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Abstract

Existing explanation methods for image clas-
sification struggle to provide faithful and plau-
sible explanations. This paper addresses this
issue by proposing a post-hoc natural language
explanation method that can be applied to any
CNN-based classifier without altering its train-
ing process or affecting predictive performance.
By analysing influential neurons and the cor-
responding activation maps, the method gener-
ates a faithful description of the classifier’s de-
cision process in the form of a structured mean-
ing representation, which is then converted
into text by a language model. Through this
pipeline approach, the generated explanations
are grounded in the neural network architec-
ture, providing accurate insight into the clas-
sification process while remaining accessible
to non-experts. Experimental results show that
the NLEs constructed by our method are signif-
icantly more plausible and faithful than base-
lines. In particular, user interventions in the
neural network structure (masking of neurons)
are three times more effective.

1 Introduction

Despite remarkable advances in computer vision,
the deployment of image classification systems, es-
pecially in critical domains, poses significant chal-
lenges. One of them is the opacity of deep models
and the difficulty of providing reliable explanations
for their predictions (Doshi-Velez et al., 2017).
Therefore, several types of explanation meth-
ods have been proposed, including various forms
of saliency maps (Selvaraju et al., 2017), feature
importances (Ribeiro et al., 2016), concept-based
explanations (Chen et al., 2019), counterfactual
explanations (Vermeire et al., 2022), etc. A par-
ticularly interesting form of explaining predictions
is offered by natural language explanation (NLE)
techniques (Camburu et al., 2018; Wu and Mooney,
2019). Such explanations are not only understand-
able by non-expert users, but can also be used to

support conversations with the user in a dialogue
system (Raczynski et al., 2023).

There are two critical properties of an expla-
nation: faithfulness and plausibility (Jacovi and
Goldberg, 2020; Atanasova et al., 2023). A faith-
ful explanation should accurately reflect the inner
workings of the system and provide information on
the real reasons why the model reached a certain
decision. Plausibility then refers to how convincing
the explanation appears to the user.

In the case of NLE, obtaining high plausibility is
straightforward, as textual explanations are usually
human-friendly (Gurrapu et al., 2023), but achiev-
ing faithfulness is challenging. In the context of im-
age classification, image captioning methods offer
plausible but unfaithful NLEs (Xu et al., 2015; Ka-
makshi and Krishnan, 2023). Some methods try to
improve faithfulness by conditioning generation on
both the predicted class and image features (Hen-
dricks et al., 2016; Kim et al., 2018; Marasovic
et al., 2020; Sammani et al., 2022), but the faith-
fulness provided is still limited as the model is not
aware of the classifier’s decision process. Other
methods train image classifiers to jointly predict
the class and visual rationales, and generate ex-
planations based on them (Wickramanayake et al.,
2021; Kayser et al., 2022). However, the rationales
are predicted independently of the class and do not
participate in the classifier’s decision process. Most
importantly, such methods change the training pro-
cedure and the architecture of the classifier, often
affecting classification performance.

In this paper, we propose a post-hoc natural lan-
guage explanation method for image classification
that can be used with any standard convolutional
neural network (CNN) classifier. To illustrate the
classification decision process, the method analyses
which neurons of the CNN were most influential in
reaching a given decision, and which regions of the
image caused them to activate. For each influential
neuron, a neuron annotation method computes vi-
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Figure 1: Overview of the presented approach. Note that the information provided in the text is supported by the
model’s internal decision process, e.g. there is a convolutional filter specialized in the detection of "gushes of water",
which was strongly activated at the mentioned positions of the image.

sual pattern exemplars and produces a short (one
phrase) description of a pattern that the neuron
detects. The information gathered in this process
serves to create a simple meaning representation,
which is converted to natural-language text by a
large language model (LLM).

