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Abstract

Recently, there has been growing interest within
the community regarding whether large language
models are capable of planning or executing
plans. However, most prior studies use LLMs to
generate high-level plans for simplified scenarios
lacking linguistic complexity and domain diver-
sity, limiting analysis of their planning abilities.
These setups constrain evaluation methods (e.g.,
predefined action space), architectural choices
(e.g., only generative models), and overlook the
linguistic nuances essential for realistic analysis.
To tackle this, we present PARADISE, an abduc-
tive reasoning task using Q&A format on practi-
cal procedural text sourced from wikiHow. It in-
volves warning and tip inference tasks directly as-
sociated with goals, excluding intermediary steps,
with the aim of testing the ability of the models to
infer implicit knowledge of the plan solely from
the given goal. Our experiments, utilizing fine-
tuned language models and zero-shot prompt-
ing, reveal the effectiveness of task-specific small
models over large language models in most sce-
narios. Despite advancements, all models fall
short of human performance. Notably, our anal-
ysis uncovers intriguing insights, such as varia-
tions in model behavior with dropped keywords,
struggles of BERT-family and GPT-4 with phys-
ical and abstract goals, and the proposed tasks
offering valuable prior knowledge for other un-
seen procedural tasks. The PARADISE dataset
and associated resources are publicly available
for further research exploration with https://
github.com/GGLAB-KU/paradise.

1 Introduction

Recent breakthroughs in emergent (or lack of) abil-
ities of large language models (LLMs) have given
rise to empirical studies that employ language mod-
els as planners (Huang et al., 2022; Zhao et al.,

Figure 1: A procedural tutorial on “Removing Ink Stains
from Fabric”. Here, one can damage the fabric if they
ignore the warning “Always blot, never rub, when dealing
with ink stains”.

2023; Song et al., 2023) (i.e., agentic models) and
analysis studies that investigate their planning ca-
pabilities (Valmeekam et al., 2023; Pallagani et al.,
2023; Valmeekam et al., 2022). Majority of these
studies use toy simulation environments like AL-
FRED (Shridhar et al., 2020), BlocksWorld, and
VirtualHome (Puig et al., 2018) which have little
lexical and domain variance and limited number of
actions (e.g., verbs). Additionally, the planning task
is mostly formulated as a generation problem which
can only be evaluated on the closed problem domain;
and models with decoder-based architectures. Hence
evaluating open-domain planning abilities for a wide
range of models still remain as a challenge.

Planning requires a combination of a wide range of
complex reasoning abilities. One line of research fo-
cuses on distinct set of reasoning abilities (e.g., com-
monsense (Huang et al., 2019), arithmetic (Cobbe
et al., 2021), logical (Han et al., 2022), tempo-
ral (Wang and Zhao, 2023) etc...) of language models
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on more realistic, open-domain text. However, such
open-domain text mostly does not contain a goal or a
plan, hence lack the complex linguistic phenomenon
(e.g., implicit relations, complex temporal, and co-
reference links, large event-cause chains etc...) that
is common in procedural text. On the other hand,
existing studies that utilize plans as a test bed for
reasoning are mostly limited to extracting direct and
explicit relations (Dalvi et al., 2019; Zhang et al.,
2020b), i.e., more simplistic reasoning compared to
implicit reasoning. Here, we formulate the implicit
planning skills as abductive reasoning skills over the
procedural plans with missing information. We hy-
pothesize that a model with planning abilities would
be able to infer the warnings and tips about the plan
without seeing the explicit instructions (see Fig 1).
Although abductive reasoning has been studied in the
past, they either employ additional source of informa-
tion (Huang et al., 2019; Bhagavatula et al., 2020) or
focus on consecutive elements (Zellers et al., 2018,
2019; Tandon et al., 2019), both of which diminish
the notion of implicity.

In this work, we present PARADISE, an exten-
sive, expert-curated dataset for warning and tip in-
ference tasks covering a wide range of domain de-
rived from wikiHow1. Unlike previous works, our
tasks focus on the implicit relationship between goals
and warnings/tips, bypassing intermediate steps (in-
structions). This requires a model to possess im-
plicit knowledge of intermediate steps (i.e., the plan)
solely based on the provided goal in the absence of
explicit instructions. Furthermore, we use a ques-
tion answering formulation, which allows for eas-
ier evaluation with standard metrics, and testing
of broader-range of model architectures including
encoder-based ones. We establish robust baselines
by fine-tuning pretrained language models like De-
BERTa (He et al., 2020) and zero-shot prompting
with a varied set of large language models such as
Mistral-7B (Jiang et al., 2023) and GPT-4 (OpenAI,
2023b). Our extensive experiments address a broad
range of research questions, delving into the relation-
ship between memorization and performance (§4.1),
the differences in failures between PLMs and LLMs
(§4.2), and the knowledge transfer capacity of the
proposed tasks to unseen tasks (§4.5). We observe

1https://www.wikihow.com

that fine-tuning small models tailored to specific
tasks proves more effective than zero-shot prompt-
ing across all LLMs, including GPT-4. However,
it’s noteworthy that all models, despite these efforts,
still lag behind human performance. Our exhaus-
tive analysis also provide interesting insights such
as large models getting less affected from dropping
matched keywords; BERT-family struggling more
with physical goals, while GPT-4 struggling with
abstract, digital and social objectives; and proposed
tasks providing beneficial prior knowledge to unseen
procedural tasks. We release all the resources at
https://github.com/GGLAB-KU/paradise.

2 PARADISE

Initially, we augment the wikiHow corpus (Zhang
et al., 2020b) by integrating it with a recent compi-
lation2 of 21K tutorials. The extended corpus main-
tains the JSON format, except for the segregation of
warnings and tips, an example of which can be seen
in Appendix A. Each wikiHow tutorial comprises
procedural steps to achieve its objective, with some
tutorials featuring step-specific or general warnings
and tips. We automatically generate downstream task
data incorporating these warnings and tips, as elab-
orated in Sec. 2.2. The process also involves expert
human annotation, detailed in Sec. 2.3.

