
Findings of the Association for Computational Linguistics: ACL 2024, pages 905–924
August 11-16, 2024 ©2024 Association for Computational Linguistics

MARIO: MAth Reasoning with code Interpreter Output
– A Reproducible Pipeline

Minpeng Liao* and Chengxi Li∗ and Wei Luo∗ and Jing Wu∗ and Kai Fan†

Alibaba Group
{minpeng.lmp,xiji.lcx,muzhuo.lw,wj334275,k.fan}@alibaba-inc.com

Abstract

Large language models (LLMs) have signifi-
cantly improved in understanding natural lan-
guage but still lack in mathematical reasoning,
a hurdle on the path to true artificial general in-
telligence. The training of large language mod-
els, based on next-token prediction, struggles
to capture the precise nature of mathematical
reasoning, presenting both practical and theo-
retical challenges. In this paper, we address this
challenge by enriching the data landscape and
introducing a reasonable data format, enhanced
the text analysis of the LLM with a capabil-
ity to utilize a Python code interpreter. This
dataset is derived from GSM8K and MATH and
has been further refined through a combination
of GPT annotations, human review, and self-
training processes. Additionally, we propose
a tentative, easily replicable protocol for the
fine-tuning of math-specific LLMs, which has
led to a significant improvement in the perfor-
mance of a 7B-parameter LLM on the GSM8K
and MATH datasets. A solution generator and
a value estimator are fine-tuned simultaneously
in a multi-task fashion, while an outlier-free
value model-based inference method is pro-
posed to further boost the performance. We
are committed to advancing the field of math-
ematical reasoning in LLMs. and, to that end,
we will make the source code and checkpoints
publicly available.1

1 Introduction

The Chain-of-Thought (CoT) prompting tech-
nique (Wei et al., 2022) has been empirically
shown to enhance the complex reasoning ca-
pabilities of large language models (LLMs) by
generating a sequence of intermediate reason-
ing steps. Proprietary LLMs, including GPT-
4(OpenAI, 2023) and Claude-2 (Anthropic, 2023),

*equal contribution
†corresponding author
1https://github.com/MARIO-Math-Reasoning/MARIO

are designed to produce CoT responses by default,
leading to improved reasoning performance, as ev-
idenced by a 50.36% accuracy rate on the MATH
dataset (Hendrycks et al., 2021) with GPT-4 (Zhou
et al., 2023). Moreover, when LLMs are augmented
with a plugin capable of executing code snippets,
their accuracy in arithmetic computations—which
are typically challenging for LLMs—is further en-
hanced, e.g., GPT-4-Code achieved a 69.69% accu-
racy rate on the MATH dataset (Zhou et al., 2023).
This underscores the efficacy of integrating text
analysis with code execution in datasets designed
for math reasoning tasks.

Recently, Yang et al. (2023) demonstrated that,
despite extensive fine-tuning for arithmetic oper-
ation simulation task, LLMs are still unable to
achieve perfect accuracy. Consequently, integrat-
ing code for precise numerical computation has be-
come an inevitable trend. The Program-of-Thought
(PoT) framework (Chen et al., 2022) and Program-
Aided Language (PAL) models (Gao et al., 2023)
represent seminal efforts in generating code-centric
datasets. Building on this trend, ToRA (Gou et al.,
2023) advances the field by employing a propri-
etary annotation methodology along with GPT-4,
setting a new benchmark for state-of-the-art per-
formance in solving mathematical problems via
python code. However, it is noteworthy that the
solutions contained within these datasets predom-
inantly consist of code snippets, with minimal ac-
companying textual analysis. An obvious short-
coming of a code-centric solution is that it can
overlook common sense in math word problems,
e.g.,, as shown in Figure 1, the PoT solutions dis-
regard the fact that the quantity of the food taken
cannot be negative.

MathCoder (Wang et al., 2023a) represents an
initiative that emulates the response patterns of
GPT-4, integrating a plugin proficient in both
code generation and natural language reasoning.
This approach harnesses the capabilities of GPT-

905



Figure 1: A comparison between code-centric solutions and our text-code solution. In the PoT solution provided
by GSM-Hard (Gao et al., 2023), the code-centric approach yields a negative quantity of cups. The PoT solution
from ToRA omits the minus sign in its concluding sentence, failing to address the impractical issue. Our solution,
incorporating both text analysis and a code snippet, recognizes that a negative quantity of cups is illogical.

4, equipped with a code interpreter, to automate
the annotation process, producing a blend of text
analyses and code snippets, guided by appropri-
ate instructions. Our data generation approach
generally mirrors that of MathCoder, but with the
enhancement of an extra layer of human verifica-
tion specifically for the correction of easily rectifi-
able errors. Therefore, all mistakes in the original
GSM8K (Cobbe et al., 2021a) training set have
been corrected by hand, while the MATH dataset,
containing tougher problems, are partially fixed
and required professional annotators’ expertise. To
address this, we utilize self-training and knowledge
distillation techniques to selectively identify cor-
rect solutions, in conjunction with more samplings.

Furthermore, we introduce a tentative and eas-
ily replicable protocol for the fine-tuning of math-
specific LLMs. To ensure the reproducibility of our
experiments, we begin with the extensively stud-
ied LLM, Llama-2 (Touvron et al., 2023), and uti-
lize its math-oriented continual pre-training variant,
Llemma (Azerbayev et al., 2023). Subsequently,
we apply supervised fine-tuning to our annotated
dataset to establish a baseline model. Moreover,
we implement a toolkit for evaluating math an-
swers, which allows for the comparison between
the ground truth and the LLM predictions.

