
Findings of the Association for Computational Linguistics: ACL 2024, pages 9145–9154
August 11-16, 2024 ©2024 Association for Computational Linguistics

Large Language Models Can Learn Representation in Natural Language

Yiduo Guo1, Yaobo Liang2, Dongyan Zhao1,3,4, Nan Duan2

1Wangxuan Institute of Computer Technology, Peking University
2Microsoft Research Asia

3State Key Laboratory of Media Convergence Production Technology and Systems
4Artificial Intelligence Institute of Peking University

yiduo@stu.pku.edu.cn,justinzzk@stu.pku.edu.cn,yaobo.liang@microsoft.com
zhaody@pku.edu.cn,nanduan@microsoft.com

Abstract

One major challenge for Large Language Mod-
els (LLMs) is completing complex tasks in-
volving multiple entities, such as tool APIs. To
tackle this, one approach is to retrieve relevant
entities to enhance LLMs in task completion.
A crucial issue here is obtaining accurate nat-
ural language representations for each entity
to aid in retriever precision. In this paper, we
propose the Natural Language Representation
Optimization Problem, which aims to refine
entity descriptions for improved retrieval and
LLM utilization. We introduce the Learning
to Represent with Natural Language method,
which utilizes LLMs to optimize entity repre-
sentations consisting of text patterns based on
environmental feedback. We iteratively prompt
LLMs to enhance or adjust patterns based on
entity samples and evaluate their effectiveness
through environmental feedback. Our method
successfully learns human-understandable rep-
resentations for classification tasks (e.g., in-
structions and documents) and API call tasks
(e.g., APIbench and Virtual Home), signifi-
cantly improving GPT-4’s task performance.

1 Introduction
Large Language Models (LLMs), such as GPT-
4 (OpenAI, 2023), LLaMa-2 (Touvron et al., 2023),
and Gemini (Team et al., 2023), successfully
achieved strong zero-shot/few-shot performance on
various natural language tasks (Qin et al., 2023a;
Frieder et al., 2023; Kojima et al., 2022; Zhong
et al., 2023; Hendrycks et al., 2020). To complete
more challenging tasks that requires operating mul-
tiple tools (Guo et al., 2023c; Zhou et al., 2023;
Liu et al., 2023; Mao et al., 2023), LLMs need to
understand and use these new entities (e.g., classes
and tools). To address these tasks, a straightfor-
ward way is to fine-tune LLMs on the training cor-
pus (Patil et al., 2023; Qin et al., 2023b), which
needs many GPUs. (Ovadia et al., 2023; Zhang
et al., 2023) retrieves relevant entities from all en-

Task description: Given a user instruction, the LLM calls
API from the huggingface API set to finish the instruction.

Retriever: Parametric retriever and non-parametric re-
triever (e.g., BM25).

Entities (APIs) and their plain natural language repre-
sentation: FacebookAI /roberta-large (Natural Language
Processing Feature Extraction);
facebook/dino-vitb16 (Computer Vision Image Classifica-
tion);
microsoft/codebert-base (Multimodal Feature Extraction);
...
User instruction: Write an API implementation that takes
customer reviews as input and extracts features to analyze
customer sentiment.

Label: APIs of the natural language processing feature
extraction domain (e.g., FacebookAI /roberta-large).

The natural language representation of APIs of the
natural language processing feature extraction domain
learned by our method: Pattern 1: Language-Specific
Processing - Adapting feature extraction techniques to han-
dle text in a specific language or multiple languages (e.g.,
’Extract some features from a Korean text’).
Pattern 2: Text Analysis Techniques This pattern includes
the methods or techniques used for feature extraction and
text analysis (e.g., ’create contextual embeddings for text’).
Pattern 3: This pattern is about extracting features from text
to determine sentiment or emotion, often used in analyzing
customer reviews (e.g., ’provide the overall sentiment’).
Pattern 4: Feature Extraction for Classification and Cate-
gorization This pattern involves the extraction of features
from text to be used in classification models, such as sup-
port vector machines (SVMs) or categorization based on
similarity (e.g., ’build a classifier to identify the most suit-
able applicants’).