2.1 Task Formulation

We define warning and tip inference tasks as multiple-
choice question answering tasks, in which a system
needs to choose the correct warning or tip for a given
goal among candidates. In this context, goals are
questions, while warnings and tips are the choices.
An example for both tasks can be seen in Fig. 2.

2.2 Candidate Sampling

Acquiring the goals and positive candidates is
straightforward, involving iterative selection from
each tutorial in our corpus. For negative candidate
sampling, we modify the approach outlined by Zhang
et al. (2020b). In contrast to their reliance solely on
verbs, we note that verbs prove inadequate in cap-
turing meaning because warnings and tips, on av-
erage, are much longer than individual steps (~40
versus ~11 tokens). This leads to the generation

2Scrape date: November, 2022
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Category Distribution Size

Other C&E HE F&E H&C H&G E&C F&B PC&S Train Dev Test

WikiHow Corpus 27.25% 14.51% 10.18% 10.09% 9.27% 8.89% 7.35% 6.63% 5.83% 133K
Warning Inference 34.75% 7.09% 14.13% 7.26% 4.12% 14.02% 5.19% 4.92% 8.52% 33K 5K 500
Tip Inference 30.13% 7.45% 11.33% 10.61% 5.44% 12.11% 7.46% 5.29% 10.18% 71K 5K 500

Table 1: Category distribution and size of PARADISE. C&E - Computer and Electronics, HE - Health, F&E - Food
and Entertaining, H&C - Hobbies and Crafts, H&G - Home and Garden, E&C - Education and Communications, F&B -
Finance and Business, PC&S - Personal Care and Style.

1. Goal: Sit up Straight at a Computer

(a) Remember that people can see some of
your surroundings you while you chat. Be
mindful of what is in the camera’s field of view.

(b) Do not remain in any one position in front of
a computer for too long.

(c) Avoid moving around in this pose. Any
movements you make within the pose should
be deliberate and slow.

(d) Keep an appropriate distance between your
eyes and computer screen.

2. Goal: Avoid Oil Splatter when Frying

(a) Remember to have lots of sides
apart from just the barbecued food.

(b) Wear clear, plastic gloves if you are going
to use your hands to mix the meat.

(c) Never use extra virgin olive oil to stir-fry.
It has a low smoking point.

(d) Wear long sleeves when you plan on
frying food.

Figure 2: Example questions for warning (1) and tip (2)
inference tasks. Correct choices are bold.

of low-quality negative candidates. To address this
limitation, we enhance our negative candidate sam-
pling strategy by incorporating embeddings of noun
tokens.

We begin by encoding each warning and tip us-
ing BERT (Devlin et al., 2019). We calculate the
average of verb and noun tokens, identified with
spaCy (Honnibal et al., 2020). Subsequently, we
employ FAISS (Johnson et al., 2019) to conduct a
semantic similarity search, identifying the top three
warnings and tips with the highest cosine similarity
score relative to the positive candidate.

Following Zhang et al. (2020b), we randomly re-
assign one of the negative candidates as positive and
correct the labels and goals accordingly with a prob-
ability of 0.15 to avoid sampling bias and filter the
examples as described in Appendix B.

2.3 Test Set Construction

As our datasets are automatically generated, they
may include undesired elements like multiple plau-
sible candidates for a given goal. For instance, con-
sider the goal “Deal with Your Step Mother”, which
has a positive candidate of “Stay connected with rela-
tives such as grandparents and close friends for extra
support” and a negative candidate of “Recruit help
from friends and family”. Although the negative can-
didate is chosen due to its high semantic similarity
with the positive candidate, it is also a reasonable
choice for the given goal, introducing noise into the
dataset. To mitigate such issues, we employ expert
annotation to validate the test splits.

The expert annotation process consists of three
stages. First, experts verify that each example con-
tains no more than one plausible candidate. Second,
they meticulously examine examples to ensure that
the positive candidate is genuinely relevant to the
content of the associated wikiHow tutorial. Finally,
experts assess the appropriateness of examples for
gauging reasoning skills, excluding instances that
demand expert-level knowledge or domain-specific
high-level information. This annotation process
yields approximately 80% of annotations as valid
examples. Consequently, the test splits for each task
are expanded with such valid examples from the pool
of automatically generated examples until reaching
the predetermined size of 500 examples.

Apart from expert annotation, we leverage the
dataset cartography tool (Swayamdipta et al., 2020)
to uphold the high quality of our data, probe our
datasets, and gain a deeper understanding of their
features. Further details can be found in Appendix C.
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2.4 Dataset Statistics

The statistics of the corpus and final datasets are
given in Table 1. We specify the validation and test
split sizes as 5K and 500, respectively, with the re-
maining data serving as the training set. Tip infer-
ence dataset is nearly twice the size of the warning
inference dataset, but the average token counts per
goal and candidate are comparable (~7 for goal, ~40
for candidate). We employ a nearly uniform sam-
pling approach across various categories to ensure a
high level of domain diversity.

3 Experimental Setup

To evaluate language models in our tasks, we estab-
lish two setups: 1) finetuning setup for pretrained
encoder LMs such as BERT (Devlin et al., 2019) and
2) zero-shot setup for large language models such as
GPT-4 (OpenAI, 2023b).

3.1 Finetuning Setup

We fine-tune a set of models from the BERT fam-
ily: DistilBERT (Sanh et al., 2019), BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), De-
BERTa (He et al., 2020), which show strong per-
formance in procedural and reasoning tasks (Zhou
et al., 2022; Tandon et al., 2019; Zellers et al., 2019;
Zhang et al., 2020b). For fine-tuning, we concate-
nate each candidate (warning or tip) with the ques-
tion (goal) using a [CLS] token, i.e., the model
receives [CLS] question [SEP] candidate as
input. Subsequently, we apply an additional pro-
jection layer, followed by a softmax function that
receives the representation of the [CLS] token for
each candidate. The candidate with the highest
probability is selected as the answer. The models
are optimized through cross-entropy loss. Further
implementation details can be found in Appendix D.

