
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 2572–2585
November 12-16, 2024 ©2024 Association for Computational Linguistics

Divide-or-Conquer? Which Part Should You Distill Your LLM?

Zhuofeng Wu†‡*, He Bai‡, Aonan Zhang‡,
Jiatao Gu‡, VG Vinod Vydiswaran†, Navdeep Jaitly‡, Yizhe Zhang‡

†University of Michigan, ‡Apple
{zhuofeng,vgvinodv}@umich.edu,

{hbai22,aonan_zhang,jgu32,njaitly,yizhe_zhang}@apple.com

Abstract

Recent methods have demonstrated that Large
Language Models (LLMs) can solve reasoning
tasks better when they are encouraged to solve
subtasks of the main task first. In this paper
we devise a similar strategy that breaks down
reasoning tasks into a problem decomposition
phase and a problem solving phase and show
that the strategy is able to outperform a single
stage solution. Further, we hypothesize that the
decomposition should be easier to distill into a
smaller model compared to the problem solv-
ing because the latter requires large amounts
of domain knowledge while the former only re-
quires learning general problem solving strate-
gies. We propose methods to distill these two
capabilities and evaluate their impact on rea-
soning outcomes and inference cost. We find
that we can distill the problem decomposition
phase and at the same time achieve good gen-
eralization across tasks, datasets, and models.
However, it is harder to distill the problem solv-
ing capability without losing performance and
the resulting distilled model struggles with gen-
eralization. These results indicate that by using
smaller, distilled problem decomposition mod-
els in combination with problem solving LLMs
we can achieve reasoning with cost-efficient
inference and local adaptation.

1 Introduction

Large Language Models (LLMs), such as GPT-4
(OpenAI, 2023), demonstrate exceptional abilities
in solving knowledge-intensive tasks like Open
Domain QA (ODQA) (Zhu et al., 2021), math
(Yue et al., 2023), science (Taylor et al., 2022) and
autonomous agents (Yao et al., 2022; Significant
Gravitas, 2023; Wang et al., 2024). However, the
use of gigantic LLMs with hundreds of billions
of parameters can be costly during inference, par-
ticularly when the reasoning chain generated is
lengthy. Additionally, due to the opaque nature of

*Work done during internship at Apple

these black box LLMs, they offer limited adaption
options. There is a need to use cheaper and more
flexible models to leverage the power of these black
box LLMs for local adaptation and cost-efficient
inference. Distilling the large LLMs would seem
like a reasonable strategy, but it often results in
a significant drop in performance for downstream
tasks (Chiang et al., 2023).

Previous studies (Weng, 2023; Wang et al.,
2023a) have indicated that effectively address-
ing such tasks requires the model to proficiently
perform two essential capabilities simultaneously:
1) planning and decomposition, which involves
breaking down complex objectives into smaller,
more manageable subgoals to facilitate efficient
handling of intricate tasks; and 2) execution and
solving, which involves memorizing vast amounts
of knowledge from extensive web training data and
effectively recalling this information when needed
to execute the problem-solving process. The first
capability, decomposition, typically requires the
model to engage in self-reflection on the input
query and generate a Chain-of-Thoughts (CoT)-
style reasoning chain (Wei et al., 2022) to tackle
the problem. Usually, these two abilities are inter-
twined in a single monolithic model throughout the
problem-solving process (Zhou et al., 2022).

In this paper, we first investigate whether it is
possible to decouple the decomposition and solv-
ing capabilities, and how to distill these capabilities
into smaller models for faster inference. We then
test several hypotheses: 1) Is distilling decompo-
sition easier than distilling solving? Decompo-
sition primarily relies on semantic understanding
and query parsing, while solving requires more
domain expertise and knowledge. For example,
decomposing the query “who is older, Messi or
Ronaldo?” into “how old is Messi?”, “how old is
Ronaldo?”, and “who is older?” only requires text
comprehension, whereas solving the task necessi-
tates memorization, retrieval, and utilization of in-

2572

Figure 1: Reasoning with a long thought chain using the black box LLM can be expensive and inflexible. We
propose to dissect the decomposition and solving of the task, and distill only the decomposition capability to a less
costly and more flexible student model, while still maintaining the original performance.

formation. We speculate that compressing the less
knowledge-intensive decomposition is easier. 2) Is
decomposition capability more generalizable than
solving capability? We hypothesize that decompo-
sition can sometimes be abstracted into symbolic
principles, making it more universally applicable
across tasks, datasets, and models. This enables
tasks and models to share a common decomposi-
tion engine and benefit from each other’s power,
reducing the effort and costs involved in distilling
a model for each individual task.

A natural question arises: is it possible to distill
only the long reasoning chain, which accounts for
most of the inference cost, but is relatively easier
to distill? To this end, we propose and evaluate the
distillation of only the decomposition capability
from the LLM. We empirically verified our hypoth-
esis using a teacher model, GPT-3.5-turbo, and two
student models, Vicuna-13B (Chiang et al., 2023)
and Mistral-7B (Jiang et al., 2023), on QA, math-
ematics, and compositional datasets (Dua et al.,
2019; Cobbe et al., 2021; Press et al., 2022).
Our contributions include:

1. We demonstrate that the decomposition ca-
pability is crucial for complex reasoning of
LLMs. This capability can be dissected from
the problem solving or task solving capability.

2. We show the feasibility and effectiveness of
distilling only the query decomposition from
the teacher model. The resulting distilled
model maintains most of the performance
while significantly reducing inference costs.
In contrast, distilling the solving component
of the LLM leads to a considerable decline in
performance.

3. We illustrate that the distilled query decom-
position model exhibits good generalization
across tasks, datasets, and models. However,
the distilled solving ability does not generalize
well.

4. We demonstrate that a static decomposition
and solving framework provides more advan-
tages compared to a dynamic approach in
which planning and solving steps are inter-
dependent.