Table 1: We list typical elements of the APIBench task.

tities and then uses the retrieved entities to aug-
ment the LLM for task completion (Ovadia et al.,
2023; Zhang et al., 2023). However, plain natural
language representations of entities do not always
make the retriever capture the complex relation
between entities and the task instruction, causing
inaccurate retrieved results.

To address the poor entity representation, we
propose the Natural Language Representation Opti-
mization Problem, which seeks the best representa-
tions of entities for complex task completion. Cur-

9145



rently, users must experiment with various repre-
sentations to find the most suitable, lacking knowl-
edge of compatibility with specific retrievers and
LLMs. To streamline this process, we introduce
the Learning to Represent with Natural Language
method, leveraging LLMs to automatically opti-
mize representations. Our method aims to learn
entity representations comprising multiple patterns,
each describing a unique property. It operates in
two main stages: (1) Multi-step iterations to refine
entity representations. (2) Within each iteration,
LLMs are prompted to add new patterns and edit
existing ones based on entity samples, evaluating
effectiveness through feedback.

We demonstrate our method’s learned represen-
tation alongside typical elements of the API call
task in Table 1. Compared to plain natural language
representation, our learned representation offers 4
distinct patterns for describing API usage, each
encapsulating general API usage scenarios with
typical examples. These patterns, derived from
user instructions, aid in improved retrieval and us-
age of the Language Model (LLM). Additionally,
the learned representation is human-readable and
amenable to expert editing. Experimental results
on classification and API call tasks show that our
method significantly enhances the retrieval perfor-
mance and the GPT-4’s task performance.

2 Related Work

Large Language Models and Prompt Optimiza-
tion (e.g., GPT3 (Brown et al., 2020), GPT-4 (Ope-
nAI, 2023), Gemini (Team et al., 2023), and
LLaMA (Touvron et al., 2023)) can solve various
basic natural language tasks (Qin et al., 2023a),
write mathematical proof draft (Jiang et al., 2022),
and pass human standard examinations (Zhong
et al., 2023). Furthermore, with the help of tools
(e.g., APIs (Liang et al., 2023) and search en-
gine (Schick et al., 2023)), LLMs can complete
PPT tasks (Guo et al., 2023c) and control operating
system (Liu et al., 2023). Prompting optimization
methods further improve the LLM’s performance
by optimizing the input prompt based on feedback.
APE (Zhou et al., 2022) and Instruction Induc-
tion (Honovich et al., 2022) update task instruction
by selecting the best instruction candidate based on
the validation performance. Learning to plan (Guo
et al., 2023b) optimizes the task plan consisting of
step-by-step solutions based on the error made by
LLMs. EvoPrompt (Guo et al., 2023a) iteratively

optimizes the prompts based on the evolutionary
algorithms.

Representation Learning in Pretrained Lan-
guage Models The recent mainstream paradigm for
natural language representation learning is to first
pre-train the language model on a large-scale cor-
pus with self-supervised losses like auto-regressive
loss and masked language modeling loss (Devlin
et al., 2019). Analysis experiments show that
the pretrained models (e.g., GPT (Radford and
Narasimhan, 2018), RoBERTa (Liu et al., 2019b),
and T5 (Raffel et al., 2019)) can learn rich linguistic
knowledge (Tenney et al., 2019b; Liu et al., 2019a;
Tenney et al., 2019a) and world knowledge (Petroni
et al., 2019; Bouraoui et al., 2019; Feldman et al.,
2019) during the pre-training process. However,
learning natural language representations of enti-
ties of the task has not been investigated.

3 Natural Language Representation
Optimization Using LLMs

We start with a task defined by a dataset Dtrain =
(Q,A), where Q represents the input query and
A the corresponding answer containing entities
e (e.g., a class or API sequence). Typically, to
tackle this task, we employ a retriever R to select
an entity e from a set S that relates to the query
Q. This selection is based on ranking the simi-
larity between the query and the natural language
descriptions pe of entities in S. This process can be
formalized as ê = R(Q,P ), where P comprises
the natural language representations of all entities,
and ê is the retrieved entity. Subsequently, this
approach enriches the Language Model (LM) M
with the retrieved ê to generate an answer M(ê)
for completing Q. The objective of optimizing
natural language representations is to find a set P
such that R can accurately retrieve relevant enti-
ties based on P , and M(ê) = A. Formally, we
formulate this task as an optimization problem aim-
ing to maximize the expectation of a per-sample
score f(M(ê), Q,A) = f(M(R(Q,P )), Q,A)
over possible (Q,A).