Our simple pipeline method (see Fig. 1 and
Sect. 2) produces explanations that are directly
grounded in the classifier’s network architecture,
but without interfering with its training process or
affecting its predictive performance. It also does
not need any gold-standard training explanations.
The provided NLEs reflect the process underlying
classification by specifying the most influential neu-
rons computed by well-established explainable Al
methods. At the same time, the final text is fluent
and easy to understand. This results in NLEs that
are both plausible and highly faithful — significantly
more so than baselines, as demonstrated in Sect. 3.
Our experimental code is publicly available.!

2 Method

Our NLE generation approach uses two processing
steps, described below: meaning representation
(MR) construction and MR-to-text conversion.
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We first produce a meaning representation in the
form of a JSON object, containing information
about the neurons responsible for a given classi-
fier prediction (why?), what patterns those neurons
detected (what?), and in which parts of the image

Meaning representation construction

"https://github.com/wojciechowskiofficial/FLEX

they were activated (where?). The MR includes
the predicted class and the list of most influential
neurons, each represented by (1) description — a
phrase describing the pattern that most excites the
neuron (convolutional filter), (2) positions — list
of coarse-grained image positions (e.g., “bottom-
right corner”) where the neuron was activated. An
example of a MR is provided in Fig. 1.

MR construction starts by storing all neuron ac-
tivations from the given CNN-based classifier for
the prediction to explain. Next, the most important
neurons are selected, annotated with a description,
and tied to an image region, as follows:

Selecting the most influential neurons To pick
the most relevant neurons, we apply the well-
established Layer-wise Relevance Propagation
(LRP) method (Bach et al., 2015). LRP performs
a backward pass through the classifier network to
establish the influence of each neuron to the final
prediction (see App. H for formulas). We select k
neurons with the highest LRP scores (with k being
a parameter controlling the brevity-detail tradeoff).

Neuron annotation We adopt the MILAN neu-
ron annotator (Hernandez et al., 2022) to gener-
ate descriptions of selected neurons. MILAN first
finds images in the classifier training set that make
a given neuron highly activated (Bau et al., 2017).
These exemplar images are used to generate a de-
scription of the pattern that this neuron detects.
Note that although the last step of MILAN is
essentially image captioning, it does not affect the
faithfulness of NLEs produced by the pipeline, as
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long as its output is of sufficient quality. The im-
ages that illustrate a neuron’s decision process are
computed by analysing its activations, and the cap-
tioning is only used to convert the result into text.

Establishing image regions for neuron activation
The neuron’s raw activation map is divided into a
3x3 grid with manually assigned labels such as
‘top-left corner’, ‘top’, ‘top-right corner’, etc. We
then select all grid cells where the neuron’s activa-
tion exceeded half of its maximum value. We apply
several substitution rules (see App. B) to make the
list of cells shorter and more human-readable.

2.2 Explanation generation

The second step of our method is converting the
faithful MR created above into a user-friendly text.
As we do not have any gold-standard explanation
texts, the task is performed by prompting a large
language model (LLM).

We instructed the model to (1) produce fluent
text, (2) summarise the content of the MR (e.g. if
two neurons detect similar patterns, they can be
combined in the text), (3) prioritise readability, (4)
come up with its own formulation of spatial po-
sitions to improve fluency. We also provide one
handcrafted MR-to-text conversion example. The
prompt is shown in App. C. LLMs could in the-
ory hallucinate and thus reduce the explanations’
faithfulness. However, in Section 3 we show exper-
imentally that current LLMs are reliable enough to
produce useful explanations.

3 Experimental evaluation

3.1 Experimental setup

Dataset All experiments were performed on the
ImageNet dataset. The classifier was trained on the
training set and our explanation method was run to
explain predictions made on the validation data.’

Models We experiment with explaining the pre-
dictions of the smallest CNN classifier from the
popular ResNet family: ResNetl8 (He et al.,
2015).> We fill our MRs with & = 10 top
neurons indicated by LRP from the Captum li-
brary (Kokhlikyan et al., 2020) and annotate them
using MILAN’s original implementation. As the
LLM for the MR-to-text conversion, we employ
GPT-4 (gpt-4-0613; Achiam et al., 2023).

