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Abstract

Neural network pruning has become increas-
ingly crucial due to the complexity of these
models and their widespread use in various
fields. Existing pruning algorithms often suf-
fer from limitations such as architecture speci-
ficity, excessive complexity and reliance on de-
manding calculations, rendering them imprac-
tical for real-world applications. This paper
introduces KEN: a straightforward, universal
and unstructured pruning algorithm based on
Kernel Density Estimation (KDE). KEN1 aims
to construct optimized transformers by selec-
tively preserving the most significant parame-
ters while restoring others to their pre-training
state. This strategy preserves model perfor-
mance while enabling storage of only the opti-
mized subnetwork, leading to substantial mem-
ory savings. Extensive evaluations across seven
different LLMs demonstrate that KEN achieves
equal or better performance than their original
unpruned versions, with a minimum parameter
reduction of 25%. Furthermore, in-depth com-
parisons with established pruning and PEFT
algorithms confirm KEN effectiveness. We fur-
ther introduce KENviz , an explainable tool that
visualizes the optimized model composition
achieved by KEN from different points of view.

1 Introduction

Large Language Models (LLMs) have become the
best and simplest solution for achieving state-of-
the-art results in many natural language processing
(NLP) applications. However, the increasing use of
neural networks (NNs) and transformers (Vaswani
et al., 2017) has resulted in a rise in computational
cost due to the complexity of arithmetic calcula-
tions, larger matrices and the addition of more lay-
ers. Consequently, the weight and structure of these
models become more complex, requiring high de-
mands in computation and memory.

1Code available at https://github.com/
itsmattei/KEN

One of the best approaches to address the over-
whelming size of LLMs is to reduce their resources
through pruning algorithms. These algorithms can
eliminate parameters or entire components in a NN,
making it lighter without compromising its origi-
nal performance. Pruning algorithms emerged in
parallel with the earliest use of NNs (Mozer and
Smolensky, 1989; Janowsky, 1989; LeCun et al.,
1989), but they have gained significant importance
in the last decade due to the widespread use of these
networks in various fields. There are many pruning
algorithms in literature (Blalock et al., 2020), each
with a unique approach or adapted old algorithms
for these new architectures (Benbaki et al., 2023).
However, the complexity of neural networks can
pose a challenge when creating pruning algorithms,
as these may require new complex theorems to
make the models lightweight (Dong et al., 2017;
Malach et al., 2020). Additionally, existing prun-
ing algorithms often exhibit shortcomings in their
completeness (Blalock et al., 2020) and fail to con-
sider a critical aspect: the efficient storage of the
pruned result. Some algorithms compress models
at runtime but lack mechanisms to preserve the
reduced NN for future use. Consequently, most
algorithms prioritize the speed of reduction and
execution, neglecting this critical final stage essen-
tial in resource-limited environments (Yang et al.,
2017; Sze et al., 2017).

Figure 1: How k value influences the KDE calculation,
driving the parameter selection
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This paper presents KEN (Kernel density
Estimator for Neural network compression): a uni-
versal, simple, magnitude-based transformer prun-
ing algorithm that leverages Kernel Density Esti-
mation (KDE) for parameter pruning. Unlike other
pruning methods that rely on minimizing loss func-
tions or exhaustive parameter search, KEN - in-
spired by the winning ticket pruning hypothesis
(Frankle and Carbin, 2018) - identifies and retains
the most influential parameters using KDEs while
resetting the others to their original pre-trained val-
ues. This innovative approach streamlines the op-
timization process by leveraging the natural dis-
tribution of model parameters, eliminating any
architecture-specific considerations. KEN effec-
tively reduces the size of transformer models by
a minimum of 25% without compromising perfor-
mance. The pruned models consist only of a sub-
network of trained parameters, which can be seam-
lessly downloaded and injected into its pre-trained
version as needed. This feature enables dynamic
model reconfiguration and saves significant mem-
ory space that would otherwise be required to store
the fully trained model. Comparative evaluations
demonstrate KEN exceptional capabilities, surpass-
ing existing transformer pruning and PEFT algo-
rithms. Finally, we introduce KENviz: an explain-
able tool that graphically depicts the optimized
model from various perspectives. KENviz high-
lights the KEN-selected parameters, their layer-
wise differences and neighbor counts for each ma-
trix that made up the analyzed model. Using KEN,
we employed a non-parametric method widely used
in statistics, to create an efficient and intuitive prun-
ing algorithm. Our approach achieved excellent
results in terms of efficiency and performance, mak-
ing it a practical alternative to other more complex
pruning algorithms.

2 Background

Compression algorithms can be summarized in
three areas of research: weight pruning (Han et al.,
2015; Zhu and Gupta, 2017), quantization (Gong
et al., 2014; Zhu et al., 2016) and knowledge dis-
tillation (Ba and Caruana, 2014; Kim and Rush,
2016). These techniques aim to make models
lighter, but each of them takes a different approach.
Weight pruning removes model parameters accord-
ing to the chosen algorithm and strategy, while
quantization reduces the number of bits necessary
to represent each parameter. Knowledge distilla-

tion, instead, tries to minimize the learned large
knowledge of a model into a smaller one without
affecting its validation.