P ∗ = argmax
P

E(Q,A)[f(M(R(Q,P )), Q,A)]

(1)

4 Method

In this section, we present our method, "Learning
to Represent with Natural Language," for automat-
ically optimizing the natural language representa-

9146



tion P . Our method features two key aspects: (1)
Each entity’s representation is managed as a list
of patterns describing its properties, which are up-
dated via add and edit operations. (2) Inspired by
APE (Zhou et al., 2022), our approach employs an
iteration-based optimization strategy to discover
the optimal representation. Each iteration involves
the following three steps.

4.1 Collecting Incorrect Samples Based on
Current Representation

To iteratively optimize the representation, our
method first identifies incorrect samples unresolved
by the current iteration’s representation. Specifi-
cally, at the t-th training iteration, for each entity
e, we collect its false negative samples Se

FN =
{(Q,A)|e /∈ M(ê) ∩ e ∈ A} from the training
dataset D = (Q,A), where the retriever and LLM
generate answers lacking necessary entity e based
on the current representation Pt. Similarly, we
gather false positive samples Se

FP = {(Q,A)|e ∈
M(ê) ∩ e /∈ A} from the training dataset, where
the retriever R and LLM M mistakenly include e
in the generated answer M(ê) for query Q based
on representation Pt.

4.2 Adding New Patterns and Editing
Existing Pattern

For a given entity e and its current representation
P e
t , the retriever R might not capture the relevance

between P e
t and some samples of e, resulting in

false positives, Se
FN. To address this, we prompt the

LLM to derive new patterns, pet , from Se
FN, aiming

to enhance the relevance between Se
FN and P e

t by
adding pet to P e

t . We illustrate this addition prompt
in Figure 1. Additionally, the retriever R may in-
correctly assign high relevance between samples of
other entities and P e

t , leading to false positive sam-
ples, Se

FP. To mitigate this, we prompt the LLM
to edit the existing patterns of P e

t , resulting in P
e
t ,

to decrease the relevance between P e
t and SFPe.

We demonstrate this editing prompt in Figure 2,
where we request the LLM to modify words and
phrases in the patterns to reduce erroneous high
relevance while preserving the representativeness
of e’s properties.

The addition prompt

Here is a retrieval task. The following sam-
ples are about the entity: <entity name>. To
help the user distinguish the sample of this
entity from samples from other entities, you
can extract essential and core patterns from
samples of this entity. Task description
The essential and core patterns always ap-
pear in the following samples and can rep-
resent the key. (Representative)
Each pattern should have a short and gen-
eral description, together with 23̃ represen-
tative, short, and key cases. For the cases,
you must only copy the original words or
phrases (nouns and verbs) from the samples
as the cases. You must not directly copy the
whole sample as your cases. (pattern form)
Similar cases should be put together with a
general form. Any two patterns should be
exclusive. (Unique)
You need to find essential and core patterns
as much as possible. (Holistic)
You can list the patterns in a list. Samples:
<False Negative Samples>

Figure 1: Prompt for adding new pattern.

4.3 Verifying the Effectiveness of Patterns
Based on Feedback

To assess the effectiveness of newly gener-
ated patterns pet and edited patterns P

e
t , we

evaluate whether updating Pt with pet and
SFPe improves the average validation score
f(M(R(Q,P )), Q,A). Specifically, We first in-
sert pet into the original representation P e

t of entity
e and compare the average validation scores be-
fore and after the update. If the updated score is
higher than a threshold, we consider pet an effec-
tive update to Pt; otherwise, we maintain P e

t as
the original representation. Similarly, we evaluate
the effectiveness of P e

t by replacing P e
t with P

e
t

and comparing validation performance. After ver-
ification, we obtain the new representation P e

t+1

updated with the new patterns pet and edited pat-
terns P

e
t if they demonstrate an improvement in

validation performance.