Unlike text generation tasks such as summa-

rization, mathematical reasoning usually yields a
unique answer, which simplifies the verification
of its correctness. However, assessing the rea-
soning process that leads to the final answer re-
mains challenging. To address this issue, Light-
man et al. (2023) introduced a model supervised by
processes and a corresponding dataset with man-
ually labeled solution procedures. Yet, from a
replication standpoint, creating these annotations
is both labor-intensive and costly. As a compro-
mise, we recommend training a straightforward
outcome-supervised model as described by (Cobbe
et al., 2021b; Yu et al., 2023a), to serve as an aux-
iliary tool for comparing and selecting the best
among various solutions. Our outcome value model
(OVM) is fine-tuned using the efficient LoRA train-
ing (Hu et al., 2021) in a multi-task setting, which
enables the model to conserve computational re-
sources while maintaining its generative capabil-
ities. In summary, our main contributions are in
three-fold.
1. We create a math reasoning format that integrates
both text analyses and code snippets, leveraging
logical reasoning and precise computation.
2. We introduce a reproducible pipeline for data
generation and LLM fine-tuning in the mathemati-
cal domain.
3. Our experiments demonstrate that our approach

906



can significantly enhance performance on math
reasoning tasks. We will open-source our pipeline
and model checkpoints.

2 Dataset

In this section, we detail our methodology for build-
ing the corpus, aiming for seamless integration of
text analysis and code snippets. The textual con-
tent should articulate the problem-solving process,
while the code snippets should perform precise
computations. As shown in Figure 2, our data
pipeline mainly includes three steps.
GPT Generation To create a solution in the de-
sired format, we utilize instructions inspired by
REACT (Yao et al., 2022) to ensure GPT recog-
nizes when to employ an external tool-Python code
interpreter. In addition to the REACT instruction
in the prompt, we provide two manually crafted
demonstration examples within the prompt for the
language model to emulate. For further details on
the prompt setup, please see Appendix A.1.1.

Given that the problems in GSM8K are rela-
tively straightforward, we initially prompt both
GPT-3.5 and GPT-4 to tackle each question with
at maximum 5 code snippets using a temperature
0. For questions that remain unsolved after the
initial two attempts, we address the potential re-
quirement for more creative and diverse solutions
by re-prompting GPT-4 with a temperature 0.6 for
another two attempts. Therefore, we obtain at least
one correct solution for 98.3% of the questions in
GSM8K. In contrast, we exclusively utilize GPT-
4 with maximum 8 code snippets allowed due to
the substantially higher difficulty of the MATH
questions for all the four attempts. Following this
process, a mere 66.7% of the questions in MATH
are provided with at least one correct solution.
Human Review Approximately 100 questions re-
main for which the answers generated by GPT
do not align with the answers from the original
GSM8K. Given the manageable number, we have
conducted a manual review of the discrepancies
and corrected any inaccuracies found in either the
LLM-generated or the original answers. This en-
sures that each question within the GSM8K training
set is associated with at least one correct solution in
required format. For MATH dataset, we forgo man-
ual solutions for all remaining 1,208 questions due
to the significant burden it imposes. Instead, human
verification is applied for the correction of easily
rectifiable errors in the filed of final answers (see

Appendix A.2 for details). Consequently, 83.9% of
MATH questions are correctly solved, then com-
bined with previously created GSM8K dataset into
a unified dataset with size 26.9K.
Augmentation We reformatted the seed data from
REACT to HTML and fine-tuned it on the pre-
trained MATH LLM, Llemma-34B (Azerbayev
et al., 2023). For reformatting details, see Ap-
pendix A.3. Using the fine-tuned model, we pro-
duced up to 100 samples per unsolved question at a
temperature of 0.6, stopping after finding at most 4
correct solutions. This method yielded a coverage
of 93.8% of the questions in MATH with correct
solutions.

To further augment the scale and variety of ques-
tions in our dataset, we incorporate about 240K
novel questions from MetaMath (Yu et al., 2023b),
which are transformations of those found in the
original GSM8K and MATH datasets. It allow us
to gather a richer set of sampled solutions including
both positive and negative examples. We anticipate
that this strategy of data augmentation will signif-
icantly boost the model’s performance and serve
the training signals for outcome value model.

3 Fine-Tuning

To enhance a large language model’s mathemat-
ical reasoning capabilities, we propose utilizing
the foundational model Llemma (Azerbayev et al.,
2023). There are two primary reasons for choos-
ing Llemma. First, Llemma represents a continua-
tion of the pre-training process initiated by Llama-
2 (Touvron et al., 2023), extending its proficiency
into both mathematical and coding domains, which
aligns seamlessly with our requirements. Sec-
ond, it has been demonstrated that neither Llama-2
nor Llemma exhibit excessive overfitting on the
GSM8K or MATH dataset, as confirmed by (Wei
et al., 2023).

3.1 Supervised Fine-Tuning with Full
Parameters

The supervised fine-tuning closely mirrors the data
generation step that serves to expand the coverage
of the MATH dataset. During the SFT stage, we
tune the entire set of parameters of the LLM using
our specially curated dataset. For each given ques-
tion q and its corresponding correct solution s+,
we optimize the model by minimizing the follow-
ing cross-entropy loss.

min− log p(s+|q)
907



Figure 2: The data pipeline illustrates the process of data generation for the GSM8K and MATH datasets. We
employ GPT to provide initial annotations, followed by human verification to fix easily rectifiable errors. For MATH
dataset, an additional sampling strategy derived from a self-trained Large Language Model (LLM) is imposed.

Figure 3: The training pipeline is divided into three distinct stages. First, we continue pre-training using a
comprehensive corpus that encompasses both mathematical and coding domains, e.g., Llemma (Azerbayev et al.,
2023). Second, it involves supervised fine-tuning in full parameters, utilizing our specially curated dataset. Finally,
the model is further fine-tuned in multi-task setting.