3.2 Zero-Shot Setup

We identify five popular and capable3 large language
models that are diverse in architecture, scale, avala-
bility, and performance, namely as GPT-44 (OpenAI,
2023b), PALM-2 5 (Anil et al., 2023), LLaMA-2

3These LLMs are chosen from the models that rank high in
the Hugging Face Chatbot Leaderboard.

4Model variant: gpt-4-1106-preview
5Model variant: text-bison

Model Warning Tip
Random 25.0 25.0
Majority 26.0 26.0

PLMs

DistilBERT 22.44 ±3.88 21.48 ±4.84
BERT 25.52 ±4.56 26.88 ±5.02
RoBERTa 20.88 ±4.80 20.36 ±4.20
DeBERTa 23.40 ±6.76 22.60 ±8.61

Fine-Tuned PLMs

DistilBERT 82.16 ±0.79 87.48 ±0.65
BERT 83.92 ±0.68 89.80 ±0.91
RoBERTa 87.92 ±0.60 91.00 ±0.34
DeBERTa 90.68 ±0.41 93.68 ±0.48

Open-Source LLMs

Mistral 7B 71.8 72.4
Vicuna 33B 53.2 57.0
LLaMA-2 70B 65.2 64.5

Proprietary LLMs

PALM-2 83.6 82.4
GPT-4 86.2 88.8

Human 94.0 96.0

Table 2: Main accuracy results for fine-tuning and
zero-shot setups.

70B (Touvron et al., 2023), Mistral 7B6 (Jiang et al.,
2023), and Vicuna 33B (Chiang et al., 2023).

We first perform preliminary experiments with
default prompts on a small subset of the valida-
tion set. We, then, iteratively refine the prompts
to fit the specific model’s template. For instance Vi-
cuna expects a certain template with ###Human and
###Assistance roles specified in the text. We use

the respective model APIs, where available. Pre-
liminary tests on the subsets were conducted for
each model to identify optimal temperature and
top_p parameters. The best-performing configura-
tions were then applied to the entire datasets for a
thorough evaluation. Further details on the prompt
templates and parameters are given in Appendix E.

4 Experiments and Results

We experiment with the PLMs and LLMs on PAR-
ADISE using the setup explained in Sec 3. We also

6Model variant: Mistral-7B-Instruct-v0.1
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Figure 3: Model performances tested on manipulated test data.

calculate the random and majority baselines, and
evaluate the human performance by averaging the ac-
curacy of two human annotators7 on a random set of
100 examples. Our main results are given in Table 2.

Fine-tuning Among the fine-tuned models, De-
BERTa performs the best in both tasks; yet, it still
falls behind human performance. Considering De-
BERTa’s performance in previous abductive rea-
soning datasets, such as CosmosQA (Huang et al.,
2019), SWAG (Zellers et al., 2018), and HellaSWAG
(Zellers et al., 2019), such results indicate that its
success is not task-specific and its performance is
transferable to warning and tip inference. Distil-
BERT, BERT, and RoBERTa cannot perform on par
with DeBERTa and fall well behind human perfor-
mance, although they perform considerably well on
the proposed tasks. All models perform better in tip
inference compared to warning inference.

Zero-shot Although their performances are worse
than fine-tuned PLMs, proprietary LLMs perform
considerably better than open-source LLMs. GPT-4,
which also tops many benchmarks (OpenAI, 2023b),
is the best-performing LLM, while PALM-2 is a
close runner-up. One surprising finding is that the
performances of open-source LLMs are not corre-
lated with their size, as Mistral 7B outperforms Vi-
cuna 33B and LLaMA-2 70B in both tasks. Similar
to PLMs, LLMs also perform better in tip inference
compared to warning inference, with LLaMA-2 70B
being an exception.

To gain further insights on behaviours of the mod-
els we ask the following research questions:

• RQ1: Do the models perform well due to sim-
7Two university students majoring in computer science, be-

tween the ages of 20 - 24.

ple keyword matching?

• RQ2: Do different model families fail on dif-
ferent instances? Is there a certain pattern?

• RQ3: How does the performance compare for
the explicit (i.e., directly related to a step) and
implicit warnings/tips (i.e., more general and
not directly related to any of the steps)?

• RQ4: Are the models also good at the reverse
task, i.e., can they find the goal most related to
the warning/tip?

• RQ5: Can the proposed tasks help improve
performance in other procedural tasks?

4.1 RQ1: Keyword Matching
If the goal and only one candidate share a common
keyword, an example might become trivial and the
task might develop into simple keyword matching.
For example, when the goal and the positive can-
didate are about cats while negative candidates are
about other animals, the positive candidate becomes
easily distinguishable. Therefore, we drop such key-
words in both positive and negative candidates in or-
der to evaluate our tasks’ dependency on keywords.

This manipulation, averaging approximately 2 to-
kens per candidate, induces a 4.5% change on av-
erage. As illustrated in Fig. 3, the omission of
such keywords results in a 15% to 20% decrease in
prediction accuracy for Pre-trained Language Mod-
els (PLMs). The impact diminishes with increasing
original model performance; DistilBERT is most af-
fected, while DeBERTa is least affected. In contrast,
Language Models (LLMs) experience a milder accu-
racy decline of 5% to 15%. In addition to dropping
keywords, we also experiment with other keyword
manipulation methods as detailed in Appendix F.
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Figure 4: Correlation matrices of incorrect predictions of each model for tip (left) and warning (right) inference.