2573

2 Decoupling Decomposition and Solving

As shown in Figure 1, a common approach to solv-
ing a reasoning task using an LLM involves directly
generating a response to the instruction and ques-
tion. This is referred to as the Single-Stage model.
The conventional method for LLM, known as the
Chain of Thought (CoT), instructs the model to
“think step by step,” allowing the model to take
more computational steps for difficult tasks.

However, CoT-style reasoning has limitations
as it often struggles to generalize to problems be-
yond the scope of the in-context examples. To
address this drawback, the most notable work is
the Least-to-Most approach (Zhou et al., 2022),
where the model breaks down the original question
into subquestions and answers them sequentially.
These approaches have shown improved perfor-
mance compared to CoT.

For QA tasks, typically, the next subquestion
is less dependent on the answer to the previous
subquestions. Conveniently, we propose a static
strategy similar to HuggingGPT (Shen et al., 2023),
where in the first Decomposition stage several de-
composed subquestions are first generated to de-
compose the primary question. In the second Solv-
ing stage, these subquestions are then answered
one by one to obtain the final answer. We refer to
this line of models as the Two-Stage models.

Interactive vs static process Note that an inter-
active and dynamic process could be beneficial for
certain reasoning tasks. In our experiments with
math and QA datasets, the decomposition and solv-
ing stages are more independent, thus we did not
observe gain by switching to an interactive process.
Our primary focus lies in understanding the impact
of distilling task decomposition and solving capa-
bilities, rather than finding the optimal framework.
Using a static approach would enable us to have a
clearer separation of the decomposition and solving.
The distilled decomposer can also potentially be
integrated into more dynamic reasoning processes,
enabling iterative solving and refinement based on
intermediate outputs. We include a comparison in
Section 6.1 to illustrate the benefits of adopting a
static process.

3 Distill the Decomposition Capability

Generating decomposed questions can be compu-
tationally expensive when the reasoning chain is
long while using a black box LLM. Moreover, it is
challenging to optimize or customize the decompo-

sition process as it is performed by the black box
model. Our proposal aims to address these issues
by utilizing a smaller trainable student model, as a
drop-in replacement for the large black box LLM
for decomposition. To achieve this, we distill the
decomposition capability from the teacher LLM,
referred to as T .

Generating Sub-questions from Teacher As
shown in Figure 1, we begin by gathering demon-
strations from T . Instead of requesting T to solve
the problem, we ask it to break down a given ques-
tion Q without providing the solution. Specifically,
we provide T with an instruction for decomposi-
tion, denoted as Idecomp, along with Q. T then
generates a set of sub-questions {Si}i=1,2,3....

Instruction for decomposition: Idecomp

Your task is to break down a given complex ques-
tion into the most relevant and helpful subquestions,
ensuring that no more than three subquestions are for-
mulated for each question. Both the context and the
main question will be provided to you. If the question
does not need breaking down to be answered, return
“No decomposition”; otherwise, list the necessary sub-
questions. Only return subquestions that directly aid
in answering the original question, avoiding any that
could be harmful or unhelpful.

Question: Q

Decomposer Distillation Given the sub-
questions {Si} generated from the teacher, we can
finetune a student decomposer S by optimizing the
cross-entropy loss for T (Idecomp, Q) → {Si}. We
denote the resulting student model as SD-T .

Subquestions Screening via Ground-truth An-
swer As an additional step, if the dataset comes
with a corresponding ground-truth answer, denoted
as A, we can optionally use this information to
screen high-quality generated subquestions. To do
this, we feed the same teacher model T with an-
other instruction Ians that asks the model to solve
the primary question Q by first solving the sub-
questions {Si}. We collect the generated answer
T (Ians, P, {Si}, Q) → Â, where P represents the
premise. Ians is provided as the following:

2574

Instruction for solving: Ians

Solve a complex question by answering several related
subquestions that would help me to answer it first.
Answer the subquestions one by one and finally solve
the original question. The final answer is supposed to
attached in the end in the format of “The answer is: ”.
Now comes our primary question and its subquestions:

Premise: P
Question: Q
SubQuestion: {Si}

We assume that, statistically speaking, better
{Si} will eventually lead to better resolving the
tasks. Thus, we can optionally filter out training
instances where Â ̸= A. However, this will result
in data loss. As this screening process is similar to
the Rejection Sampling (Touvron et al., 2023), we
denote the resulting model as SD-R.

In Section 5.2, we compare the performance of
the distilled decomposer trained using the entire
set of demonstrations SD-T against decomposer
trained using a screened dataset SD-R.

4 Experiments

Datasets We assess the effectiveness of our
pipeline on three distinct datasets. GSM8K (Cobbe
et al., 2021) focuses on mathematical reasoning
and is composed of 7.5K training instances along-
side 1K test problems. DROP (Dua et al., 2019)
caters to Question Answering, containing 77.4K
training samples and a 9.5K validation set. Bam-
boogle (Press et al., 2022) is a manually crafted
collection that integrates two questions into one
complex question, consisting of 125 test samples.
We use the GSM8K test set, the DROP develop-
ment set, and the Bamboogle test set for evaluation.

Teacher/Student Models We use GPT-3.5-
Turbo-0615 model (Ouyang et al., 2022) as the
teacher model throughout our experiments. After
training we employ different levels of teacher mod-
els to ensure a comprehensive evaluation: two open
sourced models (Vicuna-13b-v1.3 and Mistral-7B-
Instruct-v0.3) and three black box models (text-
davinci-003 (Brown et al., 2020), GPT-3.5-Turbo
and GPT-4).

Student solver Models To compare the perfor-
mance of distilling decomposer with distilling
solver, we conducted further training on several
Vicuna models to mimic the behavior of the teacher
as student solvers. Similar to the student decom-
poser, SE-T represents the model trained using the

teacher’s demonstrations of T (Ians, {Si}, Q) →
({Âs

i}, Â), where {Âs
i} represents the answers to

the subquestions {Si} generated by T .
Furthermore, in scenarios where the oracle an-

swer A is available, we fine-tuned the same vanilla
Vicuna-13B model to obtain SE-A. This model
was trained using (Ians, {Si}, Q) → ({Âs

i}, A),
where the targets include answers to the subques-
tions {Si} from the T and the oracle answer A.