3.2 Multi-Task Fine-Tuning with LoRA
During solution sampling, the LLM is capable of
effortlessly creating both correct (positive) and in-
correct (negative) samples s−. This duality enables
us to train the LLM to discern the validity of a
solution by predicting whether the final answer is
accurate. To achieve this, we add a light-weighted
binary classifier, alongside the existing softmax
layer responsible for token prediction. We main-
tain a roughly equal ratio of positive to negative
examples for balanced training. The overall loss
follows the multi-task setting.

min− log p
(
s+,y+|q

)
− log p

(
y−|q, s−

)

Note that the first term can be factorized as two
tasks p(y+|q, s+)p (s+|q). The value prediction
task corresponds to the sequence classification loss
calculated for each token with the label as the cor-
rectness of the solution. Therefore, y is a vector
whose length is equal to the number of tokens in the
solution s. Given the significantly larger data size
required for training the Value LLM, we employ
computationally efficient LoRA (Hu et al., 2021)
during training.

In our multi-task setting, the Value LLM plays

a dual role on generation solutions and evaluating
them. The primary benefits of this feature is practi-
cality, as it requires the deployment of only a single
LLM for the entire inference process.

3.3 Outlier-Free OVM Inference
The solution-generating LLM can be paired with
the Value LLM, which serves as an outcome value
model (OVM). The Value LLM primarily serves
to evaluate outcomes, that is, to estimate the likeli-
hood of the final answer being correct. To improve
the quality of solutions generated by the SFT LLM,
one might consider re-ranking multiple solutions
sampled from the SFT LLM. However, we suggest
employing an outlier-free OVM selection algorithm
to identify the best answer. Specifically, given K
sampled solutions {si}Ki=1 resulting in k distinct
final answers {aj}kj=1, the frequency of each an-
swer is represented as nj , such that

∑k
j=1 nj = K.

The optimal answer is selected according to the
following criterion,

κ = arg max
{j|nj>δK}

max
si∈aj

OVM(si)

In our experiments, for K = 20, we set δK = 1.
This is because a small number of samples, such as

908



Data source Generation method Total # Code Trainset
GPT Human Self-train solutions snippets coverage

SFT (correct solutions)
GSM8K 17,480 95 - 17,576 ≤ 5 7,473 / 7,473
MATH 6,483 2,862 1,933 11,277 ≤ 8 7,011 / 7,500
MetaMath - - ∼55K ∼55K ≤ 8 -

OVM (correct / incorrect solutions)
MetaMath - - ∼300K ∼300K ≤ 8 -

Table 1: Data statistics

20 in our example, might lead to a situation where
a random sample yields an anomalously high out-
come prediction, making it crucial to exclude out-
lier solutions. In the rare case that all K sampled
solutions are unique, we simply choose the solution
with the highest predicted outcome value.

In addition, this generation ability of value LLM,
maintained along with the prediction of token-level
values, allows for straightforward modifications
to the decoding algorithm used in the transformer
decoder implementation. For instance, the beam
search mechanism could combine the original log-
likelihood with the predicted value. We will ex-
plore this potential direction in future work.

4 Experiments

4.1 Dataset Recap
We present the statistics for our positive examples
used in supervised fine-tuning in Table 1. The seed
data, derived from GSM8K and MATH datasets,
culminates in a collection of 26.9K solutions. For
the augmentation data obtained from MetaMath,
which encompasses 240K new questions, we em-
ployed the augmentation method to sample one or
two solutions for each question and randomly se-
lect approximately 55K question-correct solution
pairs. In total, we have gathered 300K examples,
both positive and negative, maintaining an approxi-
mately balanced ratio of labels.

The in-domain test sets come from the original
GSM8K and MATH datasets. We also conduct
evaluations on two out-of-domain (OOD) test sets:
the open-source OCWCourses dataset (Lewkowycz
et al., 2022) and our proprietary GaoKao2023-
Math-En dataset. OCWCourses comprises a col-
lection of 272 STEM problems aimed at the un-
dergraduate level, requiring multi-step reasoning
for most questions. The GaoKao2023-Math-En
dataset consists of 385 mathematics problems from
the 2023 Chinese higher education entrance exami-
nation (professionally translated into English), the
2023 American Mathematics Competitions, and

the 2023 American College Testing.
4.2 Implementation Details

We train the Llemma series (Azerbayev et al., 2023)
through fine-tuning with our curated corpus, result-
ing in the development of our SFT LLM series.
During this optimization phase, we generally em-
ployed a learning rate of 5e-5, with the exception of
the 7B and 34B models, for which we reduced the
rate to 4e-5. We set the global batch size at 512 and
used a linear learning rate scheduler that included a
warm-up phase constituting 3% of the total training
duration, spread over 3 epochs. Training for all
models was launched with the accelerate2 in Deep-
Speed ZeRO Stage2 (Rajbhandari et al., 2021) and
Flash-Attention 2 mechanism (Dao, 2023). When
fine-tuning the value LLM with LoRA, we config-
ure the hyper-parameters with a rank of 4096 and
an alpha of 2048 for the attention parameters Wq

and Wv. In the context of the Llama-2-7B archi-
tecture, 2B model parameters are trainable. We
employ a learning rate of 5e-5, which is progres-
sively adjusted using a cosine decay scheduler. We
use 8 or 16 A100-80G GPUs for training 7B and
34B models. We also implemented a new math
answer evaluation toolkit to compare the ground
truth with the LLM predictions to determine if they
are equivalent expressions.
Baselines We conducted comparisons with
renowned proprietary and open-source LLMs such
as GPT (OpenAI, 2023), Claude (Anthropic, 2023),
PaLM (Anil et al., 2023), Minerva (Lewkowycz
et al., 2022), Gemini (Team et al., 2023), Llama-
2 (Touvron et al., 2023), CodeLlama (Roziere
et al., 2023), Qwen (Bai et al., 2023), and
DeepSeek (DeepSeek, 2023). We also have re-
ported results from a variety of open-source models,
most notably Llama-2, along with several SFT mod-
els derived from Llama-2, including RFT (Yuan
et al., 2023), WizardMath (Luo et al., 2023), Math-
Coder (Wang et al., 2023a), MAmmoTH (Yue et al.,
2023) and ToRA (Gou et al., 2023).