Focusing on pruning algorithms, there are differ-
ent approaches depending on the strategy and algo-
rithm adopted. Pruning algorithms can be classified
as either structured or unstructured, based on the
approach applied and magnitude-based or impact-
based, according to the algorithm used. Structured
pruning (Huang et al., 2018; Wang et al., 2019; Gor-
don et al., 2020) removes weights in groups, such
as entire neurons, filters or layers, while unstruc-
tured pruning (Han et al., 2015; Frankle and Carbin,
2018; Lagunas et al., 2021; Benbaki et al., 2023)
does not consider any relationship between param-
eters and selects weights to prune based on their
impact or magnitude. Magnitude-based algorithms
(Hanson and Pratt, 1988; Mozer and Smolensky,
1989; Gordon et al., 2020) analyze the absolute
value of each parameter to determine its impor-
tance. In contrast, impact-based algorithms (LeCun
et al., 1989; Hassibi and Stork, 1992; Singh and
Alistarh, 2020) work on the loss function and its
variation caused by removing a parameter. The win-
ning ticket hypothesis (Frankle and Carbin, 2018),
is a recent advancement in pruning techniques. A
winning ticket is a subnetwork within a trained
model that - when trained in isolation - can achieve
performance comparable to the original model even
after significant pruning. To identify the winning
ticket, a pruning criterion is applied to zero-mask
weights and the remaining network is retrained.
This process can be repeated multiple times or in a
one-shot manner.

3 Related Work

In this section, we present three algorithms that
are relevant benchmarks for our proposed algo-
rithm, KEN. These algorithms have some similar-
ities with it: the first two, called FLOP and BMP,
are pruning algorithms designed to reduce the size
of transformer models by employing algebraic or
geometric techniques. The third, LoRA is the SoTA
parameter-efficient algorithm for LLMs.

Factorized Low-rank Pruning (FLOP: Wang
et al., 2019) is a magnitude-based pruning algo-
rithm that employs matrix factorization to reduce
the size of matrices in transformer models. This ap-
proach involves decomposing each matrix into rank
components, which are then multiplied together
to form the original matrix. For attention layers,
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Figure 2: KEN workpath: From a fine-tuned model (1), for each of its fine-tuned matrices (2), the row distribution
and the respective KDE (Kernel Density Estimator) are calculated. All values within the KDE are selected (3.a),
while the remainder are restored to their pre-tuned value (3.b). The resulting optimized matrix (4) is then fed back
into the model (5)

FLOP decomposes each matrix into smaller rank-1
components based on the magnitudes of the matrix
entries. Instead, for embedding layers, FLOP adap-
tively prunes dimensions based on word clusters.
This means that FLOP only prunes dimensions that
are not frequently used (Joulin et al., 2017; Bast-
ings et al., 2019), which helps to reduce the model
size without sacrificing performance.

Block Movement Pruning (BMP: Lagunas et al.,
2021) introduces an extension to the movement
pruning technique used in transformers (Sanh et al.,
2020). This approach reduces the size of each
matrix in a transformer model by dividing it into
fixed-sized blocks. Regularization is then applied,
and the NN is trained through distillation to match
the performance of a teacher model. Our focus is
on two pruning methods: Hybrid and HybridNT.
The key difference between these two approaches is
that HybridNT does not involve the use of a teacher
model during training (No Teacher).

Low-Rank Adaptation of Large Language Mod-
els (LoRA: Hu et al., 2021) is a novel fine-tuning
method that leverages low-rank decomposition to
reduce the parameter size of LLMs while preserv-
ing their performance. This approach involves de-
composing LLMs weight matrices into low-rank
components, which are then fine-tuned along with

the original weights. LoRA enables efficient pa-
rameter adaptation to specific tasks without com-
promising the model generalization capabilities.

4 KEN pruning algorithm

KEN (Kernel density Estimator for Neural net-
work compression) pruning algorithm is designed
to identify and extract the most essential subnet-
work from transformer models following the main
idea of the winning ticket hypothesis (Frankle and
Carbin, 2018). Our algorithm effectively prunes the
network by employing Kernel Density Estimators
(KDEs), retaining only the essential parameters and
resetting the rest to their pre-trained values. The
optimized subnetwork can be stored independently
and seamlessly integrated into its pre-trained con-
figuration for downstream applications.

KEN through KDEs, generalizes the point dis-
tribution of each transformer matrix, capturing the
smoothed version of the original fine-tuned model.
To prevent the complete deconstruction of the ini-
tial matrix composition, KEN applies KDEs to in-
dividual rows. The KDE calculation requires a
k value, which defines the number of points em-
ployed in the distribution calculation which directly
influences the number of retained fine-tuned param-
eters (Fig. 1). Thus, a lower k value indicates a
closer resemblance to the pre-trained model while
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a higher k value reflects a closer alignment with its
fine-tuned version.

