
Findings of the Association for Computational Linguistics: ACL 2024, pages 1481–1500
August 11-16, 2024 ©2024 Association for Computational Linguistics

Revisiting Multimodal Transformers for Tabular Data with Text Fields

Thomas Bonnier
Centrale Lille Alumni, France

thomas.bonnier@centraliens-lille.org

Abstract

Tabular data with text fields can be leveraged in
applications such as financial risk assessment
or medical diagnosis prediction. When employ-
ing multimodal approaches to make predictions
based on these modalities, it is crucial to make
the most appropriate modeling choices in terms
of numerical feature encoding or fusion strat-
egy. In this paper, we focus on multimodal clas-
sification tasks based on tabular datasets with
text fields. We build on multimodal Transform-
ers to propose the Tabular-Text Transformer
(TTT), a tabular/text dual-stream Transformer
network. This architecture includes a distance-
to-quantile embedding scheme for numerical
features and an overall attention module which
concurrently considers self-attention and cross-
modal attention. Further, we leverage the two
well-informed modality streams to estimate
whether a prediction is uncertain or not. To
explain uncertainty in terms of feature val-
ues, we use a sampling-based approximation
of Shapley values in a bimodal context, with
two options for the value function. To show
the efficacy and relevance of this approach,
we compare it to six baselines and measure
its ability to quantify and explain uncertainty
against various methods. Our code is available
at https://github.com/thomas-bonnier/
TabularTextTransformer.

1 Introduction

Tabular datasets with text fields can be leveraged
in various critical applications such as finance or
healthcare. In financial risk assessment, numer-
ical, categorical, and text data can be used by a
classification model in order to assess companies’
creditworthiness (Nguyen et al., 2021). In the med-
ical field, clinical data and caregiver notes could be
employed for diagnosis prediction. Transformers
with an attention mechanism have become popular
by achieving state-of-the-art performance in natural
language processing (Vaswani et al., 2017; Devlin

et al., 2019). In particular, multimodal Transform-
ers have been used with various modalities such as
audio, language, and vision (Tsai et al., 2019).

Motivation. Employing Transformers with multi-
modal tabular/text datasets requires adequate mod-
eling choices. First, relevant encoding schemes
should be used for numerical features. The tra-
ditional mapping methods used to construct em-
beddings for these features, e.g. linear functions
(Gorishniy et al., 2021), are more difficult to in-
terpret in high-dimensional settings. Numerical
features are ordered and can have various distri-
butions including extreme values. This should be
expressed through the choice of a relevant embed-
ding scheme. Regarding the attention mechanism,
it may be more relevant to consider the whole sur-
roundings of an item from the input sequence rather
than exclusively considering the features from the
same modality or from the other modality. In other
words, the attention weights may be more informa-
tive by taking into account the whole context rather
than considering partial contexts (e.g. cross-modal
attention only). Lastly, when a multimodal model
makes predictions based on unlabeled data, it is
essential for subject matter experts to understand
whether the predictions are trustworthy. If the un-
certainty is significant for a given prediction, the
source of uncertainty should be explained in terms
of feature values. For instance, a data scientist
could identify regions of the feature space where
the model is uncertain because it is under-specified
by the data. Or a doctor might want to know why
a diagnosis prediction is uncertain and might then
override the prediction thanks to expert knowledge.

Perimeter and contribution. The focus is on
multimodal classification tasks based on tabular
datasets with text fields in English. These datasets
contain numerical and categorical features (to-
gether referred to as the tabular modality here)
and fields with free-form text (i.e. the text modal-

1481

https://github.com/thomas-bonnier/TabularTextTransformer
https://github.com/thomas-bonnier/TabularTextTransformer

ity). Numerical features have continuous scalar val-
ues while categorical features have discrete values.
The latter could be a finite number of unquantifi-
able categories (e.g. country), boolean values (e.g.
True/False flag), or ordinal values (e.g. rating from
1 to 5). Our mains contributions are fourfold:

(1) We propose the Tabular-Text Transformer
(TTT), a tabular/text dual-stream Transformer net-
work. This model exploits a specific embedding
scheme for each numerical feature value, based
on the distances to a set of quantiles of the fea-
ture distribution. TTT also employs an overall
attention module which simultaneously considers
self-attention and cross-modal attention.

(2) The two modality streams of TTT can then
be leveraged in order to quantify uncertainty when
the model makes predictions based on unseen data.

(3) To explain local predictive uncertainty in
terms of feature values, we leverage a sampling-
based approximation of Shapley values in a bi-
modal context, with two options for the value func-
tions: a similarity measure and a supervised learn-
ing approach.

(4) To show the relevance of our approach, we (a)
assess it on eight classification datasets against six
baselines including pretrained models, (b) perform
various ablation studies, and (c) measure its ability
to quantify and explain uncertainty against various
methods.

2 Related Work

Embeddings for tabular features. The quality
of feature embeddings is key for the performance
of models such as Transformers. The objective is to
find a map from a scalar value or a category name
to an embedding vector of higher dimension. To
mimic word embeddings, a categorical feature can
be embedded through a look-up table. Numerical
features can naturally be encoded by using linear
functions (Gorishniy et al., 2021) or piece-wise
linear encoding (Gorishniy et al., 2022).

Multimodal machine learning. For a given task,
a multimodal model leverages heterogeneous and
connected modalities like text, image, and audio,
as inputs. Such a model aims to learn representa-
tions of cross-modal interactions by fusing informa-
tion across diverse modalities (Liang et al., 2022;
Xu et al., 2023). With early fusion, cross-modal
interactions happen at an early stage (Guo et al.,
2020). For a Transformer with early concatenation
of two modalities, this means that full pairwise at-

tention will be computed at all layers. At the other
end of the spectrum, late fusion of final represen-
tations make cross-modal interactions occur at a
later stage (Gu and Budhkar, 2021). While vectors
can be fused with a simple addition or concatena-
tion, Zadeh et al. (2017) propose the Tensor Fusion
Network to represent the inter-modality dynamics
by using a Cartesian product of embeddings. The
Multimodal Transformer (Tsai et al., 2019) is a
multi-stream model that takes advantage of cross-
modal attention in order to attend to interactions
between multimodal sequences at all layers. In this
approach, self-attention is computed separately.

Uncertainty quantification and explanation.
There are two types of uncertainty: aleatoric and
epistemic (Antoran et al., 2021). The first type is
caused by noise in the data, generating for instance
class overlap. The second one originates from the
model’s parameters being under-specified by the
data. In that case, out-of-distribution (OOD) in-
stances can increase uncertainty during inference.
To quantify predictive uncertainty, methods such
as conformal prediction (Vovk et al., 2005; Pa-
padopoulos et al., 2002; Bonnier, 2023) can pro-
duce prediction sets based on a target coverage
level. To detect model failure during inference,
Corbière et al. (2019) propose a method which
estimates the true class probability in image clas-
sification tasks. Speaking of explanation methods,
Parcalabescu and Frank (2023) present MM-SHAP,
a multimodality score based on Shapley values,
which helps detect unimodal collapse. To over-
come exponential time complexity, Štrumbelj and
Kononenko (2010) suggest an efficient sampling-
based approximation of Shapley values (Shapley,
2016) and compute the feature contributions to a
classifier’s prediction in unimodal contexts. An-
toran et al. (2021) propose CLUE, a method based
on counterfactuals, which identifies which features
are responsible for uncertainty in probabilistic mod-
els. They focus on unimodal tabular or image
datasets.

3 Tabular-Text Transformer

We consider a dataset D = {(xi, yi)}ni=1,
where each input x = (xtext, xcat, xnum) =
(xtext, xtab) ∈ X contains text fields, categori-
cal, and numerical features. The true class is
y ∈ Y = {1, 2, . . . , C} for C-class classification
tasks.

1482

3.1 Novel Components

3.1.1 Distance-to-quantile embedding

For a random variable X with a cumulative distri-
bution function FX , its quantile with probability α
is defined by F−1

X (α) = inf{x : FX(x) ≥ α}. The
objective of this module is to transform a scalar and
standardized feature value vnum ∈ R into an em-
bedding vector znum ∈ R1×d, as a weighted sum
of quantile embeddings: znum = ωTS. Here,
d is the embedding dimension. S ∈ Rs×d de-
notes the stack of trainable embeddings of s empir-
ical quantiles q0, .., qs−1 of the corresponding fea-
ture distribution {vnum,i : i ∈ I}, where the train-
ing dataset is indexed by a set I. The quantiles
are for s evenly spaced cumulative probabilities
(0/(s − 1), 1/(s − 1), ..., (s − 1)/(s − 1)) for in-
teger s > 1: e.g. (0., 0.25, 0.5, 0.75, 1.) for s = 5.
Quantiles are representative of the feature distri-
bution and are used as references for the embed-
dings. ω ∈ Rs×1 is a normalized vector of weights.
The latter are computed with the distances between
the feature value vnum and the quantiles: (1) If
∃k ∈ {0, ..., s − 1} : vnum = qk, then ωk = 1
while the other elements ωj,j ̸=k = 0; (2) Other-
wise, ωj = 1

|vnum−qj | for j ∈ {0, ..., s− 1} . The
weights are then normalized by dividing each ele-
ment by the sum of weights. The resulting embed-
ding vector of vnum will be influenced by closer
quantiles. With this approach, an outlier value
will be impacted by the embeddings of extreme
quantiles, thus the method takes into account ex-
ceptional values. Further, high feature values will
be more influenced by high level quantiles than low
feature values, thus reflecting order. This method
can be used to generate embeddings for each nu-
merical feature individually.