4.3 Main Results

SFT Model Table 2 demonstrates the performance
of greed decoding. Our 7B model across four
datasets encompasses both in-domain and out-of-
domain problems when comparing with other open-
sourced LLMs with similar model size and data
size. In contrast, for more complex problems in
the MATH dataset, or even for challenging out-

2https://github.com/huggingface/accelerate

909

https://github.com/huggingface/accelerate


Model Size Tool Zero In-domain Out-of-domain
Shot GSM8K MATH OCW GK2023∗

Proprietary Models
GPT-4 - % % 92.0 42.5 - -
GPT-4-Code - ✓ % 92.9 69.7 - -
ChatGPT - % % 80.8 35.5 - -
ChatGPT(PAL) - ✓ % 78.6 38.7 - -
Claude-2 - % % 85.2 32.5 - -
PaLM-2 540B % % 80.7 34.3 - -
Minerva 540B % % 58.8 33.6 17.6 -
Gemini Ultra maj@32† - % % 94.4 53.2 - -

Open-Source Models
Llama-2 SFT 7B % ✓ 41.3 7.2 - -
Llama-2 RFT 7B % ✓ 51.2 - - -
Llemma 7B % % 36.4 18.0 7.7 -
Llemma(PAL) 7B ✓ % 40.1 21.5 - -
Qwen 7B % % 51.7 11.6 - -
WizardMath 7B % ✓ 54.9 10.7 - -
DeepSeek-Coder 6.7B ✓ % 43.2 19.2 - -
MathCoder 7B ✓ ✓ 67.8 30.2 - -
MAmmoTH-Coder 7B ✓ % 59.4 33.4 11.0 15.3
ToRA 7B ✓ ✓ 68.8 40.1 2.6 19.5
ToRA-Code 7B ✓ ✓ 72.6 44.6 4.8 23.9
MARIO 7B ✓ ✓ 70.1 47.0 21.7 38.2
MARIO-OVM-7B§ 7B ✓ ✓ 74.5 48.3 21.0 34.8
CodeLlama 34B % % 29.6 12.2 7.0 -
CodeLlama(PAL) 34B ✓ % 53.3 23.9 - -
Llemma 34B % % 51.5 25.0 11.8 -
Llemma(PAL) 34B ✓ % 62.6 27.1 - -
DeepSeek-Coder 33B ✓ % 60.7 29.1 - -
MathCoder 34B ✓ ✓ 81.7 45.2 - -
MAmmoTH-Coder 34B ✓ % 72.7 43.6 14.0 25.2
ToRA-Code 34B ✓ ✓ 80.7 50.8 5.5 31.7
MARIO‡ 34B ✓ ✓ 78.8 53.5 30.2 42.6
DeepSeek-Chat 67B % % 84.1 32.6 - -
WizardMath 70B % ✓ 81.6 22.7 - -
MathCoder 70B ✓ ✓ 83.9 45.1 - -
MAmmoTH 70B ✓ % 76.9 41.8 11.8 24.7
ToRA 70B ✓ ✓ 84.3 49.7 9.6 30.9
Qwen 72B % % 78.9 35.2 - -

Table 2: Results on different datasets. The best results of open-source models are bold. ∗GK2023-ME represents
Gaokao-2023-Math-En dataset. †maj@K means majority voting over K samples. §The MARIO-OVM-7B here is
simply used as an SFT LLM to generate one single solution.

910



Model PAL (Gao et al., 2023) DeepSeek-Coder MAmmoTH ToRA-Code MARIO MARIO-OVM
Size 175B∗ 6.7B 7B 7B 7B 7B
Accuracy 61.2 40.3 56.5 56.0 50.0 53.2

Table 3: Results on GSM-Hard (Gao et al., 2023). ∗PAL is based on code-davinci-002.

of-domain problems, our 34B model consistently
outperforms others. Fewer training data may be
one reason, but the main reason should be its capa-
bility to perform text analysis, which breaks down
problems into manageable code snippets, thus en-
hancing its problem-solving effectiveness. This is
verified by the similar pattern observed with our 7B
model that was trained on an 82K dataset, which
is in line with past state-of-the-art (SOTA) meth-
ods. So we conclude that such a model achieves
superior results on more complex problems, likely
because these problems demand more than simple
logic and a few arithmetic steps—scenarios where
models with a code-centric approach typically have
an edge.