KEN algorithm operates in three primary steps:

Step 1: Parameter Extraction and KDE Calcu-
lation Given a pre-trained matrix W 0 of a layer
l:

W 0 = {w0
1,1, ..., w

0
n,m} | W 0 ∈ Rn×m

and its corresponding fine-tuned counterpart W t:

W t = {wt
1,1, ..., w

t
n,m} | W t ∈ Rn×m

for each row rti of the fine-tuned matrix W t:

rti = {wt
i,1, ..., w

t
i,m} ∀i ∈ [1, n]

KEN calculates the KDE distribution of the row rti
using a bandwidth parameter h determined follow-
ing Scott’s rule of thumb (Scott, 2015).

h = 1.06 · σ̂ · n− 1
5

where σ̂ is the standard deviation of rti .

Step 2: Parameter Retention and Pre-trained
Value Reset The k points that best fit the rti row
distribution are identified using the KDE likelihood,
while the others are reset to their pre-trained values.
This process results in an optimized row r̂i:

r̂i = {ŵi,1, ..., ŵi,m} ∀i ∈ [1, n]

computed using the following binary function:

f(ŵi,j) =

{
wt
i,j if wt

i,j ∈ KDE likelihood
w0
i,j otherwise

(1)

Step 3: Matrix Replacement and Optimized
Fine-tuned Model After applying the previous
step on each row, the optimized matrix Ŵ :

Ŵ = {ŵ1,1, ..., ŵn,m} | Ŵ ∈ Rn×m

will replace the original fine-tuned matrix W t

within the model.
KEN operates iteratively, replacing the W t ma-

trix with Ŵ during each iteration. Therefore,
after the t − th iteration, the model will have
t− optimized matrices, effectively replacing the
fine-tuned matrices without creating any additional
versions of the model. This versatility allows KEN
to prune the entire model or specific layer ranges.

Algorithm 1: Generate the optimized Ŵ
matrix using KEN

Data: W 0 = {w0
1,1, ..., w

0
n,m},

W t = {wt
1,1, ..., w

t
n,m}, k

Result: Ŵ
Ŵ [n,m]← 0
for i = 1 to n do

best_points← KDE(rti , k)
for j = 1 to m do

r̂ti ← []
if rti [j] in best_points then

r̂ti [j]← rti [j]
else

r̂ti [j]← r0i [j]
end

end
Ŵ [i]← r̂ti

end
return Ŵ

Algorithm 1 provides a more formal explana-
tion of the three steps described for generating the
optimized matrix Ŵ . Additionally, the graphical
representation in Fig. 2 offers a clear and com-
prehensive visualization of all KEN steps, while
Fig. 3 displays different Ŵ matrices obtained using
various k values.

5 Experiments

To validate our algorithm, we conducted a series
of extensive case studies. Sec. 5.1 describes the
experimental setup, including the models employed
and the k values tested. Additionally, Sec. 5.2
focused on investigating the feasibility of saving
and loading compressed data.

5.1 Experimental set-up

To evaluate KEN pruning algorithm performance
across different architectures and datasets, we con-
ducted a thorough series of experiments using
seven distinct transformer models. To maintain con-
sistent evaluation conditions, we uniformly divided
each dataset into training, validation and test sets.
These divisions remained consistent throughout our
experiments and across models. All datasets were
imported from Huggingface2. To achieve optimal
performance, we fine-tuned each model before ap-
plying KEN algorithm per each dataset, adjusting

2https://huggingface.co/datasets
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(a) Fine-tuned matrix (b) Reset params 34.90% (c) Reset params: 60.94% (d) Reset params: 86.98%

Figure 3: Comparing the impact of KEN parameter selection on the same fine-tuned matrix (a). Matrix (a) represents
the in_proj matrix at layer 0 of a DeBERTa model trained on the AG_NEWS dataset. No selected parameters are
blank

the number of epochs until the fine-tuned model
achieved the best F1-weighted score. Despite what
the literature suggests, we used the F1 measure in-
stead of classical accuracy as a comparison metric
- if not explicitly used by the comparison bench-
marks - because it delivers more reliable predic-
tions, particularly on strongly unbalanced datasets.

To fully assess KEN capabilities, we gradu-
ally increased the k value required by the algo-
rithm, starting from a low k value and incremen-
tally increasing it until its fine-tuned version was
reached. This incremental approach allowed us to
identify the critical threshold value whereby the
compressed model obtained results similar to its
fine-tuned version or when the compression value
k leads to a catastrophic decline of performances,
as reported in Apx. A.