3.1.2 Overall attention

α and β are two modalities with respective se-
quences of embeddings Zα ∈ Rtα×d and Zβ ∈
Rtβ×d. Zαβ = [Zα||Zβ] ∈ R(tα+tβ)×d is the con-
catenation of the previous two sequences. d de-
notes the embedding dimension for both modal-
ities and t is the sequence length. For a single-
head overall attention module, we define the Query
Qα = ZαW

Qα , Key Kαβ = ZαβW
Kαβ , and

Value Vαβ = ZαβW
Vαβ , with the projection ma-

trices WQα ∈ Rd×dk , WKαβ ∈ Rd×dk , and
W Vαβ ∈ Rd×dv . Motivated by the original defini-
tion of attention (Vaswani et al., 2017), we compute
the overall attention for the stream of modality α,

category type age feedback review
outerwear jackets 32 52 A flattering, super cozy coat, will work well for cold (…)

outerwear jackets 32 52

category type age feedback

Figure 1: Illustration of overall attention between cate-
gorical feature type with value "jackets" and tabular/text
elements, on cloth dataset (sentiment analysis).

in a bimodal setting:

OverAttα(Zα, Zαβ) = Softmax(
Qα(Kαβ)

T

√
dk

)Vαβ

The output of the overall attention module is a
sequence of embeddings of dimension tα × dv.
Therefore, the modality α is enriched with its own
features and the features from another modality
β by concurrently considering self-attention and
cross-modal attention. Figure 1 is a simple exam-
ple of overall attention. It shows that a feature
from the tabular modality (type="jackets") can at-
tend not only to other tabular features such as the
feedback count, but also to elements from the text
modality such as the words flattering or cozy. Thus,
the embedding vector of type="jackets" will be sig-
nificantly impacted by the embeddings of those
items, which may be more insightful than a limited
context.

3.1.3 Uncertainty quantification
True labels are sometimes obtained with a certain
cost or lag. Thus, it is key to measure the
uncertainty when the model makes predictions
based on new data. To optimize the parameters of
TTT for a given classification task, we minimize
the dual loss: L(l̂text(x), y) + L(l̂tab(x), y),
where l̂text(x) and l̂tab(x) are the logits predicted
by the text and tabular streams of the model
based on input x. L is the cross-entropy loss
L(l, y) = −∑C

c=1 log(Softmax(l)c)δcy where l is
a vector of logits, δ is the Kronecker delta, and
c ∈ Y. Our goal is to obtain optimized logits
for each modality stream and employ them for
uncertainty quantification. During inference, we
can generate prediction sets based on the predic-
tions from each modality stream. If each stream
predicts a different label, and thus they disagree
(argmaxc∈Y(l̂text,c(x)) ̸= argmaxc∈Y(l̂tab,c(x))),
the decision will be uncertain. In that case, the
prediction set will contain two predictions. Other-
wise, the set will have a unique label. Prediction
sets can be useful for subject matter experts who

1483

need to obtain prediction regions rather than one
single predicted label for any new input. Most
importantly, this technique can be used to monitor
uncertain predictions over time, by computing the
mean prediction set size for a collection of new
inputs and controlling its evolution.

3.1.4 Explaining uncertainty
Our objective is to understand why a given pre-
diction is estimated as uncertain (i.e. the streams
disagree) by comparison to a subset of predictions
that are estimated as certain (i.e. the streams agree).
In other words, we want to display the feature val-
ues that contribute to an uncertain outcome. This
could be due, for instance, to an OOD input. Let
p̂α(x) = Softmax(l̂α(x)) denote the softmax prob-
ability vector (i.e. vector of probability estimates)
produced by the stream of modality α, with l̂α(x)
the vector of logits predicted based on input x.

Constructing the value function. To compute
the feature contributions to predictive uncertainty,
we first need to define relevant value functions.
Due to its binary nature, the stream disagreement
indicator is not a tractable value function when
estimating uncertainty. Therefore, we suggest two
options for the value function in order to assess
predictive uncertainty on a more granular scale.

When each stream predicts a different class,
their respective softmax probability distribution
should be more distant than when they agree. We
thus evaluate the degree of uncertainty with the
Jensen-Shannon Distance (JSD) (Lin, 1991), de-

fined as: JSD(p, q) =

√
KL(p,m)+KL(q,m)

2 , with
here p = p̂text(x) and q = p̂tab(x) for input x.
m = p+q

2 is a mixture distribution, and KL is
the Kullback-Leibler divergence (Kullback, 1997).
JSD is a symmetrized version of Kullback-Leibler
divergence, bounded by 1 if KL uses base 2 loga-
rithm. When the streams disagree, we expect that
this metric will be higher than when they agree.

For the second value function, we fit a classi-
fier f̂ to the test dataset Dtest indexed by Itest,
in order to predict the probability for a predic-
tion to be uncertain, given the softmax probabil-
ity distributions. This model is constructed as
f̂ = C({((p̂text(xi), p̂tab(xi)), ui) : i ∈ Itest}),
where C denotes any classification algorithm that
takes in data indexed by Itest in order to output
a classifier fitted on that data. Therefore, the con-
catenated probability estimates are used as features.
The label u is equal to 0 (stream agreement) or 1

(stream disagreement). This classifier should be
able to easily identify the degree of uncertainty
based on the softmax probability distributions.

Approximating Shapley values for j-th feature.
We build on the sampling-based method proposed
by (Štrumbelj and Kononenko, 2010) to estimate
the Shapley values by randomly and repeatedly
selecting a subset of features instead of all pos-
sible coalitions. Based on the central limit the-
orem, the estimator is unbiased and its standard
deviation is proportional to 1√

M
, where M is the

total number of iterations. We adapt the method
to the explanation of uncertainty in a bimodal con-
text. The unlabeled test dataset is first split into
certain (Dc) and uncertain (Du) predictions based
on stream agreement or disagreement, respectively.
Let x = (xtext, xtab) denote an input from Du,
where xtext is a sequence of token values and xtab
a sequence of tabular feature values. For x and for
the j-th feature, we approximate the Shapley value
to explain the uncertainty by performing M Monte
Carlo iterations. Therefore, we compute the aver-
age contribution of a tabular feature with index j or
a text feature (i.e. token) with index (i.e. position)
j to the uncertainty, by iterating M times:

• We draw a random instance z = (ztext, ztab)
from Dc, where ztext is here a sequence of
token values and ztab a sequence of tabular
feature values. Dc is used as the reference
dataset to sample from as we want to understand
what distinguishes x (∈ Du) from instances
from Dc. For instance, if we consider the sec-
ond value function, our objective is to uncover
what contributes to f̂((p̂text(x), p̂tab(x))) −
EDc [f̂((p̂text(X), p̂tab(X)))].

• We select a random subset of tabular feature in-
dices stab and a random subset of token indices
stext. If the j-th feature is tabular, we also spec-
ify that j /∈ stab; otherwise (j is a token index,
i.e. a position in the text sequence): j /∈ stext.

• We construct two new instances. First, x+j is
input x where all the tabular feature values in
xtab with index in stab are replaced by the cor-
responding values from ztab, and all the token
values in xtext with index in stext are replaced by
the value of the padding token [PAD] when these
token values are not in ztext (otherwise they are
kept unchanged). As [PAD] does not contribute
to the gradient, it is used as a mask.

1484

Second, x−j is similar to x+j with one differ-
ence: if j is the index of a tabular feature, the
value in xtab with index j is also replaced by the
corresponding value from ztab; otherwise (i.e. j
is a token index), the token value in xtext with
index j is replaced by the value of the padding
token [PAD] if this token value is not in ztext.

• We compute the marginal contribution for the
given feature with each value function. For JSD,
we compute the contribution for iteration m:

ϕmj (x) = JSD(p̂+text, p̂
+
tab)− JSD(p̂−text, p̂

−
tab).

With the the uncertainty classifier, we assess:

ψm
j (x) = f̂((p̂+text, p̂

+
tab))− f̂((p̂−text, p̂

−
tab)),

Where p̂+α = p̂α(x+j) and p̂−α = p̂α(x−j) for
modality α.

Lastly, we compute the average to obtain
the approximated Shapley value for each
value function: ϕj(x) =

1
M

∑M
m=1 ϕ

m
j (x) and

ψj(x) =
1
M

∑M
m=1 ψ

m
j (x).

Disagreement between explanation methods.
As the explanations provided by different methods
may disagree (Krishna et al., 2022), it is essential
to include various approaches in order to check
the consistency between their outputs. In fact, our
sampling-based algorithm makes it easy to com-
pute the Kernel SHAP contributions (Lundberg
and Lee, 2017). The "perturbation samples" x+j

and x−j are converted into z′ ∈ {0, 1}T , where
T is the number of tabular and text features, and
z′ = 1 when the feature value from original x
is present, and 0 when it is absent. For each z′,
we also have the corresponding JSD and uncer-
tainty classifier values that have been previously
computed with the sampling-based method. We
compute the Kernel SHAP weights (T−1)

(T
|z′|)|z′|(T−|z′|) ,

where |z′| is the number of present features with
0 < |z′| < T . We fit a weighted Lasso regres-
sion r̂1(z′) = ϕks0 +

∑T
j=1 ϕ

ks
j z

′
j where the target

values are the corresponding JSD values. We fit
another weighted Lasso regression where the tar-
get values are the corresponding uncertainty clas-
sifier values: r̂2(z′) = ψks

0 +
∑T

j=1 ψ
ks
j z

′
j . Lastly,

the coefficients ϕksj and ψks
j are the resulting Ker-

nel SHAP feature contributions computed for each
value function. They can be compared to the ϕj and
ψj previously computed with the sampling-based
algorithm.