4.2 RQ2: Failures of Different Model Families

To better understand the behaviours of the models
we experiment with, we generate correlation matri-
ces for their incorrect predictions in both tasks. As
depicted in Fig. 4, models within the same group
(PLMs, Open-Source LLMs, and Proprietary LLMs)
exhibit the highest correlation. Notably, incorrect
predictions diverge more between PLMs and LLMs,
while open-source LLMs and proprietary LLMs dis-
play higher inter-group correlation. Task-wise, cor-
relation levels remain consistent, underscoring data
quality and overall consistency.

As evident in Fig. 4, DeBERTa and GPT-4 ex-
hibit divergent failure patterns. To understand their
distinctions in distinguishing PLMs and LLMs, we
manually inspect instances of failure. Our analysis
reveals that DeBERTa struggles more with tangible,
physical, and craft-related goals, while GPT-4 en-
counters challenges with abstract, digital, and social
objectives. We validate these findings by generating
the category distribution of unique failures for De-
BERTa and GPT-4, as shown in Table 3. Notably,
GPT-4 falters in social and digital categories like
Youth, Relationships, and Computer & Electronics,
while DeBERTa encounters difficulties in tangible
categories such as Sports & Fitness, Pets & Animals,
and Home & Garden. Specific instances of failures

Rank DeBERTa GPT-4
Warning Tip Warning Tip

#1 H&G (24.5%) F&E (25.0%) H&G (24.4%) HE (18.1%)

#2 S&F (12.8%) H&G (21.9%) HE (16.3%) F&E (13.4%)

#3 E&C (11.7%) HE (15.6%) C&E (13.0%) C&E (10.7%)

#4 PC&S (11.7%) E&C (10.9%) RE (9.8%) YO (8.7%)

#5 P&A (8.5%) P&A (9.4%) PC&S (8.9%) PC&S (8.7%)

Table 3: Top categories that DeBERTa and GPT-4 fail.

for DeBERTa and GPT-4 are detailed in Appendix
G.

4.3 RQ3: Implicit versus Explicit

As outlined in Sec. 2, warnings and tips within the
dataset exhibit a distinction: some are specific to
individual steps, while others are general. Although
they are related to steps from the wikiHow tutori-
als, step-specific warnings and tips are not matched
with their associated steps manually by editors. To
assess the implicit reasoning skills of language mod-
els, we curate distinct subsets of test splits for both
tasks, comprising warnings and tips demonstrating
high semantic similarity with steps from relevant
wikiHow tutorials. Employing SBERT (Reimers
and Gurevych, 2019) for encoding steps and warn-
ings/tips, we conduct a semantic similarity search.
We retain examples with a cosine similarity score
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Warning Tip
Model All Sim>0.5 Sim>0.75 All Sim>0.5 Sim>0.75

Fine-Tuned PLMs

DistilBERT 82.16 ±0.79 87.12 ±0.66 85.71 ±0.00 87.48 ±0.65 88.43 ±0.67 90.02 ±1.46
BERT 83.92 ±0.68 86.84 ±0.59 90.29 ±2.29 89.80 ±0.91 91.10 ±0.89 92.69 ±0.77
RoBERTa 87.92 ±0.60 89.57 ±0.33 92.57 ±1.40 91.00 ±0.34 91.83 ±0.26 91.93 ±0.77
DeBERTa 90.68 ±0.41 91.63 ±0.58 94.86 ±2.14 93.68 ±0.48 95.34 ±0.39 100.0 ±0.0

Open-Source LLMs

Mistral 7B 71.8 64.4 70.3 72.4 72.8 73.6
Vicuna 33B 53.2 54.1 59.5 57.0 58.9 66.0
LLaMA-2 70B 65.2 58.4 62.2 64.5 70.9 77.4

Proprietary LLMs

PALM-2 83.6 83.2 86.5 82.4 82.8 84.9
GPT-4 86.2 86.1 89.2 88.8 88.7 92.5

Table 4: The accuracy results of PLMs and LLMs on different subsets of the test splits with varying level of similarity
to the instructions from associated wikiHow tutorials.

surpassing a threshold with at least one step, result-
ing in 35 warnings and 52 tips with high similarity
scores (cosine similarity score with the step > 0.75)
and 368 warnings and 382 tips with decent similarity
scores (cosine similarity score with the step > 0.5).

We assess the performance of PLMs and LLMs,
as detailed in Sec. 3, on subsets outlined in Table 4.
Results show improved model performance as the
similarity between warnings/tips and steps increases.
Higher accuracy in these subsets suggests a strong
capacity for implicit reasoning, given that warnings
and tips become more representative of intermedi-
ate steps with increased similarity. Notably, BERT
and DeBERTa excel among PLMs, while Mistral
7B and LLaMA-2 70B lead among LLMs, exhibit-
ing the highest accuracy increase in warning and tip
inference tasks, respectively.

4.4 RQ4: Reverse Inference Tasks

If models can effectively reason about the relation-
ship between warnings/tips and goals, it suggests
they can correctly identify the goal corresponding
to a given warning or tip. To examine this hypoth-
esis, we construct reversed versions of our tasks,
requiring the system to select the correct goal for a
provided warning or tip. Using the candidate sam-
pling method detailed in Sec 2.2, we randomly select
500 examples for evaluation with fine-tuned PLMs

and LLMs. Results in Table 5 indicate zero-shot per-
formances for PLMs align closely with the random
baseline, except for DeBERTa, which achieves a 10%
higher accuracy. This suggests limited inherent rea-
soning capabilities over procedural warnings and tips.
However, fine-tuned models exhibit a significant per-
formance increase, supporting our hypothesis. In
contrast, LLMs maintain similar accuracy scores in
reverse tasks without experiencing a performance
loss observed in fine-tuned PLMs.

4.5 RQ5: Transfer Learning
To examine the impact of our tasks on reasoning
over procedural documents, we conduct cross-tests
between warning and tip inference tasks and out-of-
domain transfer learning on goal and step inference
tasks from Zhang et al. (2020b).