To provide a comprehensive analysis of KEN,
we selected different transformer models with
unique architecture, attention mechanisms, training
approaches or different versions of the same model.
Tab.1 compares the architectures of the models ex-
amined, emphasizing the number of layers and the
number of parameters of each.

Model # Layers # params
BLOOM1B7 (Workshop et al., 2022) 24 1.72 B
BLOOM560k (Workshop et al., 2022) 24 560 M
DeBERTa (He et al., 2020) 12 138 M
Bert (Devlin et al., 2018) 12 109 M
Ernie (Sun et al., 2020) 12 109 M
DistilBERT (Sanh et al., 2019) 6 66 M
Electra (Clark et al., 2020) 12 33 M

Table 1: Properties of the analyzed models

5.2 Model compression

Transformer models, like many neural networks,
often have large file sizes. A fine-tuned transformer
can range from 500 MB to 2GB or more. However,

the KEN algorithm reduces this size by selecting
and retaining a subset of k parameters while restor-
ing the rest to their pre-trained values. This pro-
cess creates a more concentrated model that only
includes the essential k values for each matrix, re-
sulting in significant weight reduction. To quantify
the effectiveness of KEN, we save the compressed
model generated during this phase and compare
it to its original, unpruned version. To ensure a
fair comparison, we use the same technique to save
both the compressed and original fine-tuned mod-
els. However, KEN requires a support file, such as a
dictionary, to load the k parameters saved into their
appropriate positions during the loading process.
This is because during loading, the k fine-tuning
values must be loaded into a pre-trained model and
the support file provides the necessary mapping
to ensure proper placement. Sec. 6.2 provides a
comprehensive overview of the compression results
obtained during this analysis.

6 Results and Discussion

In this section, we present the results obtained for
each KEN main goals. Sec. 6.1 discusses the ef-
fectiveness of KEN-pruned models compared to
their unpruned counterparts, pruning benchmarks
and the state-of-the-art PEFT algorithm. Sec. 6.2
focuses on the process of saving and loading the
subnetwork extracted by KEN, comparing the re-
duced file sizes achieved by it with those of the
original models. Finally, Sec. 6.3 shows KENviz,
illustrating its applications.

6.1 Experiment results

To evaluate the efficacy of KEN, we conducted a
series of experiments across different classification
and sentiment analysis datasets. For each dataset,
we implemented KEN multiple times, employing
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Model Trainable params Reset params (%) AG-NEWS EMO IMDB YELP_POLARITY glue-sst2

BLOOM1B7

442M 74.31 87.5 (±0.1) 88.0 (±0.1) 76.6 (±0.1) 96.1 (±0.1) 80.4 (±0.1)
531M 69.17 92.2 (±0.1) 90.6 (±0.1) 84.2 (±0.1) 96.3 (±0.1) 90.9 (±0.1)
664M 61.46 93.1 (±0.1) 90.1 (±0.1) 87.6 (±0.1) 96.5 (±0.1) 92.9 (±0.1)

BLOOM560k

411M 26.34 91.3 (±0.1) 81.4 (±0.1) 82.7 (±0.1) 95.2 (±0.1) 92.4 (±0.1)
420M 24.80 91.8 (±0.1) 83.0 (±0.1) 84.3 (±0.1) 95.3 (±0.1) 92.1 (±0.1)
429M 23.26 92.1 (±0.1) 84.0 (±0.1) 85.8 (±0.1) 95.3 (±0.1) 92.3 (±0.1)

DeBERTa
92M 33.86 92.2 (±0.1) 87.9 (±1.2) 82.5 (±5.1) 95.9 (±0.4) 94.6 (±0.2)
99M 28.35 92.7 (±0.1) 87.3 (±1.0) 88.3 (±1.1) 96.1 (±0.2) 94.9 (±0.1)
107M 22.84 92.9 (±0.1) 87.1 (±1.2) 89.8 (±0.1) 96.2 (±0.1) 94.8 (±0.1)

Bert
69M 37.05 93.4 (±0.1) 84.2 (±1.1) 86.8 (±0.1) 95.0 (±0.4) 93.7 (±0.5)
75M 31.80 93.7 (±0.2) 87.4 (±0.7) 87.3 (±0.1) 95.0 (±0.5) 93.7 (±0.4)
80M 26.55 93.6 (±0.1) 87.9 (±0.3) 87.6 (±0.1) 95.1 (±0.4) 93.8 (±0.4)

Ernie
69M 37.05 93.3 (±0.4) 89.1 (±0.6) 89.4 (±0.2) 95.8 (±0.1) 94.1 (±0.2)
75M 31.80 93.3 (±0.3) 88.7 (±1.2) 89.2 (±0.2) 95.8 (±0.3) 93.8 (±0.2)
80M 26.55 93.8 (±0.2) 88.1 (±0.8) 89.6 (±0.3) 95.9 (±0.2) 93.4 (±0.2)