Training Details We use a batch size of 128,
train for 3 epochs on DROP and train for 5 epochs
on GSM8K and Bamboogle dataset (until conver-
gence), and set the learning rate to 2 · 10−5 for the
distillation training. All the distillation fine-tuning
can be finished in less than 12 hours on 8 × 80G
A100 GPUs.

Inference Cost Estimation We calculate the cost
based on GPT-3.5-turbo-1106 (175B - a vague es-
timation based on GPT-3), with a rate of $0.001
for 1000 input tokens and $0.002 for 1000 output
tokens. OpenAI has made significant optimizations
for inference time when serving GPT models. To
ensure a fair comparison, we conservatively esti-
mate the cost of the Vicuna-13B model by divid-
ing the cost by the ratio of the model size. As a
result, the cost for Vicuna-13B is approximately
$7.42∗10−5 for 1000 input tokens and $1.48∗10−4

for 1000 output tokens.

5 Results

5.1 Decomposition is Essential for Reasoning

First, we explore the possibility of separating the
Decomposition from Solving and assess the effec-
tiveness of using an improved decomposition for
complex reasoning tasks.

Previous studies (Press et al., 2022; Zhou et al.,
2022) have demonstrated the utility of leveraging
decomposed subquestions to enhance the question-
answering capabilities of black-box models. They
adopt interactive planning strategies, where the
generation of each subquestion is conditioned on
the answer of the previous subquestions.

As discussed in Section 2, we instead use a static
strategy by breaking down the reasoning process
into two separate stages of Decomposition and
Solving. Table 1 (Single-stage GPT/Vicuna vs Two-
stage GPT/Vicuna), shows that in general such a
static strategy leads to performance gains over a
Single-stage approach. This aligns with previous
findings (Zhou et al., 2022).

2575

Decomposer Solver Performance↑ Inference Expense ↓
Model Model GSM8K DROP Bamb GSM8K($) DROP($) Bamb($)

Single-stage - GPT 20.32 46.51 49.6 -/0.01 -/0.05 -/7e-3
- Vicuna-13B 9.40 26.68 33.6 -/0.03 -/0.03 -/2e-3

Two-stage

GPT GPT 65.13 55.73 54.4 0.13/0.63 0.73/0.96 2e-3/9e-3
Vicuna-13B GPT 62.93 47.13 48.8 0.02/0.67 0.07/0.96 1e-3/0.02

GPT Vicuna-13B 28.13 21.29 32.8 0.13/0.07 0.73/0.08 2e-3/3e-3
Vicuna-13B Vicuna-13B 28.51 20.90 29.6 0.02/0.08 0.07/0.08 1e-3/5e-3

w/o oracle answer SD-T GPT 67.02 55.19 52.0 0.01/0.62 0.06/0.96 1e-3/0.03
GPT SE-T 48.98 13.37 31.2 0.13/0.09 0.73/0.06 2e-3/2e-3

w/ oracle answer SD-R GPT 67.78 57.97 52.0 0.01/0.60 0.06/1.11 8e-5/7e-3
GPT SE-A 51.55 20.34 40.8 0.13/0.09 0.73/0.04 2e-3/2e-3

Table 1: Comparison results on GSM8K, DROP, and Bamboogle datasets. Performance on GSM8K is assessed via
the exact match score (EM), DROP is evaluated using the F1 score, Bamboogle (Bamb) is evaluated using accuracy.
The inference expense is estimated by total sample cost. X/X indicates decomposition/solving cost.

We demonstrate in Table 1 (Two-stage models)
that replacing a stronger decomposer (GPT) with
a weaker decomposer (Vicuna) mostly results in
a noticeable decrease in performance, with an ex-
ception of using Vicuna as solver on GSM8K. We
hypothesize that presumably the Vicuna solver is
too erroneous to harness the improvement from the
decomposition. We observe that the decrease is
more significant when the solver is more power-
ful. This suggests that in order to achieve optimal
performance, a stronger decomposer is essential.

5.2 Is Distilling Decomposition Easier than
Distilling Solving?

Next, we investigate distilling knowledge from T
to S when the ground truth answer A is not avail-
able. This is the most common use case as ground
truth annotations are typically expensive and rare.
The results are shown in Table 1 (w/o oracle an-
swer A). It can be seen that swapping in SD-T for
the decomposer is at least comparable to the per-
formance using T . Moreover, the SD-T exhibits
a noticeable improvement compared to using Vi-
cuna as the decomposer. However, swapping in
a student solver model SE-T significantly harms
the performance. We also evaluated a single-stage
student model distilled from single-stage GPT. The
result, omitted, was even worse than the model
where GPT was the decomposer and SE-T was
the solver. In terms of inference cost, our SD-T
approach results in significantly lower cost for the
decomposition compared to using the teacher GPT
model. The cost of the solver remains unchanged.

We compare some decompositions from T , from
Vicuna and from SD-T on the evaluation set in

Table 2. It can be observed that the distilled SD-
T model, which is obtained by using in-domain
demonstration from T , exhibits a high degree of
similarity to the teacher demonstration in the gener-
ated subquestions on the unseen test set. In contrast,
the original Vicuna model often generates unhelp-
ful questions that have the potential to distract the
solver (Table 2, Vicuna-13B).

One might naturally wonder: If a smaller student
model can quickly imitate the decomposition abili-
ties of the teacher model, why is it challenging to
acquire this skill directly through student model’s
initial pretraining? Our hypothesis is that the de-
composition ability of a stronger teacher model is
easy to distill but difficult to acquire. This skill
is likely based on the thorough digestion and in-
ternalization of vast amounts of data during the
intensive pretraining of the larger models. How-
ever, as it is more logical and abstract rather than
being knowledge-intensive, a few demonstrations
may already provide ample guidance to the student.
To draw an imperfect analogy, finding a physics
theorem from massive observations is much more
challenging than learning the theorem in the class.