4.5.1 Cross Domain
While categorized separately, both warnings and tips
share the common objective of enhancing reader
understanding in a wikiHow tutorial. As a result,
they often exhibit similarities in structure and seman-
tics, with occasional interchangeability. To assess
the generalizability of Pre-trained Language Models
(PLMs) across warning and tip inference tasks, we
conduct cross-tests. Specifically, we evaluate PLMs
fine-tuned on tip inference data using the test split of
the warning inference dataset and vice versa.
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Model Reverse Warning Reverse Tip
Random 25.0 25.0

PLMs

DistilBERT 20.52 ±3.93 20.00 ±5.27
BERT 25.08 ±3.73 25.40 ±4.93
RoBERTa 26.52 ±5.42 26.36 ±7.03
DeBERTa 33.76 ±4.83 35.72 ±4.99

Fine-Tuned PLMs

DistilBERT 65.44 ±1.53 68.48 ±1.25
BERT 69.08 ±1.69 72.36 ±1.18
RoBERTa 72.64 ±1.44 77.00 ±1.26
DeBERTa 79.92 ±0.63 80.44 ±0.79

Open-Source LLMs

Mistral 7B 74.6 79.2
Vicuna 33B 62.8 61.4
LLaMA-2 70B 76.2 76.0

Proprietary LLMs

PALM-2 83.6 85.8
GPT-4 86.4 86.0

Table 5: Accuracy results of the reverse task evaluation.

Model Warning Tip
Random 25.0 25.0

BERT 84.68 ±0.27 86.20 ±0.77
RoBERTa 88.28 ±0.30 88.80 ±0.72

Table 6: Accuracy results of BERT and RoBERta
fine-tuned with tip inference on warning inference, and
vice versa.

As depicted in Table 6, models fine-tuned on tip
inference data demonstrate comparable performance
to those fine-tuned on warning inference data for
the warning inference task. Conversely, models
fine-tuned on warning inference data exhibit slightly
lower performance than those fine-tuned on tip in-
ference data for the tip inference task. The nearly
identical results in cross tests affirm the high simi-
larity between warnings and tips, highlighting their
interchangeability.

4.5.2 Out-of-Domain

The goal and step inference tasks focus on identi-
fying goal-step relationships in procedural how-to

tutorials. Goal inference involves selecting the plau-
sible goal from candidates for a given step, while
step inference entails the reverse process. Although
similar to the proposed tasks, they aim to measuring
explicit procedural reasoning abilities.

For both step and goal inference tasks, we fine-
tune three BERT models: i) BERT trained from
scratch, ii) BERT previously fine-tuned on warning
inference data, and iii) BERT previously fine-tuned
on tip inference data. We report their performances
on the test split throughout the training. Notably,
prior fine-tuning on warning and tip inference tasks
consistently improves performance during training
for both goal and step inference tasks, as illustrated
in Fig. 5. The second and third BERT models exhibit
significantly enhanced zero-shot performances, with
average accuracy increases of 21.16% and 22.98%
for goal inference, and 34.75% and 39.77% for step
inference, respectively. While the performance gap
diminishes, the second and third BERT models con-
tinue to outperform at the end of training, with aver-
age accuracy increases of 2.09% and 2.27% for goal
inference, and 0.15% and 0.53% for step inference,
respectively.
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Figure 5: Accuracy of the three BERT variations plotted
over the training epoch.

5 Related Work

Commonsense reasoning is a broad domain that
branches into a wide range of subdomains such as
linguistic reasoning (Şahin et al., 2020; Liu et al.,
2022; Lin et al., 2021), abductive reasoning (Tandon
et al., 2019; Zellers et al., 2019), reasoning about
the physical world (Bisk et al., 2020; Khot et al.,
2019; Aroca-Ouellette et al., 2021), temporal rea-
soning (Zhang et al., 2020b; Qin et al., 2021), etc.
(Bhargava and Ng, 2022). Although there exists
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some abductive reasoning tasks that involve find-
ing the most likely explanation for a set of incom-
plete observations (Bhargava and Ng, 2022), they
are outside of the domain of procedural language
understanding. For example, CosmosQA (Huang
et al., 2019) present commonsense abductive reading
comprehension and ART (Bhagavatula et al., 2020)
propose abductive natural language inference with
narrative contexts. Thus, they depend on additional
paragraphs provided by the question, which enrich
the level of information provided to the model. Fur-
thermore, abductive reasoning resources obtained
from procedural texts are either artificially made dif-
ficult with targeted models (such as SWAG (Zellers
et al., 2018) and HellaSWAG (Zellers et al., 2019))
or covers another form of procedural texts (e.g., nat-
ural phenomenons of WIQA (Tandon et al., 2019)).
Moreover, they focus on the continuous elements
(i.e. consecutive steps or events), which we believe
diminishes the degree of implicity.

Furthermore our main resource wikiHow has been
extensively used for a wide range of tasks thanks
to its rich body of well-structured procedural docu-
ments, including but not limited to summarization
(Koupaee and Wang, 2018; Ladhak et al., 2020),
intent detection (Zhang et al., 2020a), reasoning
(Zhang et al., 2020b), linking actions (Lin et al.,
2020; Zhou et al., 2022), and next event prediction
(Nguyen et al., 2017; Zellers et al., 2018, 2019).

6 Conclusion

There has been a growing interest in procedural data,
tasks, and reasoning. However, the spotlight has been
on explicit and direct relations when studying reason-
ing within procedural documents. To address the the
lack of resources to study implicit relations and rea-
soning, we introduce PARADISE and strong baseline
models evaluated and analyzed with extensive exper-
iments. PARADISE contains +104K warnings and tips
in total and serves as a reliable testbed for the evalua-
tion of abductive and implicit commonsense reason-
ing skills of language models. Moreover, it brings
improvement to zero-and-few-shot performances in
out-of-domain procedural tasks. Our experiments
reveal that PLMs do not possess inherent reasoning
skills; yet, most of them outperform LLMs when
fine-tuned. However, best-performing models from

both groups fall behind human performance, indi-
cating room for improvement. We release all the
resources publicly to further research.