DistilBERT
44M 34.39 92.3 (±0.6) 88.1 (±1.4) 83.2 (±1.1) 94.6 (±0.1) 91.9 (±0.2)
47M 28.92 93.1 (±0.2) 88.8 (±0.6) 84.4 (±0.5) 94.7 (±0.1) 91.9 (±0.1)
51M 23.45 93.3 (±0.2) 88.2 (±0.3) 84.6 (±0.9) 94.9 (±0.1) 92.0 (±0.1)

Electra
8.9M 75.56 84.1 (±2.4) 84.3 (±0.4) 78.9 (±0.5) 88.5 (±0.9) 79.9 (±0.7)
12M 64.75 89.7 (±0.3) 86.0 (±0.3) 82.0 (±0.5) 92.1 (±0.8) 85.0 (±0.2)
14M 55.94 91.3 (±0.2) 85.6 (±0.3) 84.3 (±0.1) 93.7 (±0.4) 90.1 (±0.1)

Table 2: Results on various datasets obtained using different trainable parameters. Bold results indicate a similar
or better F1-weighted value compared to the original (unpruned) model. The reset params column indicates the
percentage of the restored pre-trained params in the model. Other results are shown in Apx.B

varied k values and calculating the mean and stan-
dard deviation of the resulting F1-weighted scores.
The complete dataset list can be found in Apx. B.
As evidenced in Tab. 2, KEN successfully com-
pressed all analyzed models without sacrificing
their original, unpruned performance. We observed
a remarkable reduction in overall model parameter
count, ranging from a minimum of 25% to a sub-
stantial≈ 70% for certain models. Intriguingly, the
models with both the highest and lowest parame-
ter counts exhibited the most significant parameter
reduction. Additionally, for each model under ex-
amination, we observed no substantial difference in
performance as the percentage of reset parameters
increased, maintaining a remarkable resemblance
to the unpruned model performance. This observa-
tion underscores KEN exceptional generalization
capability, balancing performance and compression
even at middle-high compression rates.

We compared KEN to other pruning algorithms
specifically designed for transformer models, in-
cluding FLOP, Hybrid and HybridNT as described
in Sec. 3. It is essential to note that Lagunas et al.
(2021) models (Hybrid and HybridNT) only prune
the attention layers and not the entire model. To
facilitate a comprehensive and standardized com-
parison of all algorithms, we recalibrated the size
of their models based on our holistic perspective,
ignoring any partial considerations. We combined
the results obtained in their publication with those

obtained from KEN and FLOP in Tab. 3. KEN out-
performed all other compared models with a signifi-
cant performance gap while utilizing fewer parame-
ters in every instance. In addition to these findings,
we conducted a thorough analysis of FLOP, which
is the most complete pruning algorithm studied and,
like KEN, decomposes original matrices to derive
pruned ones. We conducted additional experiments
on all models where FLOP could be applied, using
the datasets listed in Tab. 2. We compared the
results obtained from FLOP with those of KEN,
which employed fewer parameters than FLOP. As
shown in Tab. 4, FLOP outperforms KEN in only
one instance. For all other models and datasets
analyzed, KEN consistently outperforms FLOP.

Model Trainable params
glue-sst2

Accuracy
Bert-base 109M 93.37
Hybrid 94M 93.23
HybridNT 94M 92.20
KEN 80M 93.80
Hybrid 66M 91.97
HybridNT 66M 90.71
Sajjad et al. (2020) 66M 90.30
Gordon et al. (2020) 66M 90.80
Flop 66M 83.20
KEN 63M 92.90

Table 3: Pruning algorithm comparations on SST-2
datasets
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Model
Pruning

algorithm
Trainable params. AG-NEWS EMO IMDB YELP_POLARITY glue-sst2

BLOOM1B7
KEN 531M 92.2 (±0.1) 90.6 (±0.1) 84.2 (±0.1) 96.3 (±0.1) 90.9 (±0.1)
FLOP 1.1B 90.1 (±1.3) 84.0 (±1.9) 80.9 (±0.3) 85.5 (±3.5) 80.7 (±1.7)

BLOOM560k
KEN 404M 91.3 (±0.1) 85.5 (±3.5) 81.3 (±0.3) 94.8 (±0.5) 92.0 (±0.4)
FLOP 408M 91.0 (±0.6) 84.0 (±2.3) 72.1 (±7.1) 87.0 (±0.5) 81.8 (±0.5)

DeBERTa
KEN 84M 91.4 (±0.6) 88.9 (±1.5) 82.5 (±3.1) 96.0 (±0.2) 92.8 (±0.4)
FLOP 88M 90.6 (±0.7) 83.1 (±1.7) 81.1 (±0.8) 91.4 (±0.1) 82.3 (±1.1)

Bert
KEN 57M 91.6 (±0.7) 86.0 (±0.5) 84.9 (±0.8) 93.8 (±1.6) 92.8 (±0.5)
FLOP 66M 90.9 (±0.9) 83.3 (±0.8) 80.5 (±0.6) 90.2 (±0.6) 83.2 (±0.2)