9147



The edition prompt

Here’s an edit task. The following patterns
pertain to the entity: <entity name>. How-
ever, some patterns mistakenly classify sam-
ples of other entities as belonging to <entity
name>, which we refer to as ’wrong sam-
ples.’
Your task is to modify the current patterns in
order to reduce their similarity to the wrong
samples, but these modified patterns should
still accurately represent the key pattern for
0.
To edit the pattern, you must re-write impor-
tant words or phrases that are similar to the
wrong samples, and delete irrelevant words
in the pattern for the key.
You should try your best to make the pat-
tern different from the wrong samples. Pat-
terns without wrong samples should not be
edited.
Once you have made the necessary edits,
please compile a list containing all the pat-
terns, ensuring that the number of patterns
remains the same as before.
<Previous patterns>
<Wrong samples>

Figure 2: Prompt for editing existing patterns.

4.4 Put it together

At iteration t, our method applies the three steps
to each entity in set S one by one to obtain new
entities’ representation Pt+1. Optimization con-
tinues until reaching the maximum iteration or no
improvement in validation performance over the
last three iterations. We illustrate our method’s
algorithm procedure in Appendix B.

5 Experiments

Datasets For Classification Tasks, their entities
are classes and we consider (1) the banking in-
tent classification task Casanueva et al. (2020)
(2) the web of science document classification
task Kowsari et al. (2017) (WOS5736). For API
call Tasks, their entities are APIs and we con-
sider (1) the APIbench benchmark (Patil et al.,
2023). It has three sub-tasks consisting of APIs
extracted from huggingface, torchhub, and tensor-

flow respectively. (2) the virtual-home task (Puig
et al., 2018) where the LLM needs to call and gen-
erate the API sequence to finish the instruction.
In the test process, we follow Patil et al. (2023);
Xu et al. (2023) and report the Longest Common
Sub-sequence (LCS) score for VirtualHome and
accuracy performance for other tasks. More details
are in Appendix C

Model and retrievers: We utilize the GPT-4
model (GPT-4-turbo) as the LLM to balance per-
formance and the inference cost. For the virtual
home task, following Xu et al. (2023), we employ
the BM25 retriever, treating each API as a sepa-
rate document. Retrieval involves searching the
index and fetching the most relevant APIs based
on instructions. For other tasks, each API/class is
indexed as an individual document and embedded
using the openai text-embedding-ada-002 API. Rel-
evant APIs/classes are retrieved based on cosine
similarity between their embeddings and the user
instruction or passage.

Baselines and Hyper-parameters (1)
’Retriever-only’, which only uses the retriever
to retrieve the most relevant entities for the
instruction. Each entity uses its plain natural
language representation as its document. (2)
’Retriever top k + LLM selection’, which uses
the retriever to retrieve the most relevant top k
entities for the instruction and then prompts
the LLM to select the necessary entities from
the k entities (See the prompt in Figure 3).
(3) Automatic Prompt Engineer Liu et al. (2021b),
which iteratively updates the representations by
generating representation candidates of each entity
and then selecting the candidate with the best
validation performance. (4) ’Retriever+learning
to represent’, which follows (1) but replaces plain
representations with learned representations by
our method. (5) ’Retriever top k + learning to
represent+ LLM selection’, which follows (2) but
using the learned representations by our method.
Details and hyperparameters are in Appendix D.

5.1 Main results

The results in Table 2 show: (1) Our method signif-
icantly enhances the retriever’s performance, e.g.,
from 35 (plain representation in ’Retriever only’) to
68.4 (learned representation in ’Retriever+learning
to present’) on the Hugging Face API task. (2)
The LLM can utilize the learned representation to
make decisions, achieving the best performance

9148



Task Banking77 WebOfScience HuggingFace TorchHub Tensorflow VirtualHome
Retriever-only 56.3 0.2 35.0 29.7 41.5 21.0

Retriever top k + LLM selection 69.7 0.2 56.7 62.4 67.4 23.1
APE (Zhou et al., 2022) 83.9 66.2 64.8 71.0 76.4 22.0

Retriever+learning to represent 85.8 75.2 68.4 61.9 68.0 23.6
Retriever top k + learning to represent+ LLM selection 91.2 75.8 80.5 74.7 89.9 26.8

Table 2: Performance of the 6 tasks. ’Huggingface’, ’TorchHub’, and ’Tensorflow’ are 3 sub-tasks of the APIBench.