Limitations

We evaluate LLMs with their respective APIs due to
their proprietary nature or heavy computation costs.
Therefore, although we explain our evaluation setup
in detail, the performances of LLMs we evaluate
might not always be reproducible due to potential
future changes or deprecations of their APIs.

Ethics Statement

We utilize the content from wikiHow, adhering to
the specific circumstances outlined in the Creative
Commons license. We fully comply with all condi-
tions stipulated by the Creative Commons license,
and these requirements facilitate the utilization of
the wikiHow corpus upon which we build.
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A Example JSON File

An example JSON file from our corpus can be seen
in Listing 1.

Listing 1: Example JSON file for the procedural tutorial
with the goal "Rip Your Own Jeans" from wikiHow.

1 {
2 "title": "How to Rip Your Own Jeans",
3 "url": "https://www.wikihow.com/Rip -Your -Own -Jeans",
4 "title_description": "Distressed denim is a popular style,

but buying jeans that are already ripped can be
expensive. Luckily, you can create this trend
yourself by roughing up the fabric with a piece of
sandpaper, then snipping a hole with a pair of
scissors .",

5 "category_hierarchy": [
6 "Hobbies and Crafts",
7 "Crafts",
8 "Decoration Projects"
9 ],

10 "author": {
11 "name": null,
12 "n_coauthors": 128,
13 "blurb": null
14 },
15 "time_updated": "April 12, 2020",
16 "n_views": 3443113,
17 "rating": {
18 "n_votes": 76,
19 "helpful_percent": 77
20 },
21 "methods": [],
22 "parts": [],
23 "video": "https://www.wikihow.com/Video/Rip -Your -Own -Jeans

",
24 "related_articles": ["ABRIDGED"],
25 "tips": [
26 "Washing the jeans right after ripping them causes the

fibers to loosen more and create a more
distressed look.",

27 "Avoid adding rips too near the seams, as they may
cause them to begin to unravel .",

28 "For exact rips, use a sewing needle to pull out
individual stitches from the fabric ."

29 ],
30 "warnings": [
31 "Don ’t make the rip too big at first. Washing the

fabric will increase the size and fray of the
hole.",

32 "Never attempt to rip or fray your jeans while you ’re
wearing them.",

33 "Use caution with sharp tools."
34 ],
35 "QAs": ["ABRIDGED"],
36 "refs": [
37 "https://www.marieclaire.co.uk/news/fashion -news/how -

to -rip -jeans -821",
38 "https://www.marieclaire.co.uk/news/fashion -news/how -

to -rip -jeans -821",
39 "https://www.cosmopolitan.com/style -beauty/fashion/a58

592/5-easy -tricks -for -distressing -your -jeans/"
40 ],
41 "quizzes": [],
42 "other_languages": {"ABRIDGED"},
43 "steps": ["ABRIDGED"]
44 }

B Filtering Examples

After sampling the negative candidates, we apply a
set of filters introduced by Zhang et al. (2020b) to
ensure the high-quality of the pairs and the challenge
they bring. However we change some of these filters
as follows:

Similarity filter: We obtain the cosine similarity
scores using Supervised SimCSE-RoBERTa-Large

(Gao et al., 2021), since sentence embeddings cap-
ture sentence-level information, resulting in better
filtering.

Length filter: We also set an upper bound to en-
sure they are long (> 8 tokens) enough to contain rel-
evant information yet short (< 128 tokens) enough
to be on-point and coherent.

Category filter: We exclude examples from some
categories (e.g., Philosophy and Religion, Celebri-
ties, Holidays and Traditions, etc.) that might not be
suitable for evaluating language models’ reasoning
skills due to their subjectivity.

C Dataset Analysis with Cartography

We utilize the dataset cartography tool (Swayamdipta
et al., 2020), which processes a model’s behaviour
on training instances (also known as the training
dynamics) for mapping the dataset, to better under-
stand the characteristics of our datasets. To this end,
cartography derives three metrics from the training
dynamics: confidence (the mean model probabil-
ity of the true label across epochs), correctness (the
fraction of times the model correctly labels an obser-
vation across epochs), and variability (the spread of
the model’s probability of correctly labeling observa-
tions across epochs). With these metrics, cartography
reveals three regions in a data map, each with distinct
features.

Using the cartography tool, we generate data maps
for warning and tip inference datasets. As seen in
Fig. 6, both of our datasets have a high density
in the positive ends of confidence and correctness
and in the negative end of variability, indicating that
BERT is capable of confidently choosing the correct
warnings and tips throughout the training. However,
tip inference dataset shows greater density in those
ends, demonstrating higher easiness that reinforces
our reasoning in Appendix H.

Additionally, we implement the noise detector
(Swayamdipta et al., 2020) using a Gaussian Naive
Bayes classifier model (Chan et al., 1979) to identify
mislabeled instances in our datasets. We train our
classifier model on a small set of equally distributed
mislabeled (randomly re-assinged) and correctly la-
beled data instances. Although simple, it achieves
95.2% accuracy on the test set. We, then, use the
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Figure 6: Data maps for warning and tip inference tasks obtained with BERT.

classifier model on the entire warning and tip in-
ference datasets. Our classifier model finds 1022
noisy instances in the tip inference and 746 noisy in-
stances in the warning inference datasets, indicating
a 1.3% and 1.9% of noise respectively. Such levels of
noise in automatically generated datasets with no hu-
man supervision (other than curating the test splits)
illustrates the success of the filtering described in
Appendix B.

D Implementation Details

We use the base versions of DistilBERT8, BERT9,
RoBERTa10, and DeBERTa11 and implement them
using Hugging Face libraries, namely transformers
(Wolf et al., 2020), evaluate, and accelerate (Sylvain
et al., 2022).

We fine-tune each model for 1 epoch with its
unique set of hyperparameters that can be seen in
Table 7. We use a batch size of 8 and keep the de-
fault values for all other hyperparameters for testing.
In fine-tuning, we use five different seeds (42, 2717,
6802, 9893, and 7818) to conduct statistical signifi-
cance analysis. In testing, we set the seed to 42.