𝑇𝑒𝑥𝑡 𝑋𝑐𝑎𝑡 𝑋𝑛𝑢𝑚

Tokenizer

Word
Embedding

Prepend [𝐶𝐿𝑆]𝑡𝑒𝑥𝑡

Positional
Encoding

𝑍𝑡𝑒𝑥𝑡
[𝑂]

𝑍𝑡𝑒𝑥𝑡
[𝑖−1]

||

Norm Norm

Multi-Head
OverAtt(𝑢, 𝑣)

Norm

Feed Forward

𝑍𝑡𝑒𝑥𝑡
[𝑖]

𝑍𝑡𝑒𝑥𝑡
[𝐿]

× L
Layers

Extract [𝐶𝐿𝑆]𝑡𝑒𝑥𝑡

Fully Connected

𝐿𝑜𝑔𝑖𝑡𝑠𝑡𝑒𝑥𝑡
Avg

Prepend [𝐶𝐿𝑆]𝑡𝑎𝑏

𝑍𝑡𝑎𝑏
[𝑂]

𝑍𝑡𝑎𝑏
[𝑖−1]

||

NormNorm

Multi-Head
OverAtt(𝑥,y)

Norm

Feed Forward

𝑍𝑡𝑎𝑏
[𝑖]

𝑍𝑡𝑎𝑏
[𝐿]

Extract [𝐶𝐿𝑆]𝑡𝑎𝑏

Fully Connected

𝐿𝑜𝑔𝑖𝑡𝑠𝑡𝑎𝑏

Dist-to-quantile
Embeddings

Category
Embeddings

||

𝐿𝑜𝑔𝑖𝑡𝑠

× L
Layers

𝑢 𝑣 𝑥𝑦

Uncertainty

Prediction

Figure 2: Overall architecture for TTT: dual-stream
Transformer with distance-to-quantile embeddings,
overall attention, and quantification of predictive un-
certainty.

3.2 TTT Overall Architecture

To show how its components are connected, TTT’s
architecture is displayed in Figure 2.

Embeddings. The text inputs are transformed
into word embeddings (dimension Rttext×d) while
categorical features are turned into category em-
beddings (Rtcat×d). ttext and tcat denote the num-
ber of text tokens and categorical features, respec-
tively. These transformations are based on the usual
mechanism of look-up tables. The embeddings
(Rtnum×d) for the tnum numerical features are con-
structed by using the distance-to-quantile technique
previously described. Categorical and numerical
embeddings are concatenated (Rttab×d,with ttab =
tcat + tnum). A classification token [CLS] (Devlin
et al., 2019) is then added to the beginning of each
text and tabular embedding sequence. All these
embeddings are learned by the model through the
training process. Lastly, fixed positional encod-
ing with sine and cosine waves is added to the
text embeddings as suggested by Vaswani et al.
(2017). The inputs to the next step are denoted

1485

Z
[0]
text ∈ R(ttext+1)×d and Z [0]

tab ∈ R(ttab+1)×d for
the text and tabular streams.

Transformers with overall attention. Each
Transformer contains L layers of overall atten-
tion blocks. If we consider for instance the tab-
ular stream, each attention block with residual
connection starts with the following operation for
i = 1, ..., L layers:

OverAtt[i],mult
tab (LN(Z

[i−1]
tab),LN([Z

[i−1]
tab ||Z [0]

text])) + Z
[i−1]
tab

LN stands for layer normalization (Ba et al.,
2016). OverAtt[i],mult

tab denotes the multi-head ver-
sion (Vaswani et al., 2017) of OverAtttab at layer
i. Z

[0]
text are used as low-level features from the

text modality. After applying layer normalization,
the outputs are then fed to a feed-forward neural
network. Lastly, we employ a residual connection.

Classification layers. The text and tabular em-
beddings of the [CLS] tokens (Rd) from each out-
put Z [L]

. ∈ R(t.+1)×d are projected through fully-
connected layers to produce the logits for each
stream. These are leveraged to quantify uncertainty
as previously described. The final prediction is
based on the argmax of the average of the text and
tabular logits. The performance measurement is
based on this final output. For the sake of clarity,
the prediction set or the stream predictions denote
the output of the uncertainty analysis while the (fi-
nal) prediction denotes the single label predicted
by the model in order to measure its accuracy.

4 Experiments

We empirically test the relevance of our approach
on eight classification datasets. In the appendix,
we provide further details on the experimental set-
tings and results (e.g. details on datasets, data pre-
processing, hyper-parameters, baselines).

4.1 Settings

Datasets. We use various public datasets for
multi-class classification tasks, with a number
of classes ranging from 5 to 100: airbnb, cloth,
petfinder, salary, and wine with the 10/100
most frequent classes (referred to as wine10 and
wine100, respectively). We also test our method
on two public binary classification datasets: jigsaw
and kick. These datasets have been suggested by
(Shi et al., 2021) and (Gu and Budhkar, 2021).

Model selection. Each dataset is split into
training-validation-test disjoint subsets. The vali-
dation subset is used for hyper-parameter tuning
and early stopping. For all non pretrained models,
we select the best trial via a Bayesian optimization
algorithm (Tree-structured Parzen Estimator) by
using Optuna library (Akiba et al., 2019). We fine-
tune the pretrained models based on DistilBERT-
base-uncased (Sanh et al., 2019). The test dataset
(20%) is used for the final evaluation (accuracy, un-
certainty). Each use case is run over five different
random dataset splits.

Evaluation 1 (low-dimensional embeddings).
To reduce computation costs, we first evaluate vari-
ous multimodal architectures (including TTT) with
low-dimensional embeddings (maximum of 64):
(1) EarlyConcat: A self-attention Transformer with
early concatenation of modalities; (2) LateFuse:
A Transformer with late fusion of modalities (Gu
and Budhkar, 2021); (3) MulT: The Multimodal
Transformer (Tsai et al., 2019) with cross-modal
attention; (4) TFN: Tensor Fusion Network (Zadeh
et al., 2017) with LSTM. For numerical features,
TTT leverages the distance-to-quantile embedding
scheme with an arbitrary value of 6 quantiles
(0., 0.2, 0.4, 0.6, 0.8, 1.). The embeddings of the
baselines are constructed with linear functions (Ear-
lyConcat, MulT) or features are kept as standard-
ized values (LateFuse, TFN).

Evaluation 2 (pretrained models). Secondly,
we test TTT-SRP: TTT with sparse random pro-
jections (Li et al., 2006) of input embeddings ex-
tracted from a pretrained model. TTT-SRP has
an intermediate size for the embeddings, with a
240 dimensional space at most. It is initialized
with pretrained DistilBERT-base-uncased input em-
beddings after reducing their dimensions through
sparse random projections. We measure it against
two pretrained baselines: (1) AllTextBERT: The
tabular features, converted to strings, and the text
fields are concatenated and input into DistilBERT-
base-uncased as text; (2) LateFuseBERT: A dual-
stream model with late fusion of [CLS] tokens gen-
erated by DistilBERT-base-uncased and a tabular
Transformer.

Ablation studies. To evidence the contribution
of each component, we perform three ablation stud-
ies for TTT: (1) Ablation 1: The numerical features
are encoded with linear functions instead of the
distance-to-quantile embedding scheme; (2) Abla-

1486

Model Model size airbnb cloth jigsaw kick petfinder salary wine10 wine100

EarlyConcat 1.2M 0.326 0.635 0.885 0.874 0.372 0.450 0.800 0.652
LateFuse 1.2M 0.336 0.644 0.891 0.812 0.367 0.452 0.795 0.657

MulT 1.3M 0.363 0.636 0.888 0.872 0.376 0.454 0.803 0.653
TFN 1.3M 0.357 0.601 0.801 0.864 0.368 0.458 0.714 0.558

TTT (ours) 1.3M 0.383 0.655 0.891 0.871 0.389 0.472 0.817 0.671

Table 1: Evaluation 1. Accuracy on the test dataset averaged over 5 random seeds. Top results are in bold (higher is
better). The variability in results is displayed in Appendix F. Average model size is given in million parameters.

Model Model size airbnb cloth jigsaw kick petfinder salary wine10 wine100

AllTextBERT 66.4M 0.309 0.680 0.906 0.868 0.346 0.440 0.833 0.704
LateFuseBERT 81.3M 0.320 0.670 0.904 0.853 0.359 0.429 0.817 0.683
TTT-SRP (ours) 8.2M 0.383 0.663 0.892 0.874 0.379 0.471 0.827 0.689

Table 2: Evaluation 2. Accuracy on the test dataset averaged over 5 random seeds. Top results are in bold (higher is
better). The variability in results is displayed in Appendix F.

tion 2: We use self-attention instead of overall atten-
tion; (3) Ablation 3: We minimize the loss based on
the average of logits: L((l̂text(x) + l̂tab(x))/2, y),
instead of the dual loss. Moreover, to show the
effect of the TTT-SRP’s initialization scheme, we
measure its performance against TTT-PCA (same
as TTT-SRP but with principal component anal-
ysis instead of sparse random projections) and a
standard approach based on the Kaiming uniform
weight initialization (He et al., 2015).