With available oracle answers Sometimes, we
have access to the oracle answers A, which can be
used to further enhance the model’s performance
on specific domains through local adaptation and
additional finetuning. As a result, the performance
on these target domain can be beyond the perfor-
mance of the black-box teacher model. We explore
the options to enhance the models via distillation
or target domain finetuning.

In these scenarios, we can possibly use A to
screen the training instance for distill the decom-

2576

Dataset: DROP Models Decomposed Sub-questions

Premise P : The Raiders stayed at
home for a Week 16 duel with the
Houston Texans. ... The Texans
tried to rally in the fourth quarter as
Brown nailed a 40-yard field goal,
yet the Raiders’ defense would
shut down any possible attempt.
Question Q: How many field
goals did both teams kick in the
first half?

Vicuna-13B
1. Which teams played against each other? X
2. What were the scores for each team during the game? X
3. Which team had the lead at the end of the game? X

GPT-3.5

1. How many field goals did the Raiders kick in the first half?
2. How many field goals did the Texans kick in the first half?
3. What is the sum of the field goals kicked by both teams in
the first half?

SD-T
In-Domain

1. How many field goals did the Raiders kick in the first half?
2. How many field goals did the Texans kick in the first half?

SD-T (GSM)
Cross-Domain

1. How many field goals did the Raiders kick in the first half?
2. How many field goals did the Texans kick in the first half?

Dataset: GSM8K Models Decomposed Sub-questions

Premise P : Mark is a copy-editor.
He edits an equal number of
sentences each week for two
different publishers, who each pay
him a different rate per sentence.
Publisher B pays Mark twice what
Publisher A pays. Mark edits a
total number of 1000 sentences
each week, and Publisher A pays
him 5 cents per sentence.
Question Q: How much does
Mark make in a week, in cents?

Vicuna-13B

1. What is the rate per sentence that Publisher B pays Mark? X
2. What is the total amount Publisher A pays Mark for editing
1000 sentences?
3. What is the total amount Publisher B pays Mark for editing
1000 sentences?

GPT-3.5
1. How many sentences does Mark edit each week for Publisher A?
2. How many sentences does Mark edit each week for Publisher B?
3. How much does Mark make per sentence from Publisher B?

SD-T
In-Domain

1. How many sentences does Mark edit for Publisher A in a week?
2. How many sentences does Mark edit for Publisher B in a week?
3. What is the rate per sentence paid by Publisher B?

SD-T (DROP)
Cross-Domain

1: How much does Publisher A pay Mark per sentence?
2: How much does Publisher B pay Mark per sentence?
3: How many sentences does Mark edit in a week?

Dataset: Bamboogle Models Decomposed Sub-questions

Question Q: When was the
longest bridge in the world
opened?

Vicuna-13B

1. What is the definition of a ""bridge"" for the purpose of
determining the longest one in the world? X
2. What is the current longest bridge in the world and when
was it opened?

GPT-3.5 1. What is the name of the longest bridge in the world?
2. When was the longest bridge in the world opened?

SD-T
In-Domain

1. What is the name of the bridge that holds the record for being
the longest in the world?
2. What is the date on which this record-breaking bridge was
officially opened to traffic?

Table 2: Examples for decomposed subquestions from each method on GSM8K, DROP, and Bamboogle. SD-
T (GSM) and SD-T (DROP) denote Vicuna student models that distilled from T ’s demonstration on GSM8K and
DROP datasets, respectively. X indicates not helpful subquestions.

poser, similar to Rejection Sampling. The resulting
student model SD-R achieved higher performance
than using SD-T , as shown in Table 1 (w/ oracle
answer A). Notably, on the DROP dataset, SD-R
outperforms the teacher model in F1 score.

We also finetune another Vicuna model for the
solver using the ground-truth answers, referred to
as SE-A. Our main findings remain consistent to
the scenario where no oracle answers are avail-
able. Distilling the decomposer still yields better
performance comparing with finetuning the solver.
We omitted the single-stage Vicuna model fine-
tuned using A, which yielded worse results than
GPT(decomposer) + SE-A(solver).

Failure modes for SE models According to our
observations, we hypothesize that there are two pri-

mary failure modes of the SE-T and SE-A models.

First, answering either subquestions or primary
questions would require extensive world knowl-
edge, which can be difficult to compress into a
student model that is hundreds of times smaller,
using only a few demonstrations. In other words,
a strong solving capability is knowledge-intensive.
On the other hand, decomposition capability might
be more compressible as it is typically more ab-
stract, has lower information density, and is more
universal than solving capability.

Second, since we used the teacher’s answers to
the subquestions {Âs

i} as part of the target, the SE

models could get confused and generate the final
answers to one of the subquestions {Si}, rather
than the primary question Q. (Examples are pro-

2577

vided in Appendix C.)
Based on above findings, we excluded the {Âs

i}
in the target when training the SE models. Specif-
ically, we train the models to directly generate
the answer by skipping answering subquestions,
SE(I

′
ans, {Si}, Q) → Â or A. The resulting mod-

els are denoted as SE-T (direct) and SE-A(direct)
in Table 8. We found that {Âs

i} from the target
yields improved results over the DROP dataset,
but leads to a decrease in performance over the
GSM8K dataset. Overall, the decrease observed
in GSM8K is more prominent than the gain seen
in the DROP dataset. Therefore, we still use the
SE models with the {Âs

i} in the target. We provide
additional analysis, I ′ans, and show the comparison
results in Appendix A.