OVM Model The experimental findings of our
outlier-free OVM selection algorithm are displayed
in Table 4, where we contrast our approach with
the majority voting algorithm. Our findings indi-
cate that the gain of majority voting by our ap-
proach is more significant than ToRA, because text
generations allow more creative ideas for problem
solving than code only solution. In addition, our
outlier-free OVM inference can further push up the
performance of majority voting. In Table 4, we
also present a comprehensive results showcasing
the OVM’s performance when it takes on both the
roles of solution generation and outcome evalua-
tion. The OVM demonstrates a comparable profi-
ciency in generating solutions; however, it exhibits
a slightly reduced effectiveness on out-of-domain
datasets. This outcome is to be expected, given that
our OVM has been continually fine-tuned on the
MetaMath questions, originating from the GSM8K
and MATH datasets.
4.4 Ablation Studies

We perform the first ablation study to examines
the impact of each data source by incrementally
adding more training examples, with the primary
findings detailed in Table 5. Overall, the advance-
ments in MATH are more pronounced. We as-
cribe this trend to three main factors. First, the
GSM8K dataset, synthesized by GPT, encompasses
98.3% of the questions, in contrast to the MATH
dataset’s 66.7% coverage. Secondly, the selection

Inference method GSM8K MATH OCWCourses GK2023
ToRA-Code-7B 72.6 44.6 4.8 23.9
+maj@50 76.8 +4.2 52.5 +7.9 - -

MARIO-7B 70.1 47.0 21.7 38.2
+maj@20 80.5 +10.4 56.7 +9.7 25.4 +3.7 41.6 +3.4
+OVM-7B@20 82.9 +12.8 59.1 +12.1 28.3 +6.6 45.2 +7.0

MARIO-OVM-7B 74.5 48.3 21.0 34.8
+maj@20 83.8 +9.3 59.7 +11.4 22.1 +1.1 43.6 +8.8
+OVM-7B@20 83.6 +9.1 60.6 +12.3 25.4 +4.4 42.9 +8.1

Table 4: Results on OVM-7B. +x indicates the increased
accuracy compared with the greedy decoding.

criterion for the MATH dataset hinges on an exact
match between GPT’s generated final answer and
the dataset’s provided answer, which could lead
the fine-tuned model to overfit specific questions
that have straightforward answers. Human inter-
vention has the potential to enhance the variability
of the answers. Lastly, the teacher model’s gen-
erated solutions concentrate more heavily on the
MATH dataset. This is due to the fact that we
have extracted a greater number of multi-step rea-
soning solutions according to MetaMath questions,
which are likely better suited to the difficulty of the
MATH dataset.

The second ablation study aims to investigate the
impact of the foundational math LLM and the data
formatting for SFT. DeepSeek-MATH-7B (Shao
et al., 2024), is a specialized math-focused LLM
developed through continual pre-training on the
Deep-Seek-Code-7B model, which benefits from
a more extensive math pre-training corpus than
Llemma-7B and purposely omits any content that
may relate to GSM8K and MATH datasets. Conse-
quently, DeepSeek-MATH-7B is supposed to out-
perform Llemma-7B. When applying SFT on a
large scale code-centric SFT dataset, DeepSeek-
MATH-7B can achieve the SOTA performance as
7B LLM. The result presented in the second row of
Table 6 shows the results of fine-tuning DeepSeek-
MATH-7B with our dataset. Despite being only
1/30th the size of their used dataset, our hybrid for-
mat demonstrates greater data efficiency. The result
presented in the last row of Table 6 suggest that
SFT from a superior continue pre-trained (CPT)
model enhances math reasoning capabilities.

911



Data used # trainset GSM8K MATH
GPT 23.9K 66.3 40.2
+Human 26.9K 67.1 +0.8 43.5 +3.3
+MATH Aug 28.8K 67.4 +1.1 44.4 +4.2
+MetaMath Aug 82K 70.1 +3.8 47.0 +6.8

Table 5: Ablation study of CPT Model and Data format.
#The result is sourced from (Shao et al., 2024).

CPT Model data size data format GSM8K MATH.
DeepSeek-Math-7B# 776K code 83.7 57.4
DeepSeek-Math-7B 28.8K text+code 78.4 56.1
Llemma-Math-7B 28.8K text+code 67.4 44.4

Table 6: Ablation study of data usage on 7B model.

4.5 Why GSM-Hard is not a good testset for
MATH LLM?

The GSM-Hard dataset, introduced by Gao et al.
(2023), is akin to the original GSM8K test set, with
the sole distinction being the alteration of numbers
in the original problem statements. However, as
illustrated in Figure 1, these modifications to the
numbers do not always align with the common
sense of real physical world, e.g., ages cannot be
negative, and the number of people cannot be frac-
tional. Methods following the PoT paradigm tend
to generate code without verifying the sensibility of
their output, scarifying this ability of LLMs. In con-
trast, our approach incorporates a textual analysis
that ensures the results derived from code execution
are consistent with the constraints of the physical
world. As a result, our LLM will opt not to produce
an illogical final answer or to arbitrarily round frac-
tions, even if the so-called correct answer has been
computed from the code execution in our approach.
This accounts for the lower accuracy of our method
on this dataset, shown in Table 3. In addition, we
found some solutions in the GSM-Hard remain the
same as the original GSM8K, even the numbers
have changed. Some representative examples are
provided in Appendix A.4, which compares the
solutions between ground truth provided by GSM-
Hard, ToRA, and our approach. In summary, we
suggest not the use GSM-Hard dataset unless the
mentioned errors have been fixed.

Reformatting In Appendix A.3, we quantitatively
verify the intuition by reformatting the REACT
data to HTML data.

5 Related Works

Mathematical reasoning attracts more attentions
because of the emergence of LLMs. Recent
works (Wei et al., 2022; Kojima et al., 2023; Wang
et al., 2023b; DeepSeek, 2023) on mathematical
reasoning have made impressive progress empow-
ered by LLMs. Yet exact calculations and symbolic
manipulations within the reasoning process remain
challenging. Some works have explored tools in-
cluding calculators (Cobbe et al., 2021b; Shao et al.,
2022) and code interpreters (Gao et al., 2023) to
address the limitations. Further research (Wang
et al., 2023a; Yue et al., 2023; Gou et al., 2023)
attempt to combine tool-use and textual reasoning
process to leverage the strengths of both.