Quantifying and explaining the uncertainty.
Our method, used to quantify uncertainty (stream
disagreement), is compared to the LAC conformal
prediction approach (Sadinle et al., 2019) and the
Monte Carlo dropout (MCD) with 50 simulations
(Gal and Ghahramani, 2016). For LAC, we com-
pute the mean prediction set size. For MCD, the
uncertainty is assessed with the entropy. Lastly, we
explain the uncertainty of TTT model’s predictions
from wine100 test dataset. The dataset task is to
predict grape varieties based on numerical features
(e.g. price), categorical variables (e.g. country),
and wine tasting descriptions. The uncertainty clas-
sifier is a random forest algorithm (Breiman, 2001)
with 100 trees. In the sampling-based algorithm,
we stop the sampling iterations when the maxi-
mum absolute change in the Shapley values com-
puted with the stream disagreement (binary) signal
is lower than 0.01. This method is used to speed
up the computation as additional iterations would
modify the Shapley values only very marginally.
We use the binary signal for this purpose as the
changes are expected to be more sudden than for
the other value functions. Thus, the convergence is

Dataset Disagr. Set size Set size Entropy
Acc. (SD) (LAC) (MCD)

airbnb 0.32 1.59 1.49 2.01
cloth 0.40 1.19 1.18 0.98

jigsaw 0.54 1.03 1.03 0.34
kick 0.54 1.05 1.04 0.38

petfinder 0.32 1.43 1.38 1.74
salary 0.38 1.35 1.28 1.61
wine10 0.46 1.14 1.11 0.70
wine100 0.36 1.26 1.18 1.40

Table 3: TTT’s accuracy when the streams disagree
(Disagr. Acc.). Mean prediction set size for TTT (SD:
Stream Disagreement, ours) and the conformal predic-
tion baseline (LAC). Mean entropy for the Monte Carlo
dropout baseline (MCD). All results are averaged over
5 seeds on the test dataset.

more certain when it occurs with the binary signal.

4.2 Results

Performance. The results from Table 1 show that
TTT outperforms the other multimodal approaches
on most datasets. Further, the results from Table 2
demonstrate that the lightweight TTT-SRP (8.2M
parameters) outperforms LateFuseBERT (81.3M).
TTT-SRP also matches AllTextBERT (66.4M) in
terms of number of top results. Lastly, it is worth
noting that TTT achieves better results than larger
architectures from Table 2 on small datasets (i.e.
airbnb, petfinder, salary).

Uncertainty quantification. Tables 1 and 3 show
that the mean prediction set size is negatively cor-
related with TTT’s accuracy. The Pearson corre-
lation between the mean prediction set size and
model’s performance (across the 40 experiments:
8 datasets × 5 seeds) is slightly more negative (-

1487

Model airbnb cloth jigsaw kick petfinder salary wine10 wine100

TTT 0.383 0.655 0.891 0.871 0.389 0.472 0.817 0.671
Ablation 1 0.355 0.658 0.892 0.870 0.376 0.463 0.815 0.672
Ablation 2 0.357 0.641 0.882 0.862 0.379 0.456 0.798 0.640
Ablation 3 0.350 0.648 0.887 0.870 0.398 0.458 0.803 0.655

Table 4: Ablation studies. Accuracy on the test dataset averaged over 5 random seeds. Top results are in bold.

Model airbnb cloth jigsaw kick petfinder salary wine10 wine100

TTT-SRP 0.383 0.663 0.892 0.874 0.379 0.471 0.827 0.689
TTT-PCA 0.368 0.659 0.894 0.873 0.369 0.456 0.827 0.690

TTT-Kaiming 0.377 0.657 0.889 0.873 0.379 0.453 0.826 0.691

Table 5: Accuracy with different initialization methods for the input embeddings, on the test dataset computed over
5 random seeds.

0.953) with our approach than with the other base-
lines: conformal prediction (-0.947) and Monte
Carlo dropout (-0.932). The mean prediction set
size computed with our technique is most relevant
to quantify uncertainty on unlabeled data. Thus,
when the streams disagree in their outputs, the final
prediction is less reliable, and this leads to lower
accuracy (first column of Table 3).

Ablation studies. Table 4 shows that TTT has a
solid performance as it ranks first or second across
the various datasets. The effect of using overall
attention instead of only self-attention is quite obvi-
ous (Ablation 2). The dual loss used in TTT is also
relevant based on the weaker results of Ablation 3.

The effect of the distance-to-quantile encoding is
less obvious for some of the datasets but may re-
main of relevance for datasets with many numerical
features, such as airbnb. Lastly, Table 5 displays
the results related to the initialization scheme of
input embeddings: TTT-SRP achieves the best ac-
curacy on most datasets.

Explaining the uncertainty. This method can be
used on unlabeled datasets. Here, the true labels
are only leveraged to audit the method. Figure 3
(left) displays the distributions of the JSD metric
and uncertainty classifier’s predicted probability
over Dc and Du, respectively. The uncertainty
classifier performs better at discriminating between

Figure 3: The first and second rows correspond to the JSD and uncertainty classifier, respectively. Left: Distributions
of value functions’ outputs by subset Dc and Du. Middle: The top 10 feature contributions to uncertainty for an
uncertain prediction due to data scarcity and potential class overlap. Positive contributions are displayed in red.
Right: The top 10 feature contributions to uncertainty for an input where the price has been synthetically halved so
that the prediction becomes uncertain. Unlike the tabular stream, the text stream still predicts a correct label.

1488

certain and uncertain predictions, and may be more
reliable. Figure 3 (middle) displays the results for
an uncertain and incorrect final prediction. Each
stream predicts a different label. The instance is
related to a country value ("Brazil") which is quite
rare in the dataset (i.e. data scarcity), generating
an uncertain decision. Further, the term abrasive
also contributes to the uncertainty. This word ap-
pears in text fields related to several grape varieties
from the same region (e.g. Merlot or Tannat vari-
eties). This is a sign of potential class overlap. Both
value functions help detect these problems. To
confirm the consistency of explanations, we com-
pute the Pearson correlations between the Shapley
values obtained with our method and with Kernel
SHAP, for both value functions: 0.93 (JSD) and
0.86 (uncertainty classifier). Lastly, we perform a
synthetic sensitivity test with an input where the
price has been artificially halved so that the deci-
sion becomes uncertain (stream disagreement), but
remains correct. Figure 3 (right) evidences the ori-
gin of uncertainty and the potential inconsistency
between the price and year values. With the un-
certainty classifier, these positive contributions are
largely offset by the negative contributions of spe-
cific words (e.g. vegetal). This is why, unlike the
tabular stream, the text stream still predicts a cor-
rect label. In that case, using the uncertainty classi-
fier produces more reliable outputs as confirmed by
the Pearson correlations between the feature con-
tributions generated by our method and by Kernel
SHAP: 0.39 (JSD) and 0.88 (uncertainty classifier).
This explanation method could be employed on
more critical applications such as medical diagno-
sis prediction by combining a predictive algorithm
with human-in-the-loop. For instance, a prediction
could be uncertain due to specific words from the
caregiver notes. This would help a medical expert
understand why the prediction is not certain and
make a decision for a more likely diagnosis. Ap-
pendix K displays additional examples from wine,
cloth, and kick datasets.

5 Conclusion

We presented the Tabular-Text Transformer, a mul-
timodal approach which shows promising results
on classification tasks. We demonstrated how un-
certainty can be quantified and explained. Future
work will focus on pretraining strategies for TTT.

6 Limitations

Datasets for critical tasks. The datasets used
in this pilot study are not related to critical tasks.
Thus, it would be useful that the scientific com-
munity shares tabular/text datasets for medical or
financial applications in order to test the efficacy
of the approach presented here.

Overall attention with unbalanced sequences.
The effect of having sequences with different
lengths (e.g. long text sequence and few tabular
features) has not been assessed. Therefore, the
impact of unbalanced lengths for text and tabular
sequences remains to be studied.

Uncertainty quantification and coverage. The
size of the prediction sets generated by TTT’s
streams is bounded by two. Unlike conformal pre-
diction, it is not possible to specify the desired
coverage level (i.e. the proportion of true label
values that lie in the prediction sets). The actual
coverage depends on the use case and can only
be assessed on a validation dataset. Further, the
conditional coverage could vary across different di-
mensions. For instance, it could be different across
different population subgroups. Therefore, it is
essential to monitor conditional coverage across
these dimensions when the true labels are obtained.

7 Ethical Considerations

We presented a new Transformer-based archi-
tecture for classification tasks based on tabular
datasets with text fields. Our method does not aim
to predict or exploit any personal or sensitive in-
formation. We do not expect any significant risks
related to this multimodal approach.

Given it is based on pretrained models and low-
dimensional embeddings, the environmental im-
pact of our study is limited. We reported the compu-
tational cost for each model in Appendix I. A large-
scale test could benefit from employing specific
cost-related algorithms for tuning hyper-parameters
(Wu et al., 2021).

With regard to transparency and compliance is-
sues, we conducted the experiments on publicly
available datasets and implemented the models by
exploiting well-recognized pretrained models and
Python libraries, e.g. Pytorch (Paszke et al., 2019).
The experimental results are obviously specific to
these datasets. We ran some of our experiments
on a sample of the jigsaw1 public dataset which is

1https://www.kaggle.com/c/

1489

https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification

used for detecting toxic comments. We reported the
performance results, but did not display any harm-
ful content from this dataset. Lastly, it is important
to monitor the performance of TTT over time. In
particular, if the use case is related to individuals,
practitioners should ensure that the model does
not achieve different levels of uncertainty or per-
formance across population subgroups. Artefacts
such as the ESG model card can help report these
risks and limitations (Bonnier and Bosch, 2023).

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru

Ohta, and Masanori Koyama. 2019. Optuna: A next-
generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD interna-
tional conference on knowledge discovery & data
mining, pages 2623–2631.