Task Banking77 HuggingFace VirtualHome
w/o addition 61.3 42.2 22.0
w/o edition 87.7 75.2 24.7

iteration number 5 63.9 73.2 23.2
iteration number 10 91.2 80.5 26.8
iteration number 15 92.2 81.8 26.5

threshold 0 89.2 77.5 25.8
threshold 0.01 91.2 80.5 26.8
threshold 0.05 90.2 81.2 26.2

Table 3: Ablation study of our method and report the per-
formance based on ’Retriever top k + learning to represent+
LLM selection’.

across all baselines on the 6 tasks (’Retriever top
k + learning to represent+ LLM selection’). Inter-
estingly, despite the web-of-science task providing
only class indices (e.g., 1, 2, 3, ...), our method still
can learn general representations from samples to
improve task performance.

The LLM selection prompt

Which one is the most suitable API/Class
to complete the user’s instruction? <Instruc-
tion>
for the vituralhome task, ’which APIs are
necessary to complete the user’s instruc-
tion? <Instruction>’.
You can refer to the patterns of the option.
Then you must follow this pattern to output
only the letter: " I choose the option [Let-
ter].
<Option A> Natural language Representa-
tion of option A . . . <Option E> Natural
language Representation of option E

Figure 3: Prompt for choosing API.

Finetuning VS Learning to represent Patil et al.
(2023) fine-tunes the LLaMa-7b model on the
APIbench training set, achieving accuracy perfor-
mances of 55.6, 67.3, and 61.8 on the Hugging
Face, TensorFlow, and TorchHub APIbench tasks,
respectively. Additionally, the fine-tuned RoBERT
model in Shao et al. (2023) attains 88.6 accu-
racy in the banking77 task. In comparison, our
method achieves superior performance with human-
understandable natural language representation.

5.2 Analysis

Case study of the learned represetations We
compare the representations directly generated
from GPT-4 and the learned representation in Ta-
ble 4. Our learned representation uses more de-
tailed words and aligns closely with the task sam-
ples. More examples are in Table 5.

Ablation study We conduct the ablation study
on each component of our method as shown in
Table 3. Our findings are: (1) Addition and edi-
tion operations are crucial. (2) Increased iterations
improve performance but escalate inference cost;
thus, we set the iteration number as 10. (3) A higher
threshold filters out noisy updates but risks losing
useful ones; hence, we set the threshold at 0.01.

6 Conclusion

This paper focuses on challenging tasks requiring
processing multiple entities for completion. We
propose the natural language representation opti-
mization problem to find the optimal entity rep-
resentation for improved retrieval and LLM uti-
lization. We introduce the learning to represent
with natural language method, which automatically
optimizes representation based on feedback. Exper-
iments demonstrate our method boosts the LLM’s
task performance significantly, along with high-
quality entity natural language representation.

7 Limitations and potential risks

While our method shows notable enhancements in
tasks like classification and API calls, it does have
limitations:

It assumes access to a pre-existing training set,
making deployment in open-domain settings chal-
lenging. We plan to address this in future research.

Theoretical guarantees and convergence analysis
for our method are lacking. We aim to investigate
this in future studies.

We do not foresee significant risks, as our ex-
periments utilize public datasets and our method is
tailored to classification and API call tasks.

9149



References

Zied Bouraoui, José Camacho-Collados, and Steven
Schockaert. 2019. Inducing relational knowledge
from bert. In AAAI Conference on Artificial Intelli-
gence.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Iñigo Casanueva, Tadas Temcinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulic. 2020. Ef-
ficient intent detection with dual sentence en-
coders. In Proceedings of the 2nd Workshop
on NLP for ConvAI - ACL 2020. Data avail-
able at https://github.com/PolyAI-LDN/task-specific-
datasets.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics.

Joshua Feldman, Joe Davison, and Alexander M. Rush.
2019. Commonsense knowledge mining from pre-
trained models. ArXiv, abs/1909.00505.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Grif-
fiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Christian Petersen, Alexis Chevalier, and
Julius Berner. 2023. Mathematical capabilities of
chatgpt. arXiv preprint arXiv:2301.13867.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu
Yang. 2023a. Connecting large language models
with evolutionary algorithms yields powerful prompt
optimizers. arXiv preprint arXiv:2309.08532.