Ernie
KEN 57M 91.5 (±1.4) 88.3 (±0.4) 87.6 (±0.6) 95.7 (±0.1) 94.1 (±0.4)
FLOP 67M 89.8 (±0.4 ) 83.8 (±2.3) 81.1 (±0.8) 90.9 (±0.1) 83.2 (±0.9)

DistilBERT
KEN 40M 91.9 (±0.3) 88.2 (±1.1) 78.1 (±1.4) 94.1 (±0.1) 89.2 (±0.7)
FLOP 45M 90.7 (±0.9) 83.2 (±1.2) 81.2 (±0.9) 90.7 (±0.1) 82.4 (±1.2)

Electra
KEN 14M 91.3 (±0.2) 85.6 (±0.3) 84.3 (±0.1) 93.7 (±0.4) 90.1 (±0.1)
FLOP 28M 90.9 (±0.3) 83.1 (±2.1) 81.2 (±0.1) 90.5 (±0.1) 81.1 (±0.3)

Table 4: Comparation between KEN and FLOP pruning algorithms on different datasets. Mean and standard
deviation are calculated on equal runs for each dataset and algorithm analyzed. The Trainable params column
indicates the number of parameters used by each algorithm after the pruning phase.

Although KEN belongs to the winning ticket
pruning algorithms family, it shares similarities
with Parameter Efficient Fine-tuning (PEFT) algo-
rithms. This is because both approaches aim to
identify a subset of optimal parameters within the
fine-tuned model. We thoroughly evaluated KEN
and compared it to LoRA, which is currently the
state-of-the-art PEFT algorithm. We applied LoRA
and KEN to the same layers of each model and
then trained the LoRA-based models using five
times more training epochs than their KEN-based
counterparts. Additionally, we gradually increased
the number of rank decomposition matrices for
each model from 16 to 768, which is the average
size of the matrices in the tested models. In each
LoRA-based experiment, only the LoRA-specific
parameters were designated as either trainable or
not. Our results, presented in Fig. 4, demonstrate
that KEN consistently outperforms LoRA in terms
of F1-measure while utilizing fewer trained param-
eters. However, when LoRA parameters are not the
only ones trained, KEN and LoRA generally pro-
duce similar results. Nevertheless, LoRA consis-
tently requires a larger parameter count than KEN.
These compelling results provide strong evidence
supporting our hypothesis that strategically select-
ing a subset of parameters and resetting the remain-
der offers a promising alternative to conventional
pruning techniques.

6.2 Compression values

One of KEN main goals, is to significantly reduce
the overall size of transformer models, including
their file sizes. To achieve this, KEN leverages a

subnetwork comprising only k-trained parameters,
allowing it to be saved and then injected into its pre-
trained counterpart. This process requires a support
file, like a dictionary, that specifies the precise loca-
tion of each saved parameter within the pre-trained
model. To guarantee an unbiased comparison be-
tween the original and compressed model sizes,
the compressed one is saved using identical tech-
niques and format as the original model. For each
transformer analyzed, two compressed versions are
generated using both high and low k values.

Model
Total

params
Original
file size

# trainable
params

Compressed file size
(Model + support dict)

BLOOM1B7 1.72B 7,055 MB
664M 3,071 MB (2,923 + 148)
442M 2137 MB (2,013 + 124)

BLOOM560k 560M 2,294 MB
429M 2,084 MB (1,956 + 128)
386M 1,842 MB (1,731 + 111)

BERT 109M 438 MB
80M 358 MB (320 + 38)
57M 260.2 MB (228 + 32.2)

DistilBERT 66M 266 MB
51M 231.4 MB (203 + 28.4)
36M 165 MB (145 + 20)

DeBERTa 138M 555 MB
107M 476.3 MB (428 + 48.3)
76M 348.4 MB (306 + 42.4)

Ernie 109M 438 MB
80M 356.9 MB (320 + 36.9)
57M 260.3 MB (228 + 32.3)

Electra 33M 134 MB
14M 67.01 MB (59.1 + 7.91)
9M 42.58 MB (35.5 + 7.08)

Table 5: Comparison of the .pt file size between the
original and compressed transformer weights

As shown in Tab. 5, both versions of the
compressed models demonstrate substantial mem-
ory savings, directly proportional to the number
of saved parameters. Specifically, transformers
saved using a high k value, thus closely mirroring
the structure of the unpruned model, conserving
≥≈100 MB per each. This value increases fur-
ther as the number of trained parameters saved
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Figure 4: Comparison between KEN and LoRA. Labels for the LoRA marker indicate the dimension of the
rank-decomposition matrix analyzed while, for KEN, the k value used

diminishes. The support dictionary for parame-
ter injection, stored using the Lempel-Ziv-Markov
chain data compression algorithm, has a negligible
impact on the final model weight, which remains
significantly smaller than the original. Additionally,
the time required to load the injected parameters
into the pre-trained model scales linearly with the
transformer architecture and the compression em-
ployed.