Javier Antoran, Umang Bhatt, Tameem Adel, Adrian
Weller, and José Miguel Hernández-Lobato. 2021.
Getting a {clue}: A method for explaining uncer-
tainty estimates. In International Conference on
Learning Representations.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Gilbert Badaro, Mohammed Saeed, and Paolo Papotti.
2023. Transformers for tabular data representation:
A survey of models and applications. Transactions
of the Association for Computational Linguistics,
11:227–249.

Thomas Bonnier. 2023. Leveraging error patterns to
correct prediction intervals. In ECAI 2023, pages
287–294. IOS Press.

Thomas Bonnier and Benjamin Bosch. 2023. Towards
safe machine learning lifecycles with esg model
cards. In Computer Safety, Reliability, and Secu-
rity. SAFECOMP 2023 Workshops, pages 369–381,
Cham. Springer Nature Switzerland.

Leo Breiman. 2001. Random forests. Machine learning,
45:5–32.

Charles Corbière, Nicolas THOME, Avner Bar-Hen,
Matthieu Cord, and Patrick Pérez. 2019. Addressing
failure prediction by learning model confidence. In
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

jigsaw-unintended-bias-in-toxicity-classification

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Julian Eisenschlos, Maharshi Gor, Thomas Müller, and
William Cohen. 2021. MATE: Multi-view attention
for table transformer efficiency. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7606–7619, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a bayesian approximation: Representing model un-
certainty in deep learning. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1050–1059, New York, New York,
USA. PMLR.

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics,
volume 9 of Proceedings of Machine Learning Re-
search, pages 249–256. PMLR.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko.
2022. On embeddings for numerical features in tabu-
lar deep learning. In Advances in Neural Information
Processing Systems, volume 35, pages 24991–25004.
Curran Associates, Inc.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and
Artem Babenko. 2021. Revisiting deep learning mod-
els for tabular data. In Advances in Neural Informa-
tion Processing Systems, volume 34, pages 18932–
18943. Curran Associates, Inc.

Ken Gu and Akshay Budhkar. 2021. A package for
learning on tabular and text data with transformers.
In Proceedings of the Third Workshop on Multimodal
Artificial Intelligence, pages 69–73, Mexico City,
Mexico. Association for Computational Linguistics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, LIU Shujie, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
In International Conference on Learning Representa-
tions.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark
Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. 2020. Array programming with NumPy.
Nature, 585(7825):357–362.

1490

https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.1145/3292500.3330701
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.1145/3292500.3330701
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://openreview.net/forum?id=XSLF1XFq5h
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://openreview.net/forum?id=XSLF1XFq5h
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://arxiv.org/pdf/1607.06450.pdf
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.1162/tacl_a_00544
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.1162/tacl_a_00544
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.3233/FAIA230282
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.3233/FAIA230282
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.1007/978-3-031-40953-0_31
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.1007/978-3-031-40953-0_31
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.1007/978-3-031-40953-0_31
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://proceedings.neurips.cc/paper_files/paper/2019/file/757f843a169cc678064d9530d12a1881-Paper.pdf
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://proceedings.neurips.cc/paper_files/paper/2019/file/757f843a169cc678064d9530d12a1881-Paper.pdf
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.18653/v1/N19-1423
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.18653/v1/N19-1423
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.18653/v1/N19-1423
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://doi.org/10.18653/v1/2021.emnlp-main.600
https://doi.org/10.18653/v1/2021.emnlp-main.600
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9e9f0ffc3d836836ca96cbf8fe14b105-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9e9f0ffc3d836836ca96cbf8fe14b105-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9d86d83f925f2149e9edb0ac3b49229c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9d86d83f925f2149e9edb0ac3b49229c-Paper.pdf
https://doi.org/10.18653/v1/2021.maiworkshop-1.10
https://doi.org/10.18653/v1/2021.maiworkshop-1.10
https://openreview.net/pdf?id=jLoC4ez43PZ
https://openreview.net/pdf?id=jLoC4ez43PZ
https://doi.org/10.1038/s41586-020-2649-2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. TABBIE: Pretrained representations of
tabular data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3446–3456, Online. Association
for Computational Linguistics.

Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pom-
bra, Shahin Jabbari, Steven Wu, and Himabindu
Lakkaraju. 2022. The disagreement problem in ex-
plainable machine learning: A practitioner’s perspec-
tive. arXiv preprint arXiv:2202.01602.

Solomon Kullback. 1997. Information theory and statis-
tics. Courier Corporation.

Ping Li, Trevor J Hastie, and Kenneth W Church. 2006.
Very sparse random projections. In Proceedings of
the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 287–
296.

Paul Pu Liang, Amir Zadeh, and Louis-Philippe
Morency. 2022. Foundations and recent trends
in multimodal machine learning: Principles, chal-
lenges, and open questions. arXiv preprint
arXiv:2209.03430.

J. Lin. 1991. Divergence measures based on the shan-
non entropy. IEEE Transactions on Information The-
ory, 37(1):145–151.

Scott M Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Cuong V Nguyen, Sanjiv R Das, John He, Shenghua
Yue, Vinay Hanumaiah, Xavier Ragot, and Li Zhang.
2021. Multimodal machine learning for credit model-
ing. In 2021 IEEE 45th Annual Computers, Software,
and Applications Conference (COMPSAC), pages
1754–1759. IEEE.

Harris Papadopoulos, Kostas Proedrou, Volodya Vovk,
and Alexander Gammerman. 2002. Inductive confi-
dence machines for regression. In Machine Learning:
ECML 2002, 13th European Conference on Machine
Learning, Helsinki, Finland, August 19-23, 2002,
Proceedings, volume 2430 of Lecture Notes in Com-
puter Science, pages 345–356. Springer.

Letitia Parcalabescu and Anette Frank. 2023. MM-
SHAP: A performance-agnostic metric for measur-
ing multimodal contributions in vision and language
models & tasks. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4032–4059,
Toronto, Canada. Association for Computational Lin-
guistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 8024–8035.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Mauricio Sadinle, Jing Lei, and Larry Wasserman. 2019.
Least ambiguous set-valued classifiers with bounded
error levels. Journal of the American Statistical As-
sociation, 114(525):223–234.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

LS Shapley. 2016. 17. a value for n-person games. In
Contributions to the Theory of Games (AM-28), Vol-
ume II, pages 307–318. Princeton University Press.

Xingjian Shi, Jonas Mueller, Nick Erickson, Mu Li,
and Alex Smola. 2021. Benchmarking multimodal
automl for tabular data with text fields. In Thirty-
fifth Conference on Neural Information Processing
Systems, Datasets and Benchmarks Track.

Erik Štrumbelj and Igor Kononenko. 2010. An effi-
cient explanation of individual classifications using
game theory. Journal of Machine Learning Research,
11(1):1–18.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang,
J. Zico Kolter, Louis-Philippe Morency, and Rus-
lan Salakhutdinov. 2019. Multimodal transformer
for unaligned multimodal language sequences. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6558–
6569, Florence, Italy. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde,

1491

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.270
https://doi.org/10.18653/v1/2021.naacl-main.270
https://doi.org/https://arxiv.org/abs/2202.01602
https://doi.org/https://arxiv.org/abs/2202.01602
https://doi.org/https://arxiv.org/abs/2202.01602
https://doi.org/10.1145/1150402.1150436
https://arxiv.org/pdf/2209.03430.pdf
https://arxiv.org/pdf/2209.03430.pdf
https://arxiv.org/pdf/2209.03430.pdf
https://doi.org/10.1109/18.61115
https://doi.org/10.1109/18.61115
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://doi.org/DOI: 10.1109/COMPSAC51774.2021.00262
https://doi.org/DOI: 10.1109/COMPSAC51774.2021.00262
https://doi.org/10.18653/v1/2023.acl-long.223
https://doi.org/10.18653/v1/2023.acl-long.223
https://doi.org/10.18653/v1/2023.acl-long.223
https://doi.org/10.18653/v1/2023.acl-long.223
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://doi.org/10.1080/01621459.2017.1395341
https://doi.org/10.1080/01621459.2017.1395341
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.48550/arXiv.1910.01108
https://openreview.net/pdf?id=Q0zOIaec8HF
https://openreview.net/pdf?id=Q0zOIaec8HF
http://jmlr.org/papers/v11/strumbelj10a.html
http://jmlr.org/papers/v11/strumbelj10a.html
http://jmlr.org/papers/v11/strumbelj10a.html
https://doi.org/10.18653/v1/P19-1656
https://doi.org/10.18653/v1/P19-1656
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, An-
tônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272.

Vladimir Vovk, Alexander Gammerman, and Glenn
Shafer. 2005. Algorithmic learning in a random
world. Springer Science & Business Media.

Wes McKinney. 2010. Data Structures for Statistical
Computing in Python. In Proceedings of the 9th
Python in Science Conference, pages 56 – 61.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Qingyun Wu, Chi Wang, and Silu Huang. 2021. Frugal
optimization for cost-related hyperparameters. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 10347–10354.

Peng Xu, Xiatian Zhu, and David A. Clifton. 2023.
Multimodal learning with transformers: A survey.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(10):12113–12132.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay,
Luheng He, Rahul Goel, and Shachi Paul. 2022.
TableFormer: Robust transformer modeling for table-
text encoding. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 528–537,
Dublin, Ireland. Association for Computational Lin-
guistics.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413–8426, On-
line. Association for Computational Linguistics.

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cam-
bria, and Louis-Philippe Morency. 2017. Tensor
fusion network for multimodal sentiment analysis.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1103–1114, Copenhagen, Denmark. Association for
Computational Linguistics.