2 Annotated ImageNet test set is not publicly available.
31t reaches only a 41.4% accuracy on the validation set, but
high classification performance is not the goal of our study.

Baselines

* Show, attend and tell (SAT) by Xu et al. (2015) is
an image captioning method used for explaining
predictions (Kamakshi and Krishnan, 2023).

* NLX-GPT (Sammani et al., 2022) is an explain-
able visual question-answering method that pro-
duces NLEs with an encoder-decoder architec-
ture that combines CNN with a transformer-
based language model.

We compare to the following methods:

3.2 Are the output explanations plausible?

To assess the plausibility of generated explanations,
we conducted a small-scale manual annotation ex-
periment. We recruited ten annotators: five non-
experts hired on the Prolific platform and five ex-
perts with at least one published paper on explain-
able Al Each annotator was presented with 30
image-explanation pairs (300 in total) and asked
to rate on a scale of 1-5 whether the explanations
were (1) fluent, (2) easy to understand (compre-
hensible), (3) convincing, and (4) insightful for the
underlying decision process.* The overall quality
of the explanations was also rated (see App. D).

The results are presented in Tab. 1 and exam-
ples of generated NLEs can be found in Tab. 3 (see
App. A for more). Our method obtains the high-
est overall quality according to both experts and
non-experts. It also produces the most plausible ex-
planations (most convincing and insightful). Since
the baselines produce much shorter explanations,
it is not surprising that our longer explanations are
a bit more difficult to understand. Interestingly, ex-
perts generally give higher ratings than non-experts
for all methods and all factors except for provid-
ing insight into the decision process. Here, experts
rate the baselines lower than non-experts, but they
consistently rate the explanations provided by our
pipeline higher. The improvements of our method
over baselines are statistically significant on both
plausibility measures and overall quality. For flu-
ency, our method is indistinguishable from SAT
(see details in App. I).

3.3 Are the output explanations faithful?

The faithfulness of the generated explanations is
assessed through two intervention experiments: (1)
checking if rationales from NLEs change the pre-
diction by masking parts of input images, (2) in-

*Note that the question on understanding the decision pro-
cess does not measure faithfulness, but the user’s subjective
opinion on whether they understand how the model works.
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Experts Non-experts Overall
SAT NLX-GPT Ours | SAT NLX-GPT Ours | SAT NLX-GPT Ours
Fluency 4.70 4.12 4.64 | 3.64 2.80 3.70 | 4.17 3.46 4.17
Comprehensibility 4.94 442 4.18 | 3.70 2.88 324 | 432 3.65 3.71
Plausibility (convincing) | 2.16 2.28 344 | 2.00 2.22 2.70 | 2.08 2.25 3.07
Plausibility (explanatory) | 1.74 2.14 340 | 2.14 2.28 294 | 194 221 3.17
Overall quality 2.12 2.40 346 | 1.94 2.02 2.54 | 2.03 2.21 3.00

Table 1: The results of a human evaluation experiment in which NLEs provided by different methods were evaluated
on 5 factors. The overall inner-annotation agreement is 0.53 as measured by Krippendorff’s alpha.

Covering Highlighting  Neuron mask.

cft Apt cf)] Apl cft Apt
SAT 050 026 0.80 038 020 0.06
NLX-GPT 0.60 0.30 0.84 040 0.19 0.07
Ours 088 046 0.66 0.26 0.66 0.34

Table 2: The results of three intervention experiments:
percentage of examples for which user intervention re-
sulted in a class flip (c.f.) and the average drop of
probability of the predicted class (Ap).

BLEU

Intra-set stability (5% noise) 41.33
Intra-set stability (20% noise) 30.87
Inter-set stability 26.01

MET. cf.

0.610 0.32 0.153
0.521 0.81 0.255
0.469 nl/a n/a

Ap.

Table 3: The results of stability analysis experiment:
BLEU, METEOR (MET.), frequency of the class flip
(c.f.) and drop of predicted class probability (Ap.).

fluencing the network prediction by masking influ-
ential neurons. We further assess the stability and
diversity of the explanations for our method, and
we directly evaluate the reliability of our MR-to-
text conversion.