For both fine-tuning and testing, we utilize half-
precision floating point format (FP16) with the ac-
celerate library. DistilBERT, BERT, and RoBERTa
models are fine-tuned on a single NVIDIA T4, while
DeBERTa is fine-tuned on two NVIDIA T4s. Com-
putational costs of fine-tuning each model across

8https://huggingface.co/distilbert-base-uncased
9https://huggingface.co/bert-base-uncased

10https://huggingface.co/roberta-base
11https://huggingface.co/microsoft/

deberta-v3-base

Hyperparameter DistilBERT BERT RoBERTa DeBERTa
Total Batch Size 32 64 64 128
Gradient Acc. Steps 1 2 2 4
Learning Rate 2e-5 2e-5 1e-5 1e-5
Max. Sequence Length 128 128 128 128

Table 7: Hyperparameters used in the fine-tunings of
models.

Model GPU Time
WARNING INFERENCE

DistilBERT 1 x NVIDIA T4 6 mins 10 secs
BERT 1 x NVIDIA T4 11 mins 53 secs
RoBERTa 1 x NVIDIA T4 11 mins 45 secs
DeBERTa 2 x NVIDIA T4 9 mins 32 secs

TIP INFERENCE

DistilBERT 1 x NVIDIA T4 12 mins 47 secs
BERT 1 x NVIDIA T4 24 mins 57 secs
RoBERTa 1 x NVIDIA T4 24 mins 51 secs
DeBERTa 2 x NVIDIA T4 19 mins 55 secs

Table 8: Computational costs of fine-tuning each model
across each task.

each task can be seen in Table 8.

E Prompting LLMs

In order to effectively engage with a language model,
it is essential to meticulously construct a prompt
template and finetune specific parameters, notably
temperature (sampling temperature between 0 and 1
or 0 and 2) and top p (nucleus sampling, where the
model considers the results of the tokens with top p
probability mass) (OpenAI, 2023a).

For the prompt template construction, we referred
to the official API documentation of each model
to ascertain the recommended templates. In cases
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where no specific templates were provided, we di-
rectly used the questions as prompts, omitting any
additional tokens.

Regarding the calibration of the temperature and
top p settings, we initiated our tests with the de-
fault values as specified in the model’s API and play-
ground interface. This approach was followed by a
systematic tuning process to optimize performance.
Notably, we observed that a lower temperature set-
ting, as compared to the default, yielded more ac-
curate results. This aligns with the general under-
standing that lower temperatures are preferable for
fact-based prompts, while higher temperatures are
better suited for tasks requiring creativity and an
element of randomness.

The accompanying tables 9 and 10 show the spe-
cific prompts and parameter settings employed for
each model (all the experiments were done in De-
cember 2023).

F Additional Keyword Manipulation
Methods

In addition to dropping, we manipulate the common
keywords in the candidates using the following meth-
ods, as exemplified in Table 11:

1. Synonym Replacement: We replace such key-
words with their synonyms using WordNet
(Miller, 1994) with NLTK (Bird et al., 2009).

2. Replacing with a Placeholder: We replace such
keywords with a placeholder word, which is
simply PLACEHOLDER.

3. Replacing with the BERT Prediction: We mask
such keywords out with the [MASK] token and
use BERT to predict the most likely token other
than the original one.

We evaluate fine-tuned PLMs on these manipu-
lated examples. As seen in Fig. 7, synonym re-
placement causes the least decrease in the perfor-
mance with an approximate average of 10% drop in
accuracy across models and tasks. Dropping, place-
holder replacement, and BERT prediction replace-
ment closely follow each other respectively, with
average decreases in accuracy varying from 15% to
20%.

G DeBERTa and GPT-4 Failures

Specific examples that DeBERTa and GPT-4 fail can
be seen in Table 12.

H A Comparison Between Warnings and
Tips

As discussed in Sec. 4.5.1, warnings and tips share
the common purpose of presenting additional infor-
mation to user for better instruction execution within
procedural wikiHow tutorials. Thus, they generally
have high similarity in semantics and structure.

Overall, warning inference poses a greater chal-
lenge compared to tip inference. We believe this is
due to two main reasons. First, tips are more goal-
specific, while warnings are more general, yet still
distinguishable. For example, any goal that contains
sharp objects might have a warning towards using
those sharp objects carefully; yet, the same does not
hold true for tips. Second, tips are ample in quantity;
therefore, there are more examples to learn from.

Our reasoning behind tips being more goal-
specific and informative regarding the procedural
tutorial compared to warnings is reinforced by the
following findings:

1. Both PLMs and LLMs perform better in tip
inference compared to warning inference, in-
dicating a greater capability in reasoning with
tips due to tips being more directly connected
to their goals.

2. Previous fine-tuning on tip inference better im-
proves the performance in transfer learning
compared to previous fine-tuning on warning
inference, demonstrating that tip inference con-
tributes to model’s learning over procedural
tasks more.

3. Tip inference is affected more by keyword
manipulation, showing that tip inference data
is more vulnerable to keyword alteration be-
cause its positive candidates contain more goal-
specific vocabulary.
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Model Settings Prompt

GPT-4

PALM2

Temp. = 0.3
Top p = 0.9

Temp. = 0.3
Top p = 0.9

I will give you a goal below and 4 tips. Can you pick the most related tip to it?
Goal: Prepare for a Long Car Trip
Tips:
Tip 0- While performing any exercise, make sure you are drinking water to stay
hydrated.
Tip 1- Do drink plenty of water to keep your skin hydrated.
Tip 2- If you are traveling for a long time, bring a bottle of water to keep you hydrated.
Tip 3- Bring a bottle of water with you to stay hydrated.
Response format: Return the tip number in json with ‘tip’ as key and no more details.