Decomposer GPT SD-R GPT -
Solver GPT GPT SE-A SE-A

Trained on Evaluation on DROP

GSM8K 55.73 51.05 7.98 17.22

Trained on Evaluation on GSM8K

DROP 65.13 63.15 11.30 3.41

Table 3: Distilled student decomposers demonstrate
strong generalization over out-domain datasets.

Decomposor Solver GSM8K DROP

GPT-3.5-Turbo
Vicuna-13B 28.0 33.78

GPT-3.5-Turbo 66.0 59.38
GPT-4 90.5 77.60

Vicuna-13B
Vicuna-13B 29.5 26.56

GPT-3.5-Turbo 57.0 47.31
GPT-4 88.5 79.40

SD-R
Vicuna-13B 31.5 33.38

GPT-3.5-Turbo 66.5 61.94
GPT-4 91.5 81.02

Table 4: Distilled student decomposers demonstrate
consistent improvements over different solvers. Weaker
solvers receive more gain.

5.3 Is Distilling Decomposition More
Generalizable than Distilling Solving?

Generalization to other domains We then in-
vestigate whether the distilled decomposer, which
is trained on a specific domain dataset, can be ap-
plied to out-of-domain datasets with distinct ob-
jectives. To test this, we perform a cross-domain
evaluation on DROP and GSM8K, which require
different expertise from the solver. The results,
when the oracle answer is available, are presented

Backbone Vicuna-13B Mistral-7B

-/Backbone 33.6 40.0
Backbone/GPT 48.8 56.8
GPT/Backbone 32.8 40.0

Backbone/Backbone 29.6 38.4

SD-T /GPT 52.0 55.2
GPT/SE-T 31.2 40.8

SD-R/GPT 52.0 60.0
GPT/SE-A 40.8 47.2

Table 5: Comparison results of Vicuna-13B and Mistral-
7B on Bamboogle dataset. X/X denotes the Decom-
poser/Solver model, where “Backbone” refers to the
vanilla untuned backbone model.

in Table 3. Surprisingly, the distilled decomposer
SD-R demonstrates good generalization and ver-
satility to the other domain, as evidenced by only
a slight decrease in performance compared to us-
ing the teacher GPT model as the decomposer. In
contrast, when substituting the solver with SE-A,
which is fine-tuned on the original domain, the gen-
eralization to the other domain is poor regardless
of the decomposer used. Some examples of cross-
domain subquestion decomposition are shown in
Table 2. The results on the scenario with no oracle
answer are consistent with Table 3.

Generalization to other solvers Next, we exam-
ine whether the distilled decomposer is compatible
and universally suitable for different solvers. The
results can be seen in Table 4. The performance of
SD-R is comparable to that of the teacher decom-
poser (GPT), and it shows overall improvements
over a weaker decomposer (Vicuna) when con-
nected to different solvers. We found that weaker
solvers receive more performance gain compared
to strong solvers, through upgrading to a distilled
decomposer. We hypothesize that the reason lies in
the fact that the weaker solver may be incapable of
fully utilizing the benefits of the decomposition.

Generalization to other backbones To verify
whether our observations on the Vicuna-13B model
hold for other backbone models, we conducted sim-
ilar experiments on the Bamboogle dataset using
the Mistral-7B model (Table 5). The results exhib-
ited a consistent pattern across different backbones,
suggesting the robustness of our conclusions.

6 Ablations

We provide an extensive evaluation of various in-
structions, and an exploration into the influence of

2578

the number of demonstrations in Appendix B.

6.1 Decomposition: Static or Dynamic?
Prior research, including self-ask (Press et al.,
2023) and CoQ (Zhu et al., 2023), employed dy-
namic decomposition pipelines where each reason-
ing step depends on previous steps. In contrast, our
approach adopts a static method that separates plan-
ning from question-solving. This section presents
a direct comparison of both pipelines.

Dynamic Pipeline Our pipeline is compared
to the self-ask dynamic decomposition method.
Self-ask appends "Are follow-up questions needed
here?" to the original query, determining if sub-
questions are needed to assist in answering. When
needed, the model generates and independently an-
swers relevant subquestions. This process iterates
until the model deems no additional subquestions
are needed to answer the original query.

Setup GPT-3.5-turbo is used for both question
decomposition and answer generation in both the
dynamic and static model. We compare the two
approaches on Bamboogle and GSM8K datasets.

Bamboogle GSM8K

EM #tokens Acc #tokens

Dynamic 53.6 59,792 62.92 823,886

Static 54.4 15,106 65.13 355,302

Table 6: Comparison between static planning and dy-
namic planning on Bamboogle and GSM8K datasets.

Results and Analysis From Table 6, we observe
that: 1) Dynamic planning performs poorly on both
datasets because dynamic processes require precise
reasoning models. Errors in intermediate steps
can influence subsequent steps and affect the final
outcomes. 2) The cost of the dynamic pipeline
is markedly higher than that of the static pipeline
(×3.96 and ×2.32 for the number of input tokens
on Bamboogle and GSM8K, respectively), high-
lighting the substantial inference costs associated
with dynamic processes.

We acknowledge the potential of dynamic de-
composition and its advantages in specific appli-
cation scenarios. However, our experiments on
evaluated tasks show that static decomposition of-
fers certain advantages. Nevertheless, our goal is to
analyze whether decomposition or solver capability
is easier and more generalizable to distill, rather
than seeking the optimal strategy.

6.2 Impact of Learning Decomposition

Fine-tuning a model to enhance its decomposition
performance might affect its problem-solving abil-
ities. To evaluate this effect, we assess the perfor-
mance of a fine-tuned decomposer against an un-
trained model in a question-answering context. In
the initial question decomposing phase, both mod-
els tackle the same set of decomposed questions.
Then, during the answering phase, one model lever-
ages an untrained Vicuna model, while the other
employs SD-R, which was initially trained for the
decomposition task. We adhered to the evaluation
settings in Table 1.

Decomposer Solver GSM8K DROP Bamb

SD-R Vicuna-13B 28.35 26.63 32.8
SD-R SD-R 5.99 7.87 17.6

Table 7: Impact of learning question decomposition on
model’s solving capability.