Masking input image We asked annotators to
cover with white rectangles parts of images that
contained the decision rationale indicated in the
NLE, 50% area at most (see App. G for details). We
re-classified covered images and measured changes
in prediction and the average decrease in the prob-
ability of the originally predicted class. We also
performed an opposite experiment, with the anno-
tators highlighting only parts of image mentioned
in the explanation and covering the rest.

For covering, the use of our NLEs resulted in
the highest average probability decrease and the
change of the original prediction for 88% of exam-
ples (see Table 2). Our method reached the best
results in the highlighting experiment as well, pro-
ducing the least amount of changes.

We also re-ran our NLE pipeline with parts of
the input image covered. This led to significant

changes: on average, 78% (median 90%) of the
neurons indicated in MRs were different.

Masking influential neurons To show the NLEs’
ability to reflect classifier decisions, we asked the
annotators to read the NLEs and select up to five
most influential neurons from a MILAN-annotated
list. The classifier was then re-run with the selected
neurons masked. The results in Table 2 reveal that
masking neurons suggested by our NLEs led to a
five times higher decrease in the predicted class
probability and over three times higher class flip
rate than baselines.

More detailed results are presented in Fig. 2.
Masking neurons in the order indicated by the an-
notators using our method leads to an increasing
change in the classifier’s prediction and a gradual
decrease in the predicted class probability value.
In contrast, masking the neurons indicated using
other methods leads to a small decrease in class
probability for one masked neuron and almost no
further decrease for more masked neurons. As we
attribute the effect of the first masked neuron to
examples of classes that are highly related to a sin-
gular pattern (e.g., a neuron annotated “water” for
the class “sea”), this indicates that annotators gain
very little insight into how the neural network made
a decision from the explanations provided by the
baselines.

Explanation stability analysis Following Wiegr-
effe et al. (2021), we measure explanation robust-
ness against adding random noise to the input
image (intra-set stability, see App. F for details)
by comparing BLEU (Papineni et al., 2002), ME-
TEOR (Lavie and Agarwal, 2007) as well as class
flip frequency and class probability change against
the original predictions. We also check for out-
puts’ diversity (inter-set stability) using BLEU and
METEOR overlap against explanations for other
classes. The results in Table 3 show that the expla-
nations are both distinct for different classes and
highly sensitive to noise: As we add more noise

2343



70

== SAT
—@=- Ours
601 =& nix
— 50 1
&
-
[
© 40 -
5
=
S
2 30
S
0
g v
S 20 ——% L X
10

0 T T T T T
3

Top-N-neurons masked

Figure 2: Results of neuron masking experiments when

40

& SAT
35 1 —— Ours
—— NLX
30
&
L
8 254
o
£
£ 20
2
3 151
o
g
10
P 3 = 3
- A - F 4 ?
PR ———— ¥ = & —
T
5

0 T T T T
3

Top-N-neurons masked

varying the number of masked neurons. Left: percentage of

changed predictions after masking selected neurons; right: decrease of the probability of the predicted class after

masking selected neurons.

Image Class

Explanation

Target: "lakeside"
Prediction: "lakeside"

The model classified this image as ’lakeside’ because it detected
water in the lower half and the bottom-right corner of the image.
It also noticed volcanoes and mountains in the upper half, and
walkways at the bottom-left corner and bottom. Additionally, the
model found items with straight features at the left, bottom-left
corner, and bottom of the image.

Target: "coral reef"
Prediction: "coral reef"

The model classified this image as a "coral reef" due to the
detection of aquatic life throughout the image, particularly at
the bottom, left, and right. The presence of water covering the
entire image and nature-related elements further supported this
classification. The model also noticed items that are connected
in the lower half of the image and similar color patterns, which
are common in coral reef environments.