Knowledge distillation (Hinton et al., 2015;
Gou et al., 2021) is a commonly used approach to
promote student models by transferring knowledge
from teacher models to them. Utilizing teacher
LLM to construct reasoning samples for student
model to fine-tune proved to be effective practice
of knowledge distillation(Fu et al., 2023; Ho et al.,
2023). Our corpus construction includes knowl-
edge distillation of this kind on MATH with more
samplings from 34B SFT LLM.

Verification in mathematical reasoning plays
a crucial role in ensuring inference performance by
allowing auto-regressive models to correct already-
made errors. It has been proved that LLMs can self-
verify (Anonymous, 2023; Weng et al., 2023; Xie
et al., 2023) and self-refine (Madaan et al., 2023)
by designed prompting. A specifically trained ver-
ifier can also play a similar role by intervening
the decoding process (Cobbe et al., 2021b; Khalifa
et al., 2023; Yu et al., 2023a). In this paper, we
use multi-task fine-tuning which is similar to the
training of a simple outcome supervision model.

6 Conclusion

This paper introduces a reproducible pipeline that
covers both the construction of a math-specific
dataset and the fine-tuning of a large language
model (LLM). Our approach demonstrates that in-
tegrating text analyses with code snippets enhances
the model’s capabilities for common sense reason-
ing and precise computation in mathematical rea-
soning tasks. Moreover, our fine-tuning method
enhances model performance by incorporating a
verifier model that requires only a negligible num-
ber of additional parameters. To the best of our
knowledge, our approach sets a new state-of-the-art

912



benchmark for LLMs with a size around 7 billion
parameters on the MATH datasets, and it exhibits
notable generalization ability on challenging out-
of-domain math datasets.

7 Limitations

The primary limitation of this study lies in the ex-
penses associated with generating data. To begin
with, producing raw data in the REACT format
necessitates using the GPT API, e.g., generating
a single solution for questions in the GSM8K and
MATH datasets costs $0.01 and $0.025 respectively
when utilizing GPT-4 in non-stream mode. Addi-
tionally, human intervention for error correction
demands approximately 80 working hours of la-
bor to rectify solutions. Scaling up this dataset
would therefore entail a significant increase in both
financial outlay and manpower.

Furthermore, our initial experimentation encoun-
tered several mistakes in the details of both the data
and training pipelines, which resulted in additional,
unnecessary expenditures. As a result, we have
decided to release the source code for our data and
training pipelines. We hope that by doing so, other
researchers in this field can draw on our experience
and avoid similar costly errors, thereby reducing
their expenses.

References
Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-

son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Anonymous. 2023. Solving challenging math word
problems using GPT-4 code interpreter with code-
based self-verification. In Submitted to The Twelfth
International Conference on Learning Representa-
tions. Under review.

Anthropic. 2023. Model card and evaluations for claude
models.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. 2023.
Llemma: An open language model for mathematics.
arXiv preprint arXiv:2310.10631.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong

Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021a. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021b. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Tri Dao. 2023. FlashAttention-2: Faster attention with
better parallelism and work partitioning.

DeepSeek. 2023. Deepseek coder: Let the code
write itself. https://github.com/deepseek-ai/
DeepSeek-Coder.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and
Tushar Khot. 2023. Specializing smaller language
models towards multi-step reasoning. In Proceedings
of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine
Learning Research, pages 10421–10430. PMLR.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and
Dacheng Tao. 2021. Knowledge distillation: A
survey. International Journal of Computer Vision,
129(6):1789–1819.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

913

https://openreview.net/forum?id=c8McWs4Av0
https://openreview.net/forum?id=c8McWs4Av0
https://openreview.net/forum?id=c8McWs4Av0
http://arxiv.org/abs/2309.16609
https://github.com/deepseek-ai/DeepSeek-Coder
https://github.com/deepseek-ai/DeepSeek-Coder
https://proceedings.mlr.press/v202/fu23d.html
https://proceedings.mlr.press/v202/fu23d.html
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
http://arxiv.org/abs/2309.17452
http://arxiv.org/abs/2309.17452
http://arxiv.org/abs/1503.02531


Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023.
Large language models are reasoning teachers. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14852–14882, Toronto, Canada.
Association for Computational Linguistics.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Muhammad Khalifa, Lajanugen Logeswaran, Moontae
Lee, Honglak Lee, and Lu Wang. 2023. GRACE:
Discriminator-guided chain-of-thought reasoning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 15299–15328, Singa-
pore. Association for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-
guage models are zero-shot reasoners.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter
Clark. 2023. Self-refine: Iterative refinement with
self-feedback.

R OpenAI. 2023. Gpt-4 technical report. arXiv, pages
2303–08774.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:
Breaking the gpu memory wall for extreme scale
deep learning. In Proceedings of the International
Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’21, New York,
NY, USA. Association for Computing Machinery.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,

Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Zhihong Shao, Fei Huang, and Minlie Huang. 2022.
Chaining simultaneous thoughts for numerical rea-
soning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 2533–2547,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and
Daya Guo. 2024. Deepseekmath: Pushing the limits
of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Linqi Song,
Mingjie Zhan, and Hongsheng Li. 2023a. Mathcoder:
Seamless code integration in llms for enhanced math-
ematical reasoning.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu,
Lijie Wang, Haihua Yang, Biye Li, Cheng Cheng,
Weiwei Lü, Rui Hu, et al. 2023. Skywork: A more
open bilingual foundation model. arXiv preprint
arXiv:2310.19341.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
2023. Large language models are better reasoners
with self-verification. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
pages 2550–2575, Singapore. Association for Com-
putational Linguistics.