Yiduo Guo, Yaobo Liang, Chenfei Wu, Wenshan Wu,
Dongyan Zhao, and Nan Duan. 2023b. Learning
to program with natural language. arXiv preprint
arXiv:2304.10464.

Yiduo Guo, Zekai Zhang, Yaobo Liang, Dongyan Zhao,
and Duan Nan. 2023c. Pptc benchmark: Evaluating
large language models for powerpoint task comple-
tion. arXiv preprint arXiv:2311.01767.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Or Honovich, Uri Shaham, Samuel R Bowman, and
Omer Levy. 2022. Instruction induction: From few
examples to natural language task descriptions. arXiv
preprint arXiv:2205.10782.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou,
Wenda Li, Jiacheng Liu, Mateja Jamnik, Timo-
thée Lacroix, Yuhuai Wu, and Guillaume Lample.
2022. Draft, sketch, and prove: Guiding formal the-
orem provers with informal proofs. arXiv preprint
arXiv:2210.12283.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Kamran Kowsari, Donald E Brown, Mojtaba Hei-
darysafa, Kiana Jafari Meimandi, , Matthew S Gerber,
and Laura E Barnes. 2017. Hdltex: Hierarchical deep
learning for text classification. In Machine Learning
and Applications (ICMLA), 2017 16th IEEE Interna-
tional Conference on. IEEE.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu,
Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, et al. 2023. Taskmatrix. ai: Com-
pleting tasks by connecting foundation models with
millions of apis. arXiv preprint arXiv:2303.16434.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021a. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. ArXiv, abs/1903.08855.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng
Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie
Huang, Yuxiao Dong, and Jie Tang. 2023. Agent-
bench: Evaluating llms as agents. arXiv preprint
arXiv: 2308.03688.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Jiageng Mao, Junjie Ye, Yuxi Qian, Marco Pavone, and
Yue Wang. 2023. A language agent for autonomous
driving. ArXiv, abs/2311.10813.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Oded Ovadia, Menachem Brief, Moshik Mishaeli, and
Oren Elisha. 2023. Fine-tuning or retrieval? com-
paring knowledge injection in llms. arXiv preprint
arXiv:2312.05934.

9150

https://api.semanticscholar.org/CorpusID:208512764
https://api.semanticscholar.org/CorpusID:208512764
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:202541043
https://api.semanticscholar.org/CorpusID:202541043
https://api.semanticscholar.org/CorpusID:84841767
https://api.semanticscholar.org/CorpusID:84841767
https://api.semanticscholar.org/CorpusID:84841767
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:265294541
https://api.semanticscholar.org/CorpusID:265294541


Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large lan-
guage model connected with massive apis. ArXiv,
abs/2305.15334.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An-
ton Bakhtin, Yuxiang Wu, Alexander H. Miller, and
Sebastian Riedel. 2019. Language models as knowl-
edge bases? ArXiv, abs/1909.01066.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba.
2018. Virtualhome: Simulating household activities
via programs. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 8494–8502.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023a. Is
chatgpt a general-purpose natural language process-
ing task solver? arXiv preprint arXiv:2302.06476.

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan,
Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2023b. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
ArXiv, abs/2307.16789.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Yijia Shao, Yiduo Guo, Dongyan Zhao, and Bing Liu.
2023. Class-incremental learning based on label gen-
eration. arXiv preprint arXiv:2306.12619.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
Bert rediscovers the classical nlp pipeline. In An-
nual Meeting of the Association for Computational
Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipan-
jan Das, and Ellie Pavlick. 2019b. What do you

learn from context? probing for sentence struc-
ture in contextualized word representations. ArXiv,
abs/1905.06316.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023. On the tool
manipulation capability of open-source large lan-
guage models.

Peitian Zhang, Shitao Xiao, Zheng Liu, Zhicheng
Dou, and Jian-Yun Nie. 2023. Retrieve anything
to augment large language models. arXiv preprint
arXiv:2310.07554.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. Agieval: A human-centric
benchmark for evaluating foundation models. arXiv
preprint arXiv:2304.06364.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena:
A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910.

A Prompts of our method

We illustrate the addition prompt and the edition
prompt of our method in Figure 1 and Figure 1
respectively.

B Algorithm procedure

We illustrate our method in Algorithm.1.