Target: "wall clock"
Prediction: "wall clock"

The model classified this image as a "wall clock" because it
detected clocks and other gauges, circular, round objects, and
black and white objects at the bottom-right corner, center, and
bottom of the image. It also noticed rounded edges in the right
half of the image and the indent in an hourglass shape at the
bottom-right corner, center, right, and bottom.

Figure 3: Examples of explanations provided by our method.

resulting in increased classification changes, the ex-
planation BLEU and METEOR gradually drop, but
they are at their lowest when comparing between
different classes.

Reliability of the MR-to-text transform The
human evaluation of our approach’s MR-to-text
reliability was similar to plausibility evaluation, but
limited to non-expert Prolific annotators. We asked
five yes-no questions on information in the text not
grounded in the MR (i.e., hallucinations), omission
of MR information, fluency, spatial information
fidelity, and overall correctness (see App. E).

The results show the MR-to-text conversion as

highly reliable, as only 8% texts contain hallucina-
tions. Omissions are more frequent (44%), but this
is expected as the LLM is instructed to summarise
the MR and prioritise readability. This factor most
likely affected the overall score (58%). The ex-
planations are mostly fluent (96%), with correct
spatial information (82%).

Additionally, we repeated this experiment for
explanations generated by an open LLM (Llama
3 70B) instead of GPT-4. The results presented in
App. E show that open LLM generated NLEs with
a significantly higher number of hallucinations and
omissions, but this did not affect the overall quality
score given by the annotators.
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Limitations

This paper produces a new method for plausible
and more faithful natural language explanations for
image classification. Although we believe that the
method provides significantly better faithfulness
than the previously proposed methods, it does not
obtain completely faithful explanations. The faith-
fulness of the explanations provided by our method
depends on the quality of the neuron annotations
produced by MILAN and the neurons indicated by
LRP. Both techniques can be considered as state
of the art, but they still occasionally produce incor-
rect results. Therefore, the results of NLE methods
should be treated with caution. Additionally, this
work uses pre-trained language models, which are
known to expose certain social biases reflected in
their training data.
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A Examples of explanations

Several examples of explanations provided by the
methods under study are given in Tab. 4.

B Simplification rules for spacial
positions

The spatial information about neuron activation is
learned by inspecting activation maps of the cho-
sen neurons. The activation map is converted to a
binary image, such that if a given pixel of an ac-
tivation map exceeds half of a maximal value in
that activation map it is converted to the value of
one, and the rest of the pixels are assigned with the
value zero. Then the binary activation map is di-
vided into a 3x3 grid of congruent squares oriented
such that the ordering begins with a 0 in the top-left
corner, progressing sequentially across each row
from left to right and top to bottom, culminating
with the number 8 in the bottom-right position. The
basic positions names are given below.

[

"top-left corner”,
"top”,

"top-right corner”,
"left",

"center”,

"right",

"bottom-left corner”,
"bottom”,
"bottom-right corner”

cONO Ul WN —

The final appearance of the positions appended to
the meaning representation is governed by a set of
rules, where position names are assigned to sets
of basic positions. If all basic positions from the
set are present in the MR, we replace them with a
corresponding compound position. These sets and
position names are given below.

"entire top": {0, 1, 23},

"entire bottom": {6, 7, 8},

"entire left": {0, 3, 63},

"entire right": {2, 5, 8},
"perimeter”: {0, 1, 2, 5, 8, 7, 6, 3},
"center cross”": {1, 3, 4, 5, 7%},

"upper half"”: {0, 1, é, 3, :1, 53},
"lower half": {3, 4, 5, 6, 7,
"left half”: {0, 1, 3, 4, 6, 7},

"right half": {1, 2, 4, 5, 7, 8}
Additionally if "entire *" and "* half" coexist in the
meaning representation simultaneously, where "*"
represents one of {"left", "right", "top", "bottom"},
in both compound positions names, the "entire *"
is deleted from the meaning representation, since it
is comprised of the subset of the set, which makes
up corresponding "* half". An example would be
if "entire top" and "upper half" are both in meaning
representation, the "entire top" would be deleted
since it is comprised of {0, 1, 2} tiles, which also
partially make up the "upper half" ({0, 1, 2, 3, 4,
5}). Finally, if more than any, distinct, 6 out of 9
tiles are active, every position of a given neuron
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Our Method