914

https://doi.org/10.18653/v1/2023.acl-long.830
https://doi.org/10.18653/v1/2023.findings-emnlp.1022
https://doi.org/10.18653/v1/2023.findings-emnlp.1022
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.18653/v1/2022.findings-emnlp.187
https://doi.org/10.18653/v1/2022.findings-emnlp.187
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.18653/v1/2023.findings-emnlp.167


Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-
Yen Kan, Junxian He, and Qizhe Xie. 2023. De-
composition enhances reasoning via self-evaluation
guided decoding.

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang,
Zehai He, Yuyi Guo, Jinfeng Bai, and Jie Tang. 2023.
Gpt can solve mathematical problems without a cal-
culator. arXiv preprint arXiv:2309.03241.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Fei Yu, Anningzhe Gao, and Benyou Wang. 2023a.
Outcome-supervised verifiers for planning in mathe-
matical reasoning. arXiv preprint arXiv:2311.09724.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023b.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. 2023. Scaling relationship on learning
mathematical reasoning with large language models.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi
Song, Mingjie Zhan, et al. 2023. Solving challenging
math word problems using gpt-4 code interpreter
with code-based self-verification. arXiv preprint
arXiv:2308.07921.

915

http://arxiv.org/abs/2305.00633
http://arxiv.org/abs/2305.00633
http://arxiv.org/abs/2305.00633
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825


A Appendix

A.1 Introduce to our submitted code repository
A.1.1 Reproducing Data Generation
To generate the solution of a provided question, please refer to the following example script in our
submitted code repository.

python gpt_react.py \
--verbose \
--dataset math \
-g gpt-4-1106-preview \
-q "Find all the roots of x^4 + 4 = 0."

A.1.2 Fine-tuning
Our training is mostly performed on LLaMA-Factory3 code base. Please refer to that repository for more
details.

A.1.3 Inference
Single question inference.

python react.py -c /path/to/checkpoint_dir -q "Compute tan(45)." --verbose

Large scale inference with vllm4.

python batch_react.py -c /path/to/checkpoint_dir -q /path/to/question_file

Question file should be in jsonl format, where each line is a json string. The json string should at least
include a key value pair for question.

A.1.4 Evaluation Toolkit
In order to evaluate the model prediction, it requires our implemented toolkit that is located in folder
math_evaluation.

python eval.py -q /path/to/question_file

Question file should be in jsonl format, where each line is a json string at least containing "pred" and
"answer" keys for prediction and ground truth, respectively.

A.1.5 Prompts
The REACT Instruction is as follows. For the demonstration examples for GSM8K and MATH, please
refer to the file prompts.py in our submitted code repository.

You are a powerful agent with broad math knowledge and great Python programming
skills. Answer the math questions as best you can. You have access to the following
tool:

python_interpreter: A Python shell to execute python code snippet.

When solving math problem, you should think step by step, where each step includes 4
mini-steps Thought/Action/Action Input/Observation. Note that if some step requires
accurate calculation (including but not limited to symbolic simplification,
derivation, numerical calculation, solving equations or inequalities), you should
write Python code and execute it to obtain result.
The following is the required template.

Question: the input question

3https://github.com/hiyouga/LLaMA-Factory/)
4https://github.com/vllm-project/vllm

916

https://github.com/hiyouga/LLaMA-Factory/)
https://github.com/vllm-project/vllm


Thought: the text analysis, and list the math equations if necessary

Action: the action to take, should be python_interpreter, or None

Action Input: the Python Code in markdown format (if Action is None, it is None), e.g.,
```python
import math
theta = math.pi / 4
some_var = math.cos(theta)
print(some_var)
```

Observation: the result of the action

... (this Thought/Action/Action Input/Observation can repeat N times)

Thought: the final analysis of the answer

Final Answer: the concise answer without verbose context

The following are 2 demonstrations examples.

{examples}

Now! It's your turn.

Question: {question}

Thought:

A.2 Human Review for MATH

Our own researchers are responsible for the human review. We mainly fix the following issues in the field
of final answer.

• Redundant text Even in the prompt we have indicated the field of final answer should only include
the math expression of final answer without other text. It is inevitable that a full sentence will be
generated in this field. Therefore, we will remove the redundant text, e.g.,

Final Answer: John spent 25 dollars in total. => Final Answer: 25

• Equivalent expression Because the text analysis of LLM is based on python code snippets and the
corresponding execution results, the generated final answers prefer the ‘sympy’ format, which differs
from the ‘latex’ format provided in the MATH dataset. However, they are sometimes equivalent. In
this case, we should consider the generated solution as correct, e.g.,

\\frac{8 - 7x}{6} = 4/3 - 7x/6
\\begin{pmatrix} 1 & 2 \\\\ 3 & 4 \\end{pmatrix} = Matrix([[1, 2], [3, 4]])

This also motivates us to develop the math evaluation toolkit.

917



0 20 40 60 80 100
iteration

0.25

0.50

0.75
0.82

1.02

lo
ss

REACT
HTML

Figure 4: Train loss of different formats within first 100 iterations when fine-tuning on Llemma-34B.

A.3 Re-formatting
The data generation with REACT is depicted in A.1.5. However, the data we obtained using the REACT
template’s keywords was not used directly. Instead, we converted the REACT data into an HTML-like
format, using <p></p> to encapsulate text analyses and <code></code> to encapsulate code snippets, as
demonstrated in the Figure 5. We observed that employing REACT instructions typically yielded higher
quality output from GPT models. Yet, when it comes to fine-tuning a pre-trained Large Language Model
(LLM), utilizing an HTML-like format for the initial iteration results in a training loss that is, on average,
approximately 20% lower. A thorough comparison is available in Section 4. Our hypothesis is that the
HTML-like format may bridge the gap between the pre-training corpus and the fine-tuning corpus, leading
to improved initialization performance.