A Appendix: Table of Contents

B Related Work
C Datasets and Sampling
D Pre-processing
E Hyper-parameter Tuning, Weight Initialization,
and Training Settings
F Variability in Results
G Additional Baseline
H Uncertainty Quantification
I Implementation Information
J Models’ Architectures
K Explaining the Uncertainty

B Related Work

Transformers for tabular data. With regard to
tabular data, most existing works on Transformers
have focused on learning the structure and content
of tables with pretraining strategies. Those models
are usually employed for tasks such as question an-
swering (Yin et al., 2020; Eisenschlos et al., 2021),
table based fact-checking (Yang et al., 2022), or
table content population (Iida et al., 2021). Such ar-
chitectures leverage specific positional embeddings
and row-wise/column-wise attention. Our work,
however, concentrates on employing labeled tabu-
lar/text data for multimodal classification tasks. We
note that few works address this objective (Badaro
et al., 2023; Gu and Budhkar, 2021).

C Datasets and Sampling

All the datasets are publicly available with one of
these licenses: "CC0: Public Domain", "Competi-
tion Data", or "CC BY-NC-SA 4.0". These datasets
can be accessed and used for the purpose of aca-
demic research. The text fields are in English.

In Table 6, we give more details on the datasets:

• airbnb2: the task is to predict the price range
of Airbnb listings. The text fields are listing
descriptions.

• cloth3: the goal is to classify the sentiment
(represented as a class) of user reviews re-
garding clothing items. The text fields are
customer reviews.

2https://www.kaggle.com/datasets/tylerx/
melbourne-airbnb-open-data

3https://www.kaggle.com/datasets/nicapotato/
womens-ecommerce-clothing-reviews

1492

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1609/aaai.v35i12.17239
https://doi.org/10.1609/aaai.v35i12.17239
https://doi.org/10.1109/TPAMI.2023.3275156
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/D17-1115
https://doi.org/10.18653/v1/D17-1115
https://www.kaggle.com/datasets/tylerx/melbourne-airbnb-open-data
https://www.kaggle.com/datasets/tylerx/melbourne-airbnb-open-data
https://www.kaggle.com/datasets/nicapotato/womens-ecommerce-clothing-reviews
https://www.kaggle.com/datasets/nicapotato/womens-ecommerce-clothing-reviews

Dataset # Train # Test # Num # Cat Text length # Class

airbnb 4,372 1,367 27 23 264 10
cloth 14,481 4,526 2 3 102 5

jigsaw 64,000 20,000 5 1 126 2
kick 69,196 21,624 3 3 32 2

petfinder 9,587 2,997 5 14 135 5
salary 12,672 3,961 1 2 34 6
wine10 42,537 13,294 2 2 56 10

wine100 70,905 22,158 2 2 55 100

Table 6: Information on datasets: number of samples in training and test datasets, number of numerical/categorical
features, text sequence length (maximum length based on word count), number of classes.

• jigsaw4: the objective is to detect toxic com-
ments. As advised by the creators of this use
case, examples with target value greater or
equal to 0.5 will be considered to be in the
positive class (toxic). As class imbalance can
make the accuracy metric irrelevant, we over-
sample instances with the toxic label to reach
20% share, while keeping only 100,000 in-
stances from the initial 1.8 million examples
in order to reduce the computational cost.

• kick5: the task is to predict whether a pro-
posed project will meet its funding goal. The
text fields are project descriptions.

• petfinder6: the goal is to predict the speed
range at which a pet is adopted. The text fields
are profile write-ups for the pets.

• salary7: the task is to predict the salary range
based on data scientist job postings. The text
fields are job descriptions.

• wine8: the goal is to predict the variety of
wines. The text fields are wine tasting descrip-
tions.

For some of the use cases, we employ the orig-
inal training dataset as the test dataset does not
include the true labels (competition data). In that
case, we consider the training dataset as the model-
ing data which is then randomly split into training-
validation-test subsets. For all datasets, the splits

4https://www.kaggle.com/c/
jigsaw-unintended-bias-in-toxicity-classification

5https://www.kaggle.com/datasets/codename007/
funding-successful-projects

6https://www.kaggle.com/competitions/
petfinder-adoption-prediction/data

7https://machinehack.com/hackathons/predict_
the_data_scientists_salary_in_india_hackathon/
overview

8https://www.kaggle.com/datasets/zynicide/
wine-reviews

are constructed as follows: (1) The initial dataset
is randomly split into two disjoint temporary (80%
share) and test (20% share) subsets, respectively;
(2) The temporary dataset is randomly split into
two disjoint training (80% share) and validation
(20% share) subsets, respectively.

D Pre-processing

Feature engineering. When the dataset contains
several text fields, these are concatenated in order
to obtain a single field. Rows with missing values
are dropped. Missing values for categorical vari-
ables could be handled by specific embeddings, but
this remains to be studied. The list of final fea-
tures for each dataset is available in the settings.py
Python file. We mention here additional features
that were created from the raw dataset (detailed in
dataset.py):

• airbnb: for this dataset only, we discretize the
target variable by employing quantile binning
(ten intervals with equal share of data). We
also create two new features host_since_year
and last_review_year by extracting the year
from host_since and last_review respectively.

• kick: we compute the duration to launch (in
days) with deadline and launched_at. We also
log-transform goal.

• wine: we extract the year from title.

Tabular feature encoding. For numerical fea-
tures, TTT and TTT-SRP use the distance-to-
quantile embedding scheme with an arbitrary value
of 6 quantiles (0., 0.2, 0.4, 0.6, 0.8, 1.). The em-
beddings of the baselines are constructed with
linear functions (EarlyConcat, MulT, LateFuse-
BERT) or features are kept as standardized val-
ues (LateFuse, TFN). A linear function applies the
following transformation to a scalar feature value

1493

https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/datasets/codename007/funding-successful-projects
https://www.kaggle.com/datasets/codename007/funding-successful-projects
https://www.kaggle.com/competitions/petfinder-adoption-prediction/data
https://www.kaggle.com/competitions/petfinder-adoption-prediction/data
https://machinehack.com/hackathons/predict_the_data_scientists_salary_in_india_hackathon/overview
https://machinehack.com/hackathons/predict_the_data_scientists_salary_in_india_hackathon/overview
https://machinehack.com/hackathons/predict_the_data_scientists_salary_in_india_hackathon/overview
https://www.kaggle.com/datasets/zynicide/wine-reviews
https://www.kaggle.com/datasets/zynicide/wine-reviews

x ∈ R: x.Wnum + b where Wnum ∈ Rd and the
bias b ∈ Rd. For categorical features, we use the
one-hot-encoding technique (LateFuse, TFN) or
encode them as category embeddings (EarlyCon-
cat, MulT, TTT, TTT-SRP, LateFuseBERT). In that
latter case, the corresponding embedding is com-
puted as eTWcat where e ∈ Rnc×1 is a one-hot-
vector for the associated categorical feature, nc
denote the number of categories for this feature,
and Wcat ∈ Rnc×d. Lastly, in AllTextBERT, the
tabular features, converted to strings, and the text
fields are concatenated and input into DistilBERT-
base-uncased.

Text pre-processing for small architectures (Ear-
lyConcat, LateFuse, MulT, TFN, TTT). We
keep only words and whitespaces (e.g. we re-
move numbers and punctuation). We use the ba-
sic_english tokenizer from PyTorch which per-
forms lowercasing and basic text normalization
for English words. This tokenizer returns a list
of tokens after splitting on whitespace. To reduce
the dictionary’s size, we remove words that appear
only once. For the text sequence maximum length
(see Table 6), the value is set as the 0.9 quantile of
the text field lengths’ distribution, based on words.
We also use the [UNK] token for unknown words,
truncation, and padding to the specific maximum
length.

Text pre-processing for large architectures (All-
TextBERT, LateFuseBERT, TTT-SRP). For
these models, we perform the following text pre-
processing: we keep words, numbers, and whites-
paces. We then use the DistilBERT-base-uncased
tokenizer based on WordPiece. For the text se-
quence length, the value is the 0.9 quantile of the
text field lengths’ distribution. We use truncation
and padding to the fixed maximum length.

Key padding mask. We use key padding masks
in order to specify which text tokens should be ig-
nored (i.e. "padding") for the purpose of attention.

Hyper-parameter Space

Embedding dimension {32, 48, 64}
Layers (Transformer) {2, 3}
Heads (Transformer) {4, 8}

Learning rate LogUniform[1e− 5, 1e− 3]
Batch size {32, 64, 96, 128}

Table 8: Hyper-parameter space used during tuning
with Optuna (small architectures).

Hyper-parameter Space

Embedding dimension {120, 144, 168, 192, 216, 240}
Layers (Transformer) {4, 5}
Heads (Transformer) {4, 8, 12}

Learning rate LogUniform[1e− 5, 1e− 3]
Batch size {32, 64, 96, 128}

Table 9: Hyper-parameter space used during tuning
with Optuna (TTT-SRP).

E Hyper-parameter Tuning, Weight
Initialization, and Training Settings

Small architectures. For all the small architec-
tures (EarlyConcat, LateFuse, MulT, TFN, TTT),
the hyper-parameters are tuned on the validation
dataset. The objective is to select the best trial,
i.e. the trial with the highest accuracy on the val-
idation subset. We run a Bayesian Optimization
algorithm (Tree-structured Parzen Estimator) by
using Optuna library (Akiba et al., 2019) with a
limited time budget for each model/run: 900s for
each case where the training dataset contains more
than 20,000 samples; 600s otherwise. Table 8 dis-
plays the hyper-parameter space used during tuning.
We also use the pruning option which enables to
early-stop unpromising trials. For faster epochs, we
use only 60% of the training samples if the training
dataset contains more than 20,000 samples.