6.3 KENviz

KENviz is a visualization tool that provides a clear
understanding of matrices composition after the
application of KEN pruning step. It offers various
views to explore the pruned model, including:

1. Single Matrix View: This view offers a clear
understanding of the parameters retained by
KEN, leaving the pruned elements blank (Fig.
3, Fig. 5a).

2. Neighbor Count View: It visualizes the num-
ber of non-zero neighbors (horizontally and
vertically) for each point in a given matrix.
This provides additional information about the
remaining parameters and potential parameter
clusters that might emerge (Fig. 5b).

3. Layer-wise View: This view shows the im-
pact of KEN on the entire model architecture.
It iteratively applies the Single matrix view to
the same matrix on all layers it appears. This
allows a layer-by-layer comparison, revealing
how the pruning of the same matrix changes
in different parts of the network.

(a) Single Matrix View (b) Neighbor Count View

Figure 5: Output of KENviz of the key attention matrix
at layer 12 of a BERT model trained on glue-sst2.
Reset parameters 47.92%

The examples in Fig. 5 and Apx. C both indicate
that the number of non-zero neighbors for each
point remains consistently high even in cases with
high reset parameters. This suggests that the cho-
sen parameters not only represent the most effec-
tive elements but also display a well-proportioned
distribution within each matrix.

7 Conclusions

This paper introduces KEN: a novel non-
architecture-specific pruning algorithm that lever-
ages KDE to construct an abstraction of the pa-
rameter distribution and selectively retain a finite
subset of them while resetting the others to their
pre-trained states. Our extensive evaluations on
seven different transformer models demonstrate
that KEN consistently achieves remarkable com-
pression rates, reducing unnecessary parameters by
a minimum of 25% up to ≈ 70% on some models,
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without compromising model performance. More-
over, by leveraging the KEN core idea, is possible
to store only the active subnetwork, leading to sub-
stantial memory savings.

We also present KENviz: the KEN visualizer
that provides insights into the algorithm operation.
KENviz reveals that KEN uniformly selects param-
eters across matrices, preventing parameter clus-
ters. With KEN we demonstrate how a simple,
non-parametric algorithm commonly used in statis-
tics, can be effectively adopted for model pruning
achieving excellent results in both compression and
performance.

8 Limitations

One of the major limitations of KEN is its compu-
tational efficiency, especially when analyzing large
models. Although KEN excels at generating rich
distributions with high k values, it faces a trade-off
in computational efficiency, particularly for large
models. Processing time scales linearly with the
model size, number of layers, and chosen k. This
primarily impacts the parameter selection stage,
not compressed model storage or loading.

Our focus on the sequence classification task
ensured consistent results, but unpublished experi-
ments suggest KEN effectiveness extends to other
tasks. Future work will explore this broader appli-
cability and investigate potential optimizations for
large-scale deployments.
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Figure 6: Performance variation on AG-NEWS dataset with different reset parameters percentage value. All the
experiments were conducted using KEN full configuration

A How to prove the importance of
selected parameters

To assess the effectiveness of KEN core idea, which
involves selecting parameters based on their dis-
tribution using Kernel Density Estimation (KDE),
we conducted parallel experiments. In these ex-
periments, we compared KEN against random pa-
rameter pruning. Random parameters were either
retained or reset to pre-trained values. This en-
abled us to determine if the selection method used
in KEN resulted in a better subnetwork compared
to random selection

Formally, for each matrix in a generic model,
the optimized matrix Ŵ contained k randomly se-
lected fine-tuned parameters. Our goal is to de-
termine whether the parameters introduced into a
generic transformer model by KEN constituted an
optimal subnetwork or if equivalent results could be
achieved by randomly selecting the same number
of parameters. To address this question, we per-
formed an experiment using the AG-NEWS dataset,
comparing the performance differences between
extracting Ŵ matrices using KEN and using k ran-
dom values for each matrix row.

The results, illustrated in Fig. 6, consistently
show that KEN outperforms its random counter-
part. KEN achieves a lower error rate and maintains
higher performance at reasonable compression lev-
els. However, for all models tested, a compres-
sion threshold exists beyond which performance
inevitably declines. The KEN algorithm effectively
compresses models while minimizing this decline,
preserving high performance. Conversely, random
parameter selection reaches this threshold earlier,
resulting in a larger performance drop and higher er-

ror rate. Notably, the best achievable performance
with random selection is always lower than or equal
to the average achieved with KEN.