C Task details

For Classification Tasks, their entities are classes
and we consider (1) the banking intent classifica-
tion task Casanueva et al. (2020) where the LLM
needs to classify instructions (sentences) belong-
ing to 77 different intents. (2) the web of science
task Kowsari et al. (2017) (WOS5736) where the
LLM needs to classify passages belonging to 11 dif-
ferent science categories. For API call Tasks, their
entities are APIs and we consider (1) the APIbench
benchmark Patil et al. (2023) where the LLM needs
to call the correct API to finish the instruction. It
has three sub-tasks consisting of APIs extracted

9151

https://api.semanticscholar.org/CorpusID:258865184
https://api.semanticscholar.org/CorpusID:258865184
https://api.semanticscholar.org/CorpusID:202539551
https://api.semanticscholar.org/CorpusID:202539551
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:155092004
https://api.semanticscholar.org/CorpusID:108300988
https://api.semanticscholar.org/CorpusID:108300988
https://api.semanticscholar.org/CorpusID:108300988
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
https://webarena.dev
https://webarena.dev
https://webarena.dev


Algorithm 1 Our Method
procedure OPTIMIZE(P : Entities’ representations)

P0 ← plain natural language representations
fval ← validation performance with P0

iteration t← 0
while iteration t < maximum iteration do

for each entity e ∈ S do
false negative samples Se

FN, false positive samples Se
FP ← collecting incorrect samples from

dataset D with Pt

new pattern pet ← LLMM,Se
FN

Edited patterns P e
t ← LLMM,P e

t , S
e
FP

fadd ← validation performance with Pt + pet (add pet to P e
t )

if fadd > fval+threshold then
Pt ← Pt + pet
fval ← fadd

end if
fedit ← validation performance with Pt edited by P

e
t (replace P e

t with P
e
t )

if fedit > fval+threshold then
Pt ←Pt edited by P

e
t

fval ← fedit

end if
end for
iteration t← iteration t+ 1

end while
return Pt

end procedure

9152



from huggingface, torchhub, and tensorflow respec-
tively. (2) the virtual-home task Puig et al. (2018)
where the LLM needs to call and generate the API
sequence to finish the instruction.

D Details of baselines and
hyper-parameters

In (1) ’retriever-only’, for the virtual home task,
we follow Xu et al. (2023) and retrieve the top
10 relevant APIs to augment the LLM. For other
tasks, we choose the most relevant API as the final
answer. In (2) ’retriever top k + LLM selection’,
the selected entities by the LLM can be used to
augment the LLM (virtual home) or as the final
answer (classification task). We set k as 5 here. In
(3) kNN selection method Liu et al. (2021a), for
the virtual home task, APIs from the labels of these
samples augment LLM; for other tasks, the major-
ity class of labels from k samples is chosen as the
final answer. This baseline utilizes the whole train-
ing set. We set k as 5 here. (4) Automatic Prompt
Engineer (APE) Liu et al. (2021b) that iteratively
updates the representations by generating represen-
tation candidates of each entity and then selecting
the candidate with the best validation performance
as the entity’s representation. In the test process,
we follow (2) except for replacing the plain nat-
ural language representation of each entity with
the learned representation by the APE method for
retrieval. This baseline utilizes the training set to
iteratively optimize the representations.

Hyperparamters: In the learning process, we
randomly split the original training set into 4:1
for constructing the training set and the validation
set respectively. We use the training dataset D to
find the optimal representations and test methods’
performance on the original test dataset. We use
the average F1 score over all entities as the score f
in the verification process and set the threshold as
0.01 (Sec. 4.4). We set the maximum iteration as
10. We use the 1201 version of GPT-4-turbo and set
its temperature as 0. We follow the official code of
APE Liu et al. (2021b) to conduct our experiment.
It also has 10 iterations. At each iteration, we select
the best candidate from 5 candidates for each entity.