Llama2

Mistral

Temp. = 0.3
Top p = 0.9

Temp. = 0.0
Top p = 0.1

<s>[INST]
I will give you a goal below and 4 tips. Can you pick the most related tip to it?
Goal: Prepare for a Long Car Trip
Tips:
Tip 0- While performing any exercise, make sure you are drinking water to stay
hydrated.
Tip 1- Do drink plenty of water to keep your skin hydrated.
Tip 2- If you are traveling for a long time, bring a bottle of water to keep you hydrated.
Tip 3- Bring a bottle of water with you to stay hydrated.
Response format: Return the tip number in json with ‘tip’ as key and no more details.
[\/INST]

Vicuna Temp. = 0.3
Top-p = 0.9

A chat between a human and an assistant.
### Human:
Goal: Prepare for a Long Car Trip
Tips:
Tip 0- While performing any exercise, make sure you are drinking water to stay
hydrated.
Tip 1- Do drink plenty of water to keep your skin hydrated.
Tip 2- If you are traveling for a long time, bring a bottle of water to keep you hydrated.
Tip 3- Bring a bottle of water with you to stay hydrated.
Response format: Return the tip number in json with ‘tip’ as key and no more details.
### Assistance:

Table 9: LLM settings and prompts for tip inference.
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Model Settings Prompt

GPT-4

PALM2

Temp. = 0.3
Top p = 0.9

Temp. = 0.3
Top p = 0.9

I will give you a goal below and 4 warnings. Can you pick the most related warning
to it?
Goal: Make Laundry Detergent Slime
Warnings:
Warn 0- Warning 0- Avoid flooding the floor with cleaner or water. A thin layer of
water should be enough for a dry cloth to wipe
Warn 1- Don’t apply heat (dryer, iron) to the stained area until the stain is gone.
Warn 2- Don’t place the slime in a cold area when it’s finished. It may become less
stretchy.
Warn 3- Don’t let the resurfacer dry on your skin since it may cause irritation and is
difficult to remove.
Response format: Return the warning number in json with ‘warn’ as key and no more
details.

Llama2

Mistral

Temp. = 0.3
Top p = 0.9

Temp. = 0.0
Top p = 0.1

<s>[INST]
I will give you a goal below and 4 warnings. Can you pick the most related warning
to it?
Goal: Make Laundry Detergent Slime
Warnings:
Warn 0- Warning 0- Avoid flooding the floor with cleaner or water. A thin layer of
water should be enough for a dry cloth to wipe
Warn 1- Don’t apply heat (dryer, iron) to the stained area until the stain is gone.
Warn 2- Don’t place the slime in a cold area when it’s finished. It may become less
stretchy.
Warn 3- Don’t let the resurfacer dry on your skin since it may cause irritation and is
difficult to remove.
Response format: Format the answer in json with the warning number as value and
’warn’ as key and no more details. [\/INST]

Vicuna Temp. = 0.3
Top-p = 0.9

A chat between a human and an assistant.
### Human:
I will give you a goal below and 4 warnings. Can you pick the most related warning
to it?
Goal: Make Laundry Detergent Slime
Warnings:
Warn 0- Warning 0- Avoid flooding the floor with cleaner or water. A thin layer of
water should be enough for a dry cloth to wipe
Warn 1- Don’t apply heat (dryer, iron) to the stained area until the stain is gone.
Warn 2- Don’t place the slime in a cold area when it’s finished. It may become less
stretchy.
Warn 3- Don’t let the resurfacer dry on your skin since it may cause irritation and is
difficult to remove.
Response format: Return the warning number in json with ‘warn’ as key and no more
details.

Table 10: LLM settings and prompts for warning inference.

10101



DistilBERT BERT RoBERTa DeBERTa
0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Warning Inference

DistilBERT BERT RoBERTa DeBERTa
0.5

0.6

0.7

0.8

0.9

1

Tip Inference

Original

Synonym

Drop

Placeholder

BERT Prediction

Figure 7: Model performances tested on manipulated test data.

Manipulation Positive Candidate (abridged) Negative Candidate (abridged)
GOAL: Stop Eating Fast Food
COMMON KEYWORDS: Fast, Food, Eating

Original
Beating a fast food addiction is a lot easier when you’re not Being vulnerable about your eating disorder is a hard thing to do.
going it alone. Talk to friends about your goals for your diet. Remember that you need other people to support you.

Synonym
Beating a flying food addiction is a lot easier when you’re not Being vulnerable about your eat disorder is a hard thing to do.
going it alone. Talk to friends about your goals for your diet. Remember that you need other people to support you.

Dropping
Beating a addiction is a lot easier when you’re not Being vulnerable about your disorder is a hard thing to do.
going it alone. Talk to friends about your goals for your diet. Remember that you need other people to support you.

Placeholder
Beating a placeholder placeholder addiction is a lot easier Being vulnerable about your placeholder disorder is a hard
when you’re not going it alone. Talk to friends about your thing to do. Remember that you need other people to
goals for your diet. support you.

BERT Prediction
Beating a new drug addiction is a lot easier when you’re not Being vulnerable about your anxiety disorder is a hard thing to do.
going it alone. Talk to friends about your goals for your diet. Remember that you need other people to support you.

Table 11: Examples of keyword manipulation for a pair from the tip inference dataset. The goal is "Stop Eating Fast
Food", which shares the common keywords of "Fast" and "Food" with the positive candidate and "Eating" with one of
the negative candidates.

DeBERTa GPT-4
Install Ceramic Wall Tile Block People on Facebook
Build a Nerf Fort See Your WiFi Password on an iPhone
Turn a Cardboard Box Into a Basket Change the Password in Outlook 365
Prevent Water Stains on Bathroom Walls Deal with Catty Coworkers
Make a Rope Braid Be Confident As a Short Person
Remove a Red Wine Stain Ring from a Wood Table Help an Autistic Family Member

Table 12: Goals of examples that DeBERTa and GPT-4 fail.

10102