Furthermore, when using KEN, the error rate
remains minimal within the threshold. This sug-
gests that the subnetwork derived from KEN is
not random; rather, it consistently selects the most
effective portion of the original network.
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Dataset BLOOM1B7 BLOOM560k Bert DistilBert DeBERTa Ernie Electra
trec 61.46% 23.26% 26.55% 23.45% 22.84% 26.55% 55.94%
rotten_tomatoes 69.17% 24.80% 26.55% 34.39% 44.88% 42.29% 55.94%
hate_speech_offensive 61.46% 23.26% 26.55% 34.39% 22.84% 26.55% 55.94%
hate_speech18 61.46% 23.26% 26.55% 23.45% 33.86% 31.80% 64.75%
scicite 61.46% 23.26% 37.05% 28.92% 22.84% 31.80% 55.94%†

ade_corpus_v2 69.17% 24.80% 52.78% 45.32% 44.88% 63.28% 73.56%
amazon_reviews_multi 69.17% 24.80% 31.80% 34.39% 22.84% 31.80% 55.94%†

poem_sentiment 74.31% 26.34% 58.03% 45.32% 22.84% 47.54% 73.56%
tweet_eval-emoji 74.31% 23.26% 63.28% 23.45% 44.88% 79.02% 55.94%
tweet_eval-hate 61.46% 23.26% 26.55% 61.73% 44.88% 47.54% 55.94%
tweet_eval-irony 61.46% 23.26% 26.55% 23.45% 22.84% 26.55% 64.75%
tweet_eval-offensive 61.46% 23.26% 26.55%† 34.39% 28.35% 31.80% 55.94%
tweet_eval-femminist 61.46% 23.26% 26.55% 39.05% 22.84% 37.05% 64.75%

Table 6: Results obtained from the analysis of additional datasets not shown in Tab.2. The values presented in
this table correspond to the lowest percentage of reset parameters that KEN achieved without impacting the model
performance. The † symbol denotes a reset parameter rate that falls below the minimum value reported in Tab. 2

B Additional results

This appendix presents additional results obtained
using KEN that are not included in Tab. 2.

Tab. 7 provides a comprehensive overview of all
datasets analyzed in the paper. In contrast to Tab.
2, Tab. 6 focuses on the specific results included in
this appendix. Here, we highlight cases where KEN
achieves F1-weighted scores that match or surpass
the original unpruned model performance, focusing
on the highest percentage of reset parameters for
each model on each dataset. This emphasizes KEN
remarkable compression capabilities, allowing it to
achieve comparable or even improved performance
while significantly reducing the model parameter
count.

Dataset Reference
trec Li and Roth, 2002
AG-NEWS Gulli, 2005
rotten tomatoes Pang and Lee, 2005
IMDB Maas et al., 2011
ade_corpus_v2 Gurulingappa et al., 2012
glue-sst2 Socher et al., 2013
YELP POLARITY Zhang et al., 2015
hate_speech_offensive Davidson et al., 2017
hate_speech18 de Gibert et al., 2018
EMO Chatterjee et al., 2019
scicite Cohan et al., 2019
amazon_reviews_multi Keung et al., 2020
poem sentiment Sheng and Uthus, 2020
tweet_eval-emoji Barbieri et al., 2020
tweet_eval-hate Barbieri et al., 2020
tweet_eval-irony Barbieri et al., 2020
tweet_eval-offensive Barbieri et al., 2020
tweet_eval-feminist Barbieri et al., 2020

Table 7: Dataset analyized

C KENviz examples

KENviz generates visual representations of the
model pruning after the KEN application. Here,
we focus on key matrices from layers 0 and 12 of a
BERT model trained on the glue-sst2 dataset
(details in Sec. 6.1). For each layer, we present
both a single matrix view and a neighbor count
view, as described in Sec. 6.3.

BERT was chosen for this experiment due to its
exceptional performance across a range of k values
during testing (Tab. 2 and Tab. 6). To compre-
hensively explore how parameter selection patterns
evolve, we employed three different k values, rep-
resenting varying degrees of parameter selection.
This allowed us to observe how parameter choices
shift as the amount of parameter resetting increases.

Fig. 7 and Fig. 8 consistently reveal a uniform
distribution of parameters within each matrix row
across all configurations and layers. This implies
an absence of well-defined clusters of selected pa-
rameters. Furthermore, the number of neighbors
for each parameter remains consistent regardless
of the chosen k value.

11373



(a) Parameter reset 21.87%

(b) Parameter reset 47.91%

(c) Parameter reset 73.95%

Figure 7: KENviz visualization of the key attention
matrix at layer 0 of a BERT model trained on the
glue-sst2 dataset. The left-hand figures depict the
matrix after undergoing the KEN pruning stage, while
the right-hand ones showcase the corresponding neigh-
bor counts

(a) Parameter reset 21.87%

(b) Parameter reset 47.91%

(c) Parameter reset 73.95%

Figure 8: KENviz visualization of the key attention
matrix at layer 12 of a BERT model trained on the
glue-sst2 dataset. The left-hand figures depict the
matrix after undergoing the KEN pruning stage, while
the right-hand ones showcase the corresponding neigh-
bor counts
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