The selected model is then trained (on the train-
ing dataset) by using early stopping with a patience
of 4 for the accuracy on the validation set. An ex-
ponential learning rate scheduler with gamma of
0.9 (multiplicative factor of learning rate decay) is
also employed. We keep the best model in terms of
epochs, i.e. with the highest accuracy on validation
data.

Additional information on training settings is
provided here: (1) We use the Xavier uniform
weight initialization (Glorot and Bengio, 2010)
for the parameters in the attention modules and
the Kaiming uniform weight initialization (He
et al., 2015) for the other weights; (2) Loss: cross-
entropy; (3) Loss optimization: optimizer (Adam)
with weight decay (1e − 5); (4) Maximum num-
ber of epochs: 100; (5) Dropout rate (for attention,
residual, feed-forward network, fully-connected
networks, embeddings): 0.1.

TTT-SRP. For TTT-SRP, the hyper-parameters
are tuned on the validation dataset. The objective
is to select the best trial, i.e. the trial with the high-
est accuracy on the validation subset. We run a
Bayesian Optimization algorithm (Tree-structured

1494

Model airbnb cloth jigsaw kick petfinder salary wine10 wine100

EarlyConcat 0.005 0.005 0.005 0.001 0.012 0.010 0.002 0.004
LateFuse 0.015 0.005 0.003 0.027 0.015 0.007 0.008 0.004

MulT 0.010 0.006 0.005 0.003 0.009 0.022 0.011 0.008
TFN 0.017 0.032 0.003 0.004 0.007 0.006 0.002 0.031

TTT (ours) 0.011 0.007 0.003 0.002 0.013 0.010 0.006 0.004

AllTextBERT 0.037 0.003 0.003 0.004 0.012 0.009 0.006 0.008
LateFuseBERT 0.029 0.006 0.004 0.009 0.012 0.004 0.005 0.006
TTT-SRP (ours) 0.009 0.010 0.002 0.002 0.011 0.010 0.007 0.006

Ablation 1 0.023 0.009 0.004 0.002 0.010 0.009 0.006 0.004
Ablation 2 0.019 0.009 0.002 0.005 0.012 0.007 0.006 0.008
Ablation 3 0.014 0.005 0.005 0.002 0.010 0.010 0.006 0.005

Table 7: Standard deviation of the accuracy on the test dataset computed over 5 random seeds.

Parzen Estimator) by using Optuna library with a
limited time budget for each model/run: 900s for
each case where the training dataset contains more
than 20,000 samples; 600s otherwise. Table 9 dis-
plays the hyper-parameter space used during tuning.
We also use the pruning option which enables to
early-stop unpromising trials. For faster epochs, we
use only 60% of the training samples if the training
dataset contains more than 20,000 samples.

The selected model is then trained (on the train-
ing dataset) by using early stopping with a patience
of 1 for the accuracy on the validation set. An ex-
ponential learning rate scheduler with gamma of
0.9 (multiplicative factor of learning rate decay) is
also employed. We keep the best model in terms of
epochs, i.e. with the highest accuracy on validation
data.

The input embeddings are initialized with pre-
trained DistilBERT-base-uncased input embed-
dings after reducing their dimensions through
sparse random projections: E = 1√

d
AR, where

E ∈ Rv×d denotes the reduced input embeddings
from TTT-SRP (v = 30522 is the vocabulary size
and d is the embedding dimension selected through
hyper-parameter tuning), A ∈ Rv×DDBERT is Dis-
tilBERT input embeddings (DDBERT = 768 is the
embedding dimension), and R ∈ RDDBERT×d is
the projection matrix with elements rij . As per (Li
et al., 2006), we have rij =

√
s with probability

1
2s , rij = 0 with probability 1− 1

s , and rij = −√
s

with probability 1
2s . As advised by the authors, we

take s =
√
DDBERT . Further, we use the Xavier

uniform weight initialization for the parameters in
the attention modules and the Kaiming uniform
weight initialization for the remaining weights.

Lastly, the other elements are similar to small
architectures: (1) Loss: cross-entropy; (2) Loss
optimization: optimizer (Adam) with weight decay

dataset val cov. test cov. ag. cov. dis. cov.

airbnb 0.52 0.51 0.49 0.52
cloth 0.73 0.72 0.72 0.72

jigsaw 0.91 0.91 0.91 0.93
kick 0.89 0.89 0.89 0.92

petfinder 0.50 0.51 0.49 0.52
salary 0.57 0.57 0.56 0.60
wine10 0.85 0.85 0.86 0.84

wine100 0.72 0.72 0.73 0.68

Table 10: TTT coverage on the validation (val cov.)
and test (test cov.) datasets. Coverage when the streams
of TTT agree versus when they disagree on test data,
averaged over 5 seeds.

(1e− 5); (3) Maximum number of epochs: 100; (4)
Dropout rate (for attention, residual, feed-forward
network, fully-connected networks, embeddings):
0.1.

AllTextBERT, LateFuseBERT. In order to fine-
tune these pretrained models, we follow the guide-
lines from Devlin et al. (2019); Sanh et al. (2019)
with a batch size of 32 and a learning rate of 5e−5.
The model is trained (i.e. fine-tuned on the training
dataset) by using early stopping with a patience
of 1 for the accuracy on the validation set. An ex-
ponential learning rate scheduler with gamma of
0.9 (multiplicative factor of learning rate decay) is
also employed. We keep the best model in terms of
epochs, i.e. with the highest accuracy on validation
data.

For the tabular Transformer component of Late-
FuseBERT, we use the Xavier uniform weight ini-
tialization for the parameters in the attention mod-
ules and the Kaiming uniform weight initialization
for the other weights.

Lastly, we also have: (1) Loss: cross-entropy;
(2) Loss optimization: optimizer (AdamW) with
weight decay (1e − 5); (3) Maximum number of

1495

epochs: 100; (4) Dropout rate: 0.1.

F Variability in Results

Table 7 displays the variability in performance.

G Additional Baseline

We experiment with a different type of baseline: a
random forest (100 estimators, maximum depth of
10) based on term frequency-inverse document fre-
quency (TF-IDF) with 1000 text features, one-hot-
encoding for the categorical features, and the scaled
numerical features. This model achieves the same
mean accuracy as TTT on 2 small datasets with
many tabular features (airbnb and petfinder). How-
ever, its accuracy is weaker on the other datasets:
airbnb 0.385 | cloth 0.555 | jigsaw 0.806 | kick 0.685
| pet 0.391 | salary 0.372 | wine10 0.67 | wine100
0.468.

H Uncertainty Quantification

LAC baseline. The conformity score of the LAC
method (Least Ambiguous Set-Valued Classifiers)
from (Sadinle et al., 2019) is one minus the prob-
ability of the true label. Thus, we compute it for
each data point of the validation dataset (size n).
To make the methods comparable, the target cover-
age level (1− α) is set to the one obtained on the
validation set with the stream disagreement (SD)
method. We then compute the (1 − α)(n + 1)/n
quantile of the conformity scores’s distribution. For
each data point of the test dataset, the prediction set
is then constructed with the labels where one mi-
nus the predicted probability is below the previous
quantile.

MCD baseline. For each data point of the test
dataset, we obtain M = 50 softmax distributions
with the Monte Carlo dropout method. We then
estimate the uncertainty at each datapoint by com-
puting the entropy u as in (Antoran et al., 2021):
u = −∑

c∈Y(
1
M

∑M
i=1 Pi,c) log2(

1
M

∑M
i=1 Pi,c),

where Pi,c = p̂(c|θi, x) is the predicted probability
from TTT for simulation i, model parameters θi,
and class c.

Coverage. The prediction regions produced by
TTT can be more informative than a single pre-
dicted label. For example, TTT’s accuracy is 47%
on salary dataset, but Table 10 shows that the pre-
diction sets achieve 57% coverage and 35% of the
sets contain two predicted labels. From a frequen-
tist standpoint, if we consider the whole test dataset,

57% of the time, the prediction sets of size 1 or
2 would include the true label. Lastly, Table 10
also shows the coverage achieved by TTT’s predic-
tion sets when the two streams agree or disagree.
These coverage values are not equal but remain
quite close.

Example. Lastly, Figure 4 displays two examples
where the streams disagree and the model fails to
predict the correct label.

I Implementation Information

Hardware and computational cost. We run the
experiments with a Tesla T4 GPU. Table 11 sum-
marizes the average computational cost for each
model. It is worth noting that the computation time
for TTT-SRP includes hyper-parameter tuning (be-
tween 600 and 900s), which explains why the total
computation time is as high as LateFuseBERT’s
one.

Model Time (s) Parameters

EarlyConcat 933 1.2M
LateFuse 910 1.2M

MulT 1216 1.3M
TFN 881 1.3M
TTT 1095 1.3M

AllTextBERT 1748 66.4M
LateFuseBERT 1178 81.3M

TTT-SRP 1179 8.2M

Table 11: Average computation time (in seconds) per
run and average number of model parameters. This in-
cludes pre-processing, hyper-parameter tuning, training
(or fine-tuning for pretrained models), and evaluation.

Python libraries. The implementation is based
on Python 3.10 and the following packages: torch
2.1.0+cu118 (Paszke et al., 2019), optuna 3.4.0
(Akiba et al., 2019), transformers 4.35.2 (Wolf
et al., 2020), pandas 1.5.3 (Wes McKinney, 2010),
numpy 1.23.5 (Harris et al., 2020), sklearn 1.2.2
(Pedregosa et al., 2011), scipy 1.11.4 (Virtanen
et al., 2020). These libraries are publicly avail-
able with "BSD", "MIT", or "Apache Software"
licenses.