NLX-GPT Show, Attend and Tell

1 | The model classified this image as a "cradle" due to
the detection of items with circular features on the
right half of the image, items with straight features
in the center and on the entire right side, and rounded
edges in pictures at the center, right, and bottom of
the image. It also noticed the indent in an hourglass
shape in the center, entire right, and bottom of the
image. Additionally, human hands were detected at
the center, right, and bottom of the image.

There is bathroom in the image
because there is a sink and a toi-
let.

A black and white photo
of a guitar case.

2 | The model classified this image as "volcano" be-
cause it detected elements of nature in the lower half
of the image. It also identified a gusher of water,
which could be interpreted as lava, across various
parts of the image including the left, center, right,
and bottom. Additionally, the model found items
with both curved and straight features in the lower
half of the image.

A view of a mountain
range in a cloudy sky.

There is mountain in the image
because there is a large moun-
tain in the background.

3 | The model classified this image as a "library" be-
cause it detected shelves and books in the lower half
of the image. It also noticed objects with led, text,
and circular objects, rectangular objects, and cubed
objects throughout the entire image. Additionally,
items with straight features were found in the left
half of the image, and grids were seen in the bottom-
right corner and the right side of the image.

A bookshelf filled with
lots of books.

There is library in the image be-
cause there are bookshelves full
of books.

Table 4: Examples of image classification explanations provided by method under study.

is deleted and the spatial information placeholder
is set to "entire image". This whole approach
significantly reduces the length of the positional
representation, while simultaneously making
the position names more plausible to the system
user, since we believe the final space of possible
positions is natural and intuitive for humans to
grasp quickly and effectively.

C Prompt for MR-to-text conversion

To convert meaning representations into text, the
following prompt was applied to the language
model:

You are given a problem of creating textual
explanation of an image classification performed
by neural network. You will be given a Python
object representing network output in the form of
“'image class', [('detected object', 'position'),
..]7. I want you to convert this object into a
textual explanation. You should:
1. Create a grammatically correct sentence which
will explain the model's decision.
2. Decide which detected objects do not fit
with image class and do not include them in the
explanation. For instance, 'dentist' class and
'animal heads'
However, the descriptions that aren't directly
related to image class, but can be indirectly
correlated, especially in terms of shape, color,
or texture resemblance should be included (like

'fountain' and 'sea' because of the water they

objects are completely unrelated.

have in common or 'brick wall' and 'grid' because
the texture is similar). Never mention that you
chose neuron descriptions and do not talk about
the neuron descriptions that were discarded.

3. Prioritize the readability of the explanation.
Include only essential detected objects and
aggregate information to shorten the explanation.
4. Aggregate positions if possible, for example
['bottom-left corner', 'bottom', 'bottom-right
corner'] should be aggregated into 'bottom'. If
the positions list is too long or too ambiguous
do not include them in the explanation.

Here is an example.

Python object:

“lakeside, [{'description': 'Nature', 'positions':
['left', ‘'right', ‘'bottom']}, {'description':
'The sky', ‘'positions': ['top-right corner',
'bottom-left corner', 'bottom']}, {'description':
'Red and white colored objects', 'positions':
['left', ‘'right', ‘'bottom']}, {'description':
'The ocean', 'positions': ['left', 'right',
'bottom']}, {'description': 'Animal  heads',
'positions': [], 'id'}, {'description': 'The color
red', 'positions': ['left', 'right', 'bottom']'},
{'description': 'White backgrounds', 'positions':
['bottom', 'left']}, {'description': 'Grass',
'positions': ['left', 'bottom-left  corner',
'bottom', 'bottom-right corner']}, {'description’:
'Dogs and guinea pig', 'positions': ['center']},
{'description': 'The color green', 'positions':
['top-right corner', 'right', 'bottom-right
corner']]”

Answer: “The model assigned this image to the
"lakeside” class because in the last layer it
discovered nature, and the ocean at the left,
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right, and bottom of the image. It also detected
grass at the left, bottom-left corner, bottom, and
bottom-right corner and the color green at the
right of the image.