From Table 7, it is evident that the trained
specialized model performs significantly worse
than the untuned model on other tasks (-22.36 on
GSM8K, -18.76 on DROP, -15.2 on Bamboogle).
This indicates that, without specific adjustments or
designs, focusing solely on learning decomposition
can negatively impact problem-solving abilities in
reasoning tasks. These findings underscore our
core design principle: separating reasoning into
distinct decomposition and solving stages is advan-
tageous. In our pipeline, decomposition process is
isolated from the problem-solving stage, ensuring
that solver’s reasoning capability remains intact.

7 Related Work

LLM Distillation Tremendous progress (Jiao
et al., 2020; Sun et al., 2019; Li et al., 2021) has
been made in terms of compressing large-scale pre-
trained language models such as BERT (Devlin
et al., 2019) or RoBERTa (Liu et al., 2019). For
generative models, compression is predominantly
achieved by minimizing the K-L divergence be-
tween teacher and student distributions (Sanh et al.,
2019; Gu et al., 2023a). A pivotal assumption un-
derlying these methods is the full accessibility of
the teacher model’s components. However, most
powerful LLMs are black boxes, revealing only
limited outputs. Given these constraints, several
methodologies have emerged that train directly on
data generated by teacher models (Chiang et al.,
2023; Taori et al., 2023). We follow a similar distil-

2579

lation strategy but focus on the decomposition capa-
bility distillation. More recently, researchers have
explored aligning small models with large models
by leveraging the reward signal from teachers or
human preference feedback (Kwon et al., 2023; Gu
et al., 2023b; Tunstall et al., 2023), using methods
such as DPO (Rafailov et al., 2024) or PPO (Schul-
man et al., 2017). While some approaches, such as
Symbolic CoT (Li et al., 2023) and SCOTT (Wang
et al., 2023b), have focused on distilling reasoning
(CoT) capabilities into one compact model, which
diverges from our main focus.

LLM Reasoning Chain LLMs can benefit from
explicit reasoning chains, as demonstrated by re-
cent studies (Wei et al., 2022; Zheng et al., 2023).
The Chain of Thought (CoT) (Wei et al., 2022) tech-
nique has become standard for enhancing model
performance on complex tasks. Tree of Thoughts
(Yao et al., 2023) decomposes the problem into mul-
tiple thought steps and generates multiple thoughts
per step, creating a tree structure. The LLM+P
approach (Liu et al., 2023) incorporates an exter-
nal classical planner for long-horizon planning and
translates the plan back into natural language. The-
oretical work (Feng et al., 2023) has analyzed why
CoT works by using circuit complexity theory. It
shows that without CoT, the model size would need
to be prohibitively large to achieve the same perfor-
mance through direct reasoning.

However, CoT-style reasoning is limited by the
fact that it often generalizes poorly to problems
beyond the scope of the provided in-context ex-
amples (Zhou et al., 2022). To address this, some
studies have asked LLMs to decompose complex
questions into subquestions following the Least-to-
Most prompt (Zhou et al., 2022). Others have used
the self-ask method to elicit follow-up questions
that aid in addressing the original inquiry (Press
et al., 2022). Our work contributes to this line of
research by extending the horizon to cost-efficient
inference and generalization across tasks.

Question Decompostion Datasets and Ap-
proaches A widely recognized dataset for
question decomposition in the literature is
QDMR (Wolfson et al., 2020). It comprises an or-
dered list of sub-questions essential for addressing
a primary question. Several previous works have
been training question decomposers on the QDMR
dataset (Guo et al., 2022; Zhu et al., 2023). In con-
trast, some research does not rely on QDMR but
employs their uniquely labeled data. For instance,

Min et al. (2019) recast question decomposition as
a span prediction problem and trained their model
on a set of 400 labeled questions. Recognizing
the challenges associated with obtaining reliable
decomposition data, Perez et al. (2020) introduced
an unsupervised decomposition approach, capitaliz-
ing on the similarity between the primary question
and 10M potential sub-questions mined for decom-
position purposes. Our approach differs from the
aforementioned methodologies because we extract
the decomposition power solely from the teacher
model, without relying on annotated subquestions.

Complement LLMs with Small models There
have been studies that have emphasized the poten-
tial of smaller, task-specific models to complement
the predictions of LLM. Xu et al. (2023) explored a
framework in which candidates produced by these
task-specific models are fed to an LM, with a pri-
mary focus on classification tasks. Welleck et al.
(2022) train a smaller model to iteratively improve
sequences generated by LMs. Vernikos et al. (2023)
have demonstrated that collecting multiple erro-
neous outputs from LMs and using a small correc-
tor model to unify the generation can significantly
reduce errors. Our work can also be seen as devel-
oping a smaller decomposer model to activate the
best performance of a large-scale LM.

8 Conclusion

Our investigation provides a fine-grained examina-
tion of the LLM’s capability on reasoning tasks,
by disentangling the decomposition and solving
aspects. Although both capacities are vital for rea-
soning, we demonstrate that decomposition is less
dependent on specific knowledge and thus easier
to distill compared to distilling solving capabilities,
regardless of the availability of ground truth la-
bels. Additionally, the distilled decomposer shows
strong generalization abilities across different tasks,
datasets and executor/solvers. For future work, it
would be interesting to train universal decomposer
models using data from various tasks, and explore
the use of reinforcement learning to further en-
hance the decomposer, leveraging the signal from
the solver outcome. Another possible direction
for future work is to assess the effectiveness of
our method in other long-horizon planning tasks,
including LLM-powered agent, tool use, and multi-
turn decision making.

2580

Limitations

Our work is built upon several assumptions. First,
we assume that the teacher model is capable of
breaking down queries effectively. Second, we
assume that the student model has the capacity to
learn the distilled planning from the teacher model.
Lastly, we assume that the tasks involved in our
work require long horizon planning capability. If
any of these assumptions do not hold true, it would
impact the effectiveness of our proposed method.

