OF THE TABLE]

Headings of a table are labels or titles given to rows or columns to provide a brief description of the data they contain. Based 
on the given table, the headings of the table are more likely to be:

(A): [FIRST ROW AS LIST]

(B): [FIRST COLUMN AS LIST]

Directly give your choice. Ensure the format is only "(A) or (B)" form, no other form, without any explanation.

### Response:

Transpose Detection Prompt

Figure 4: Summarized last row detection and transpose detection prompt.

3582



You are an advanced AI capable of analyzing and understanding information within tables. 
Your task is to normalize a web table and convert it into a relational database table, enabling the execution of SQL queries on 
the data. 

Read the table below regarding "[TITLE]”

### Table:

[TABLE]

### Task: Your task is to normalize the structure and the values of each cell to convert this table as a regular normalized 
relational database table so that we can run sqlite sql query over this table.

### Instructions:

1. If some of the values needed to be splitted or extracted then extract the string and add it in new columns. i.e. from 
'alejandro valverde (esp)' country 'esp' can be extracted and added to the new column.
2. Make sure the date and the numerical value is normalized to a uniform format. The date format should be (YYYY-MM-DD). 
3. Be cautious of numerical values that contain comma or any extra string such as '$', '%' or units.
4. Convert the ‘N/A’ or null values to blank.
5. Handle the columns that contain ranges such as 2010/11, 2015-2018 etc to  two separate columns.
6. Never delete any columns or rows.
7. Carefully remove extraneous characters if needed.

### Output: Let's think step by step and generate the final output table based on the instructions without any explanation. 
Ensure the final output is only “normalized_table = [[col1, col2, col3,…], [row11, row 12, row13,.....],....]”form, no other 
form.

### Response: 

NormTab Prompt

Figure 5: NormTab Instruction prompt.
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Generate SQL with no explanation given the question and table to answer the question correctly.

### SQLite table properties:

Table: Marek Plawgo(row_number,year,competition,venue,position,event,notes)

3 example rows: 
 select * from T limit 3;
row_number | year | competition | venue | position | event | notes
0 | 1999 | european junior championships | riga, latvia | 4th | 400 m hurdles | 52.17
1 | 2000 | world junior championships | santiago, chile | 1st | 400 m hurdles | 49.23
2 | 2001 | world championships | edmonton, canada | 18th | 400 m hurdles | 49.8

Q: when was his first 1st place record?
SQL: select year from T where position = '1st' order by year asc limit 1

---- ----- ------ ----- ----
---- ----- ------ ----- ----
---- ----- ------ ----- ----

### SQLite table properties:

Table: Figure skating at the Asian Winter Games(row_number, rank, nation, gold, silver, bronze, total)

3 example rows: 
 select * from T limit 3;
 row_number | rank | nation | gold | silver | bronze | total
0 | 1 | china | 13 | 9 | 13 | 35
1 | 2 | japan | 7 | 10 | 7 | 24
2 | 3 | uzbekistan | 1 | 2 | 3 | 6

Q: what is the average number of gold medals won by china, japan, and north korea?
SQL: select avg(gold) from T where nation in ('china', 'japan', 'north korea’)

### SQLite table properties:

Table: [TITLE] ([COLUMN NAMES])

3 example rows: 
 select * from T limit 3;

 [THREE EXAMPLE ROWS]

Q: [QUESTION]
SQL:

Text-to-SQL Prompt  
template (WikiTQ)

Figure 6: Text-to-SQL prompt template for the Table QA Task on the WikiTQ dataset.
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Generate SQL given the statement and table to verify the statement correctly.

### SQLite table properties:

Table: 1947 kentucky wildcats football team(row_number, game, date, opponent, result, wildcats_points, opponents, record)

3 example rows: 
 select * from T limit 3;
row_number | game | date | opponent | result | wildcats_points | opponents | record
0 | 1 | sept 20 | ole miss | loss | 7 | 14 | 0 - 1
1 | 2 | sept 27 | cincinnati | win | 20 | 0 | 1 - 1
2 | 3 | oct 4 | xavier | win | 20 | 7 | 2 - 1

Q: the wildcats kept the opposing team scoreless in four games
SQL: SELECT (SELECT COUNT(*) FROM T WHERE opponents = 0) = 4

---- ----- ------ ----- ----
---- ----- ------ ----- ----
---- ----- ------ ----- ----

### SQLite table properties:

Table: katsuya inoue(row_number, res, record, opponent, method, event, round, time, location)

3 example rows: 
 select * from T limit 3;
row_number | res | record | opponent | method | event | round | time | location
0 | loss | 19 - 9 - 4 | naoyuki kotani | submission (armbar) | pancrase - impressive tour 9 | 1 | 1:44 | tokyo , japan
1 | loss | 19 - 8 - 4 | kota okazawa | ko (punch) | pancrase - impressive tour 4 | 1 | 2:42 | tokyo , japan
2 | win | 19 - 7 - 4 | katsuhiko nagata | decision (unanimous) | gcm - cage force 17 | 3 | 5:0 | tokyo , japan

Q: in tokyo , japan , hikaru sato 's match ended before round 2
SQL: SELECT (SELECT COUNT(*) FROM T WHERE location = 'tokyo , japan' AND round < 2) > 0;

### SQLite table properties:

Table: [TITLE] ([COLUMN NAMES])

3 example rows: 
 select * from T limit 3;

 [THREE EXAMPLE ROWS]

Q: [STATEMENT]
SQL:

Text-to-SQL Prompt  
template (TabFac)

Figure 7: Text-to-SQL prompt template for the Table-based Fact Verification Task on the TabFact dataset.
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