(...

D Human evaluation of explanation
plausibility

The annotators are presented with an image,
model’s prediction and a natural language expla-
nation. Each question is answered on a scale from
1 (low) to 5 (high). The following questions are
asked:

* How fluent (linguistically correct) the text is?
* How easy to understand the text is?

* How convincing do you find the explanation
of the decision made by the model?

* After reading the explanation, how well do
you understand how the decision of the model
was taken?

* How would you rate the overall quality of the
explanation?

The annotation instructions are provided in the
code repository.

E Human evaluation of MR-to-text
transformation

The annotators are presented with a meaning rep-
resentation in the form of formatted JSON without
a given image, since it should not influence the
assessment of MR-to-text transformation. The fol-
lowing binary questions are asked:

¢ Does the text contain information that was not
present in the meaning representation?

* Is there any important information from mean-
ing representation omitted in the text?

* [s the text linguistically correct?

* If any spatial compression occurred between
explained neurons, is the said compression
correct?

* Overall, do you find this meaning represen-
tation to text transformation acceptable, i.e.
sufficiently good for explanation purposes?

Question GPT-4 Llama 3 70B
Hallucinations | 0.08 0.46
Omissions | 0.44 0.64
Fluency 1 0.96 0.86
Spacial compression 1 0.82 0.82
Overall correctness 1 0.58 0.58

Table 5: Human evaluation of MR to text conversion
with GPT-4 and Llama 3 70B as backbone LLMs. The
percentage of "yes" answers is reported.

The annotation instructions are provided in the
code repository.

The experiment was carried out on explanations
generated with two LLMs: GPT-4 (used in all
other experiments) and an open-weight alternative,
namely Llama 3 70B from ollama library>. Both
sets of explanations were generated using the same
prompt and for the same MRs.

The results are presented in Tab. 5. Both GPT-4
and Llama appear to have a similar ability to per-
form spatial compressions, but for the other factors
examined, the NLEs generated by Llama fall short
of those generated by GPT-4. Llama’s explanations
are almost 6 times more likely to contain halluci-
nations. They also have more omissions and lower
fluency. Nevertheless, the overall correctness of
the NLE’s generated by both LLMs is the same
and not overly high. We think that this result is in-
fluenced by the fact that some annotators penalise
the correctness of NLE’s too much due to omit-
ted information from the meaning representation.
Note that the MRs are quite long and the generated
NLE:s are supposed to summarise them and shorten
them to improve readability, thus omitting some
information.

F Details on stability experiments

Let us assume that an image is a matrix X, such
that X € [0, 1]. We model input perturbations by
adding random noise to the images, sampled from
the standard normal distribution. Since an interval
of possible pixel values is [0, 1], to account for the
unboundedness of a standard normal distribution
we use a clipping operation defined as follows:

0, ifzx<O
clip(x) =<z, if0<z<1
1, ifx>1

Shttps://ollama.com/library/1lama3
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The formula for the function ¢ that adds a perturba-
tion to the image is given below.

¢(X) = clip(N(0,1) - i + X)

where ¢ is the noise intensity.
We perform two types of stability experiments:

1. intra-set stability: We compare pairs of un-
altered images (1%! set of images) and corre-
sponding images mapped by the ( function
(2"? set of images). After the ¢ mapping is
performed, we run the proposed method on
both images, yielding two explanations. We
then compute various language similarity met-
rics between the two explanations.

We compare two kinds of pairs of images:
unaltered - lightly perturbed (¢ = 0.05) and
unaltered - heavily perturbed (¢ = 0.2).

2. inter-set stability: We compare explanations
pairs produced for different images to verify
the diversity of generated explanations.