It is important to note that we have only assessed
the effectiveness of our model in the context of
math and QA aspects. In order to fully complete
our work, it would be necessary to evaluate our
model on a broader range of planning tasks. This
would include benchmarks related to tool use, LLM
agents, and multiturn scenarios. Such evaluations
would help verify the versatility and applicability
of our proposed method.

Acknowledgements

We thank Wang Zhu, Lingxiao Zhao, Simone Co-
nia, Pratyush Maini, Zhenhao Zhang, Jiazhao Li,
Fei Sun, members of the University of Michigan’s
NLP4Health research group, and all anonymous
reviewers for helpful discussion and valuable feed-
back.

References
Anton Osika. 2023. GPT Engineer. https:

//github.com/AntonOsika/gpt-engineer/
commits?author=AntonOsika. GitHub repository.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Pei Chen, Shuai Zhang, and Boran Han. 2024.
CoMM: Collaborative multi-agent, multi-reasoning-
path prompting for complex problem solving. In
Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 1720–1738, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye,
Di He, and Liwei Wang. 2023. Towards revealing
the mystery behind chain of thought: a theoretical
perspective. arXiv preprint arXiv:2305.15408.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023a. Knowledge distillation of large language
models. arXiv preprint arXiv:2306.08543.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023b. Minillm: Knowledge distillation of large
language models. In The Twelfth International Con-
ference on Learning Representations.

Xiao-Yu Guo, Yuan-Fang Li, and Gholamreza Haf-
fari. 2022. Complex reading comprehension through
question decomposition. In Proceedings of the The
20th Annual Workshop of the Australasian Language
Technology Association, pages 31–40, Adelaide, Aus-
tralia. Australasian Language Technology Associa-
tion.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and
Dorsa Sadigh. 2023. Reward design with language
models. arXiv preprint arXiv:2303.00001.

2581

https://github.com/AntonOsika/gpt-engineer/commits?author=AntonOsika
https://github.com/AntonOsika/gpt-engineer/commits?author=AntonOsika
https://github.com/AntonOsika/gpt-engineer/commits?author=AntonOsika
https://doi.org/10.18653/v1/2024.findings-naacl.112
https://doi.org/10.18653/v1/2024.findings-naacl.112
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://aclanthology.org/2022.alta-1.5
https://aclanthology.org/2022.alta-1.5
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372

Langchain-AI. 2023. Langchain Github Repository.
GitHub repository.

Lei Li, Yankai Lin, Shuhuai Ren, Peng Li, Jie Zhou, and
Xu Sun. 2021. Dynamic knowledge distillation for
pre-trained language models. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 379–389, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang
Ren, Kai-Wei Chang, and Yejin Choi. 2023. Sym-
bolic chain-of-thought distillation: Small models can
also “think” step-by-step. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2665–
2679, Toronto, Canada. Association for Computa-
tional Linguistics.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023. Llm+ p: Empowering large language mod-
els with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Multi-hop reading compre-
hension through question decomposition and rescor-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
6097–6109, Florence, Italy. Association for Compu-
tational Linguistics.

Yohei Nakajima. 2023. Babyagi. GitHub repository.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun
Cho, and Douwe Kiela. 2020. Unsupervised question
decomposition for question answering. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
8864–8880, Online. Association for Computational
Linguistics.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah Smith, and Mike Lewis. 2023. Measuring and
narrowing the compositionality gap in language mod-
els. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5687–5711, Singa-
pore. Association for Computational Linguistics.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. arXiv preprint arXiv:2210.03350.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: Smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
huggingface. arXiv preprint arXiv:2303.17580.

Significant Gravitas. 2023. Auto-gpt: An Autonomous
GPT-4 Experiment. GitHub repository.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323–4332, Hong Kong, China. Association for Com-
putational Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science. arXiv
preprint arXiv:2211.09085.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, et al. 2023. Zephyr: Di-
rect distillation of lm alignment. arXiv preprint
arXiv:2310.16944.

Giorgos Vernikos, Arthur Bražinskas, Jakub Adamek,
Jonathan Mallinson, Aliaksei Severyn, and Eric
Malmi. 2023. Small language models improve

2582

https://github.com/langchain-ai/langchain
https://doi.org/10.18653/v1/2021.emnlp-main.31
https://doi.org/10.18653/v1/2021.emnlp-main.31
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/P19-1613
https://doi.org/10.18653/v1/P19-1613
https://doi.org/10.18653/v1/P19-1613
https://github.com/yoheinakajima/babyagi
https://api.semanticscholar.org/CorpusID:257532815
https://doi.org/10.18653/v1/2020.emnlp-main.713
https://doi.org/10.18653/v1/2020.emnlp-main.713
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441

giants by rewriting their outputs. arXiv preprint
arXiv:2305.13514.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2023a. A survey on large
language model based autonomous agents. arXiv
preprint arXiv:2308.11432.

Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao,
Bing Yin, and Xiang Ren. 2023b. SCOTT: Self-
consistent chain-of-thought distillation. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5546–5558, Toronto, Canada. Association for
Computational Linguistics.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024. Executable
code actions elicit better llm agents. arXiv preprint
arXiv:2402.01030.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-
man, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. 2022. Generating sequences by learning to
self-correct. arXiv preprint arXiv:2211.00053.

Lilian Weng. 2023. Llm powered autonomous agents.
Accessed: 2024-02-13.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gard-
ner, Yoav Goldberg, Daniel Deutch, and Jonathan
Berant. 2020. Break it down: A question understand-
ing benchmark. Transactions of the Association for
Computational Linguistics, 8:183–198.