E Case studies

The prompt we used for prompting GPT4 to generate
the natural language representation To help the user
distinguish the sample of this API: API for natural language
processing feature extraction domain from samples from
other APIs, you can extract essential and core patterns from
samples of this entity.
The essential and core patterns always appear in the follow-
ing samples and can represent the key.
Each pattern should have a short and general description,
together with 2 3 representative, short, and key cases.
Similar cases should be put together with a general form.
Any two patterns should be exclusive.
You need to find essential and core patterns as much as
possible.
You can list the patterns in a list The natural language rep-
resentation of APIs of the natural language processing
feature extraction domain generated by the LLM: Pat-
tern 1: Part-of-Speech (POS) Tagging:
Description: Assigning grammatical tags to each word in a
sentence indicating its syntactic role. Cases: Input: "The
cat sat on the mat." Output: [("The", "DT"), ("cat", "NN"),
("sat", "VBD"), ("on", "IN"), ("the", "DT"), ("mat", "NN"),
(".", ".")] Input: "She sells seashells by the seashore."
Output: [("She", "PRP"), ("sells", "VBZ"), ("seashells",
"NNS"), ("by", "IN"), ("the", "DT"), ("seashore", "NN"),
(".", ".")]
Pattern 2: Named Entity Recognition (NER):
Description: Identifying and classifying named entities
such as persons, organizations, or locations. Cases:
Input: "Apple is headquartered in Cupertino, Cal-
ifornia." Output: [("Apple", "ORG"), ("Cupertino",
"LOC"), (",", "O"), ("California", "LOC"), (".", "O")]
Input: "Harry Potter is a series of fantasy novels
written by J.K. Rowling." Output: [("Harry Potter",
"WORKOFART”), (”J.K.Rowling”, ”PERSON”)]
Pattern 3: Sentiment Analysis:

Description: Determining the sentiment or emotional tone
expressed in a piece of text. Cases: Input: "I love this
product! It works great." Output: Positive sentiment In-
put: "The service was terrible. I wouldn’t recommend it."
Output: Negative sentiment

The natural language representation of APIs of the
natural language processing feature extraction domain
learned by our method: Pattern 1: Language-Specific
Processing - Adapting feature extraction techniques to han-
dle text in a specific language or multiple languages (e.g.,
’Extract some features from a Korean text’).
Pattern 2: Text Analysis Techniques This pattern includes
the methods or techniques used for feature extraction and
text analysis (e.g., ’create contextual embeddings for text’).
Pattern 3: This pattern is about extracting features from text
to determine sentiment or emotion, often used in analyzing
customer reviews (e.g., ’provide the overall sentiment’).
Pattern 4: Feature Extraction for Classification and Cate-
gorization This pattern involves the extraction of features
from text to be used in classification models, such as sup-
port vector machines (SVMs) or categorization based on
similarity (e.g., ’build a classifier to identify the most suit-
able applicants’).

Table 4: Case study.

9153



The natural language representation of the ’atm sup-
port’ API of the banking77 classification task learned
by our method: Pattern 1: "ATM Card Acceptance Inquiry
- Users seek information on whether ATMs will accept their
card for withdrawals. ’Can I withdraw money using this
card at any ATM?’,
Pattern 2: "ATM Service for Card Types - Questions

about ATM services catering to particular card brands for
cash withdrawals. ’Where can I find ATMs that service
Mastercard for cash withdrawals?’,
Pattern 3: "Questions regarding whether an ATM will

accept or decline a specific card. - What ATMs accept my
card?"]
The natural language representation of the ’Grab’ API
of the Virtualhome task: Pattern 1: ’Reading and Infor-
mation Acquisition - Tasks that involve the agent needing
to physically handle reading materials. (Clarified to specify
the action of grabbing reading materials) - Example Obtain
book for reading, Acquire magazine to read’,
Pattern 2: ’Preparatory Actions - Tasks that involve the

agent preparing for an activity or setting up an environment,
potentially requiring the agent to take hold of essential
objects. (Clarified to emphasize the action of grabbing
objects for preparation) - Example Gather ingredients for
cooking, Collect mail for sorting’,
Pattern 3: ’Electronic Device Operation Tasks involving

the operation of electronic devices. - Turn on light - Change
TV channel - Turn on TV’, ’Entertainment and Leisure
Tasks related to leisure activities or entertainment. - Play
on laptop - Playing video game’,
Pattern 4:’Personal care or readiness - The agent is given
tasks related to personal care or preparing to leave, which
may involve grabbing personal items. - Get ready to leave -
Go to toilet - Get ready for school’,
Pattern 5: ’Coffee Preparation Tasks that involve making
coffee. Make coffee’]

Table 5: More examples.

9154