The computations were conducted on explana-
tions produced by the proposed method for a 500-
element subset of validation ImageNet data. The
subset was constructed by randomly picking 50
examples from 10 selected, diverse classes (library,
over skirt, palace, prison, wall clock, lakeside, coral
reef, volcano, fountain, basset) in a stratified man-
ner.

G Details on the covering experiment

Given an image and explanation, we instructed
the annotator to cover the decision rationales with
white rectangles. The annotator instruction is given
below:

Based on the following explanation of
the classifier’s prediction, cover the rea-
sons for its decision with white rectan-
gles. You can use as many rectangles as
you like, but the total area of the covered
image cannot be larger than half of the
image. If it is not possible to cover the
mentioned reasons by covering only 50%
of the image, please do your best to cover
the most important information.

An example of annotation provided is given in
Fig 4.

Prediction: "studio couch"

Figure 4: Example image with and without human an-
notation in covering experiment.

H Layer-wise Relevance Propagation

To choose the most relevant neurons, the well-
established Layer-wise Relevance Propagation
(LRP) method is applied (Bach et al., 2015). LRP
performs a special backward pass through the neu-
ral network to establish the influence of each neu-
ron to the final prediction. Starting with the pre-
dicted value, LRP distributes it among the neurons
in each layer, assigning them relevance scores. The
following rule for relevance reallocation is used:

NG
R; = ; s

where R; is the i-th neuron relevance score, z;;
express how much ¢-th neuron has contributed to
make j-th neuron relevant (calculated as the prod-
uct of the neuron’s activation and the corresponding
weight), the sums » 5. (3 ;) iterate over all neurons
in a given (next) layer.

Choice of LRP as an explanation method Al-
though we present a pipeline approach and there is
some variability in how it can be implemented, we
believe there are important reasons for using our
pipeline with LRP.
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First, unlike many other methods, LRP works
at the neuron level, which is strictly required by
our method. Therefore, methods that provide pixel-
level importance scores such as RISE (Petsiuk et al.,
2018) or Grad-CAM (Selvaraju et al., 2017), meth-
ods that typically work on image segments such as
LIME (Ribeiro et al., 2016) or SHAP (Lundberg
and Lee, 2017) are not suitable for our approach.

Second, LRP has been shown to achieve high
faithfulness in many studies and can be considered
state of the art in this respect. Note that achieving
high faithfulness is the main goal of our approach.

Finally, LRP is theoretically motivated, has been
shown to be useful in many applications, and has
stable open source implementations.

I Statistical analysis of the human
evaluation results

For the results of human evaluation of plausibility,
we performed the non-parametric global Friedman
test followed by Nemenyi post-hoc analysis (as
recommended in (Demsar, 2006)). We were able
to reject the null hypothesis of the Friedman test
for all the measures with p<0.001. The Nemenyi
post-hoc analysis with a = 5% confirmed that our
method obtains statistically significant improve-
ments over other compared methods on both plau-
sibility measures and the overall quality measure.
On the fluency measure, our method is undistin-
guishable from SAT.

The critical distance plots from Nemenyi post-
hoc analysis are provided in Figure 5. The lower
result, the better. If the difference between the
methods is not statistically significant, their results
are connected with a thick horizontal line. More
details on these plots can be found in (Demsar,
2006).

Fluency

—
3 2 1
NLX-GPT ‘ -+ SAT
Ours
(a) Fluency
Comprehensibility
@
—

3 2 1
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NLX-GPT

(b) Comprehensibility

Plausibility (convincing)

[e)
—

3 2 1

SAT 4-'_ \— ours

NLX-GPT

(c) Plausibility (convincing)

Plausibility (understanding how)

[e)
—

3 2 1

SAT 4-’_ \— ours

NLX-GPT

(d) Plausibility (explanatory)

Overall quality

cD
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(e) Overall quality

Figure 5: The results of Nemenyi post-hoc analysis for
different aspects of evaluated explanations.
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