Canwen Xu, Yichong Xu, Shuohang Wang, Yang Liu,
Chenguang Zhu, and Julian McAuley. 2023. Small
models are valuable plug-ins for large language mod-
els. arXiv preprint arXiv:2305.08848.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo
Li, and Yu Li. 2023. Progressive-hint prompting
improves reasoning in large language models. arXiv
preprint arXiv:2304.09797.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming
Zheng, Soujanya Poria, and Tat-Seng Chua. 2021.
Retrieving and reading: A comprehensive survey on
open-domain question answering. arXiv preprint
arXiv:2101.00774.

Wang Zhu, Jesse Thomason, and Robin Jia. 2023.
Chain-of-questions training with latent answers for
robust multistep question answering. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 8845–8860,
Singapore. Association for Computational Linguis-
tics.

2583

https://doi.org/10.18653/v1/2023.acl-long.304
https://doi.org/10.18653/v1/2023.acl-long.304
https://lilianweng.github.io/posts/2023-06-23
https://doi.org/10.1162/tacl_a_00309
https://doi.org/10.1162/tacl_a_00309
https://doi.org/10.18653/v1/2023.emnlp-main.547
https://doi.org/10.18653/v1/2023.emnlp-main.547

Appendix

A Exclusion of Answers to Subquestions

Decomposer Solver Performance↑
Model Model GSM8K DROP

w/o oracle A
GPT SE-T (Direct) 5.46 53.17
GPT SE-T 48.98 13.37

w/ oracle A
GPT SE-A(Direct) 6.44 72.55
GPT SE-A 51.55 20.34

- SE-A(Direct) 11.75 72.29

Table 8: Excluding answers to subquestions {Âs
i} from

the target yields improved results over the DROP dataset,
but leads to a decrease in performance over the GSM8K
dataset.

We hypothesize that for tasks involving mathe-
matical reasoning, the answers typically necessitate
some form of computation, making a step-by-step
solution essential. Without this, setting a numerical
value as the fine-tuning target almost invariably re-
sults in failure. Conversely, DROP, being a reading
comprehension dataset, derives a significant por-
tion of its answers directly from the provided text.
In such scenarios, including answers to subques-
tions poses a risk of disrupting the answer distribu-
tions.

The instruction for solving, denoted as I ′ans, re-
main identical to those specified in Ians. The only
difference comes from the fine-tuning target.

B Ablation Study over Instruction for
Decomposition

Decomposer Solver 0-shot 1-shot

GPT-3.5-Turbo GPT-3.5-Turbo 66.0 70.0
GPT-4 90.5 91.5

Vicuna-13B GPT-3.5-Turbo 57.0 61.5
GPT-4 88.5 91.5

SD-R GPT-3.5-Turbo 66.5 67.5
GPT-4 91.5 91.5

Table 9: Impact of including demonstration in decom-
position instruction, examined on a subset of GSM8K
dataset.

Prior research has demonstrated that incorpo-
rating demonstrations within prompts can signifi-
cantly enhance the ability of Large Language Mod-
els to adhere to given instructions. Our findings
in Table 9 further substantiate this, revealing that
including a single-shot demonstration notably im-
proves the quality of decomposed questions. This
enhancement has been consistently observed across
a variety of decomposers.

Instruction for decomposition: Idecomp

Your task is to break down a given complex
question into the most relevant and helpful
subquestions, ensuring that no more than
three subquestions are formulated for each
question. Both the context and the main ques-
tion will be provided to you. If the question
does not need breaking down to be answered,
return “No decomposition”; otherwise, list
the necessary subquestions. Only return sub-
questions that directly aid in answering the
original question, avoiding any that could be
harmful or unhelpful.
Question: Q

We have conducted an ablation study focusing
on the instructions used for question decomposi-
tion. Our goal is for the resulting subquestions to
act as useful cues for the executor, all the while
ensuring they do not introduce unnecessary infor-
mation. Central to our design rationale is deter-
mining the optimal number of subquestions the
decomposer should produce. More specifically,
we analyzed outcomes where no restrictions were
applied (removing the highlighted part in Idecomp)
and compared these against scenarios with varying
maximum numbers of subquestions allowed. The
results of these investigations are detailed in Ta-
ble 10. Our findings succinctly reveal that a cap of
"no more than three subquestions" yields the most
effective results.

Instruction EM F1

no restriction 45.69 56.63
no more than four 46.40 57.19
no more than three 50.00 59.88
no more than two 46.89 58.47

Table 10: Effect of limiting the maximum number of
subquestions in decomposition instructions on a subset
of the DROP dataset.

C Examples Where Solver Models
Become Confounded by Subquestions

As illustrated in Figure 2, up to the second sub-
question, the solver model accurately responds that
"The robe requires 2 bolts of blue fiber" and "it
would need 1 bolt of white fiber." Nevertheless,
the introduction of the third subquestion, closely
resembling the second, leads to confusion. Conse-

2584

Figure 2: Solver models get lost sometimes.

quently, the model deviates from its initial accuracy,
culminating in an incorrect answer following this
subquestion.

D Extended Related Work

Planning and Task Decomposition of LLM-
powered Agent Recent advances in LLM-
powered systems have made it possible to create
an end-to-end pipeline, opening up new possibil-
ities for developing autonomous agents that can
complete complex tasks using enhanced planning
and memory capabilities. Promising works, such
as ReAct (Yao et al., 2022), HuggingGPT (Shen
et al., 2023), AutoGPT (Significant Gravitas, 2023),
LangChain (Langchain-AI, 2023), GPT-Engineer
(Anton Osika, 2023), BabyAGI (Nakajima, 2023)
and CoMM (Chen et al., 2024), have demonstrated
significant potential in this field. These agents
rely on the LLM to decompose larger tasks into
more manageable components. Among them, some
approaches (e.g., HuggingGPT) use a static plan-
ning strategy by first generating the complete plan
via LLM and subsequently tackling each subtask.
Other approaches (e.g., AutoGPT) adopt a dynamic
and interactive planning strategy, where the gener-
ation of each action is conditioned on the outcome
of the previous planning steps.

2585