For AllTextBERT and LateFuseBERT, we use
the ’distilbert-base-uncased’ tokenizer and model
from the transformers library. All the baselines are
implemented with Pytorch and adapted to tabular-
text inputs. The code has been written based on the
content of the references cited in Section 4.1.

1496

CLS-tab

Division
Name:

General
Petite

Department
Name: Tops

Class
Name:
Knits Age: 39

Positive
Feedback
Count: 1 CLS-text nice design love the rushed sleeves and the flower pattern on the side t shirt is however a little thin

CLS-tab 0.012 0.006 0.011 0.006 0.036 0.003 0.004 0.277 0.106 0.043 0.007 0.007 0.003 0.004 0.004 0.050 0.006 0.017 0.002 0.014 0.011 0.002 0 0.249 0.001 0.041 0.074

CLS-tab

Division
Name:

General

Department
Name:
Jackets

Class
Name:

Outerwear Age: 37

Positive
Feedback
Count: 4 CLS-text beautiful colors but poor quality and bulky i was excited to receive this coat for my annual travel to switzerland

CLS-tab 0.008 0.001 0.006 0.009 0.012 0.006 0.003 0.048 0.009 0.289 0.420 0.024 0.004 0.044 0.002 0.013 0.045 0.013 0.003 0.005 0.006 0.004 0.005 0.001 0.007 0.011 0.001

Division Name Department Name Class Name Age
Positive Feedback

Count
Review Y Final pred text_pred tabular_pred

General Petite Tops Knits 39 1
Nice design Love the rushed sleeves, and the flower pattern

on the side. t shirt is, however, a little thin
4 3 3 4

General Jackets Outerwear 37 4
Beautiful colors but poor quality and bulky I was excited to

receive this coat for my annual travel to switzerland
1 0 0 1

Figure 4: Illustration of predictive uncertainty with TTT for two instances of cloth dataset. Top: Table with inputs,
true label, predicted label, prediction from the text stream, and prediction from the tabular stream. In each example,
the model is uncertain and hesitates between two labels. The model fails to predict the correct label as it follows the
prediction of the wrong stream. Bottom: The attention weights of [CLS]tab averaged across heads are displayed for
the first layer of the model and for each example.

J Models’ Architectures

TTT and TTT-SRP. We detail here
the feed-forward module and final fully-
connected layers from Figure 2. The feed-
forward module can be described as follows:
FF(x) = Linear(Dropout(ReLU(Linear(x))))
where the output has an embedding dimension of
d.

The final fully-connected lay-
ers can be described as follows:
FC(x) = Linear(Dropout(ReLU(Linear(x))))
where the output has a dimension of C (number of
classes).

TTT-SRP’s architecture is quite similar. As pre-
viously detailed, the only differences are related to
the weight initialization scheme of the input em-
beddings and the size of the network.

Baseline 1: EarlyConcat. The model is a one-
stream Transformer with self-attention applied on
the concatenated tabular-text embedding sequence
(including [CLS] token). Positional embeddings
are used too. The final prediction is performed
after projecting the embeddings of the [CLS] token
through fully-connected layers.

Baseline 2: LateFuse. Only the text stream goes
though a Transformer model with self-attention.
The [CLS] output of this Transformer is then con-
catenated with the standardized numerical features
and one-hot-encoded categorical variables. The
final prediction is performed after projecting this
vector through fully-connected layers.

Baseline 3: MulT. This model has two streams:
tabular and text. Each stream contains a Trans-
former with cross-modal attention followed by a
Transformer with self-attention. Positional embed-
dings are used in this architecture too. We then
concatenate the [CLS] text and tabular embeddings
from each stream in order to project the resulting
vector through fully-connected layers.

Baseline 4: TFN. This is the only model which
is not based on a Transformer architecture. This
model starts with two streams: an LSTM for the
text sequence and a neural network for the tabular
features. We compute the Cartesian product from
the outputs of these two networks (after adding 1
in each embedding vector) in order to take into
account 1-D and 2-D effects. The resulting matrix
is flattened and projected through fully connected
layers.

Baseline 5: AllTextBERT. The tabular features,
converted to strings, and the text fields are concate-
nated and input into DistilBERT. The final predic-
tion is performed after projecting the embeddings
of the [CLS] token through fully-connected layers.

Baseline 6: LateFuseBERT. This model has two
streams: tabular and text. Each stream contains a
Transformer architecture: DistilBERT is used for
the text stream and a Transformer with 3 layers
(self-attention with 8 heads) is employed for the
tabular stream. We then concatenate the [CLS]
text and tabular embeddings from each stream in
order to project the resulting vector through fully-
connected layers.

1497

K Explaining the Uncertainty

Contribution of special token [CLS]. When we
compute the token contributions, the classification
token [CLS] is not considered. This token is only
used for the classification task.

Lasso parameters in Kernel SHAP. When com-
puting the Kernel SHAP contributions, we fit a
weighted Lasso regression with the following set-
tings: L1 regularization penalty: 1e-3, maximum
number of iterations: 1000, tolerance for the opti-
mization: 0.0001.

Example 1: OOD instance from wine. The orig-
inal wine dataset contains more than 100 classes.
Thus, we select an instance from a minority class
which is not included in wine100. The uncertain
OOD instance has the following characteristics:

• Tabular features: country="Italy", year="2005",
price=75.0, points=91.

• Text: "This floral wine is bursting with notes
of jasmine and honeysuckle backed by sweet
fragrances of candied fruit and caramel. The
wine is sweet and thick in the mouth but the well-
dosed acidity keeps it from being cloying or too
fat. It would pair well with slightly sweet foods
such as honey glazed ham or lobster."

• Label and predictions: y = 611, ŷtext = 21,
ŷtab = 43, ŷ = 97.

• JSD(p, q) = 0.82, f̂((p, q)) = 0.84.

The feature contributions to uncertainty are dis-
played in Figure 5. There are several positive (red)
contributions, proving that the input may be un-
usual. The main source of uncertainty is related to
the country along with specific words. This method
might be used for novelty detection as well. In that
case, using the uncertainty classifier produces more
reliable outputs as confirmed by the Pearson corre-
lations between the feature contributions generated
by our method and by Kernel SHAP: 0.68 (JSD)
and 0.89 (uncertainty classifier).

Example 2: uncertain instance from cloth. In
Figure 6 (first 2 charts), the distributions of the JSD
metric and uncertainty classifier’s predicted prob-
ability evidence that the uncertainty classifier can
better distinguish between certain and uncertain
instances.

The uncertain instance has the following charac-
teristics:

Figure 5: Example 1. The top 10 feature contributions
to uncertainty for an OOD instance from wine dataset.
Top: with JSD value function. Bottom: with uncertainty
classifier.

• Tabular features: Division Name="General",
Department Name="Bottoms", Class
Name="Shorts", Age=43, Positive Feedback
Count=0.

• Text : "Romper rules Overall great romper! i
have a long torso and thicker legs so i sized up to
a small and i am very happy i did. the shorts are
a bit on the shorter side and go upon the sides so
another reason to consider sizing up. the quality
is great and super soft chambray with a trendy
tie up."

• Label and predictions: y = 3, ŷtext = 4, ŷtab =
3, ŷ = 4.

• JSD(p, q) = 0.81, f̂((p, q)) = 1.

The feature contributions to uncertainty are dis-
played in the last two rows of Figure 6. The
model’s decision is incorrect. This is the same pre-
diction as the output of the text stream, whereas the
tabular stream predicts the correct label. The uncer-
tainty mainly originates from words (e.g. overall,
thicker). In that case, the explanations generated
with each value function are quite consistent. Fur-
ther, the Pearson correlations between the feature

1498

Figure 6: Example 2 on cloth dataset. First two rows:
Distributions of value functions’ outputs by subset Dc

and Du, for JSD and the uncertainty classifier, respec-
tively. Last two rows: the top 10 feature contributions
to uncertainty for an uncertain instance. Top: with JSD
value function. Bottom: with uncertainty classifier.

contributions generated by our method and by Ker-
nel SHAP is high for each value function: 0.90
(JSD) and 0.93 (uncertainty classifier).

Example 3: uncertain instance from kick. In
Figure 7 (first 2 charts), the distributions of the JSD
metric and the uncertainty classifier’s predicted
probability evidence that the uncertainty classifier
can better discriminate between certain and uncer-
tain instances.

The uncertain instance has the following charac-
teristics:

• Tabular features: country="US", cur-
rency="USD", disable communication="False",
log goal=4, backers count=447.

• Text : "The Life & Times of a Remarkable Misfit
18 months ago, I canceled a book deal with a
major publisher because I realized I had sold out
to be chosen. Today I choose me."

• Label and predictions: y = 1, ŷtext = 0, ŷtab =
1, ŷ = 0.

• JSD(p, q) = 0.27, f̂((p, q)) = 1.

The task is to predict whether a proposed project
will meet its funding goal. The feature contribu-
tions to uncertainty are displayed in the last two
rows of Figure 7. If we consider the uncertainty
classifier value function, the inconsistency between
the high value of backers count and the word can-
celed seems to make the model’s decision uncertain.
The Pearson correlations between the feature con-
tributions generated by our method and by Kernel
SHAP is high for each value function: 0.96 (JSD)
and 0.99 (uncertainty classifier).

1499

Figure 7: Example 3 on kick dataset. First two rows:
Distributions of value functions’ outputs by subset Dc

and Du, for JSD and the uncertainty classifier, respec-
tively. Last two rows: the top 10 feature contributions
to uncertainty for an uncertain instance. Top: with JSD
value function. Bottom: with uncertainty classifier.

1500