The standard template for REACT examplified in previous section employs a key-value pair format
represented as strings, with each step comprising elements like “Thought:text analysis", “Action:
tool name", “Action Input: code snippet", and “Observation: execution output". REACT (Yao
et al., 2022) is an excellent approach to empower the LLM the capability of using external tool. However,
our analysis of the log-likelihood for REACT examples suggests that such data formats are rare in
the corpora used for pre-training LLMs. In contrast, when converting REACT data into an HTML
format, using tags such as “<p>text analysis</p>" and “<code>code snippet</code>", we noted a
substantial decrease in log-likelihood. In our data pipeline of Figure 2, when training the Llemma-34B on
the 26.9K dataset with different formats, this reduction was evident from the initial loss observed in the
first iteration.

As Figure 4 demonstrates, the loss for fine-tuning with HTML-formatted data is 20% lower than when
using the original REACT format. However, upon evaluating the performance on the test sets after 3
epochs of SFT, we observed only a marginal improvement ( 1%) on MATH test set. Given the substantially
reduced initial loss, we hypothesize that careful hyper-parameter tuning could potentially enhance the
performance of data formatted in HTML. We intend to explore this possibility in future work.

A.4 Case Study on GSM-Hard
In this case study, we present three typical examples demonstrating why many of our model’s final answers
are unjustifiably deemed incorrect.

A.4.1 Incorrect or unreasonable answer
In this example, the PoT solution provided by GSM-Hard remains the same as the initial answer in the
GSM8K test set, yet it fails to align with the question as it does not incorporate the number 780786 in
its program. Meanwhile, the ToRA solution neglects the crucial detail that the quantity of Pokemon
must be an integer. In contrast, our model had previously generated the fractional answer, but its internal
self-verification process detected inconsistencies, leading it to ultimately output ’None.’

Question: Alex, Stan, and Adelwolfe are trying to catch them all, Pokemon that is.

918



Figure 5: A re-formatting example includes a combined display of text analyses and accompanying code snippets.
Please note that the display represents a restructured format resembling HTML, from the original REACT format
generated.

Together they have caught 780786 Pokemon. Alex has caught 5 more than Stan, and Stan
has caught 13 less than 4 times as many as Adelwolfe has caught. How many Pokemon
has Stan caught?

PoT Solution from GSM-Hard:

def solution():
stan = -1 # we don't know how many pokemon stan has caught, so we set it to -1
total = 780786
alex = stan + 5
adelwolfe = (stan + 13) / 4
stan = total - alex - adelwolfe
# write values for alex and adelwolfe in terms of stan
stan = total - (stan + 5) - ((stan + 13) / 4)
# simplify
stan + 5 + (stan + 13) / 4 + stan == 339
4 * stan + 20 + stan + 13 + 4 * stan == 4 * total
9 * stan + 33 == 4 * total
9 * stan == 4 * 339 - 33
# so we get
stan = (4 * 339 - 33) / 9
result = stan
return result

Answer: 147.0

PoT Solution from ToRA:

```python
from sympy import symbols, Eq, solve

def stan_pokemon():
# Define the symbols
a, s, ad = symbols('a s ad')

919



# Define the equations
eq1 = Eq(a + s + ad, 780786)
eq2 = Eq(a, s + 5)
eq3 = Eq(s, 4*ad - 13)

# Solve the system of equations
solution = solve((eq1, eq2, eq3), (a, s, ad))

return solution[s]

result = stan_pokemon()
print(result)
```
```output
1041037/3
```
Stan has caught $\\boxed{\\frac{1041037}{3}}$ Pokemon.

Our Solution:

<p>
Let's assume that Adelwolfe has caught x Pokemon. According to the given information, Stan
has caught 13 less than 4 times as many Pokemon as Adelwolfe, so Stan has caught (4x - 13)
Pokemon. Alex has caught 5 more than Stan, so Alex has caught (4x - 13) + 5 = 4x - 8 Pokemon.
Together, they have caught 780786 Pokemon, so we can set up the equation:

x + (4x - 13) + (4x - 8) = 780786

Now, I will solve this equation to find the value of x, which represents the number of
Pokemon Adelwolfe has caught. Once I have x, I can calculate the number of Pokemon Stan
has caught by substituting x into the expression (4x - 13).
</p>

<code>
```python
from sympy import symbols, Eq, solve

x = symbols('x')
equation = Eq(x + (4*x - 13) + (4*x - 8), 780786)
solution = solve(equation, x)
stan_pokemon = 4*solution[0] - 13
stan_pokemon
```
</code>
Output: 1041037/3

<p>
The solution to the equation is x = 1041037/3. However, since x represents the number of
Pokemon Adelwolfe has caught, it must be an integer. I need to verify that the solution
for x is indeed an integer.
</p>

920



<code>
```python
is_integer = solution[0].is_integer
is_integer
```
</code>
Output: False

Final Answer: None

A.4.2 Incorrect or unreasonable intermediate step
In this case, the PoT solution offered by GSM-Hard calculates an intermediate variable cows as -3016191,
which is not feasible. Even though the final answer representing the number of chickens is positive, the
question is deemed invalid because the quantity of cows cannot be a negative value. Regarding the ToRA
solution, it arrives at the same answer as GSM-Hard despite generating an incorrect program output. Our
model’s program produces identical intermediate results to what is considered the correct answer, yet
upon textual analysis, it recognizes that the count of animals must not be negative. Consequently, the
model persists in self-verification up to a predetermined maximum number of steps and ultimately yields
’None’ as the output.

Question: Farmer Brown has 3016226 animals on his farm, all either chickens or cows.
They have a total of 70 legs, all together. How many of the animals are chickens?

PoT Solution from GSM-Hard:

def solution():
total_animals = 3016226
total_legs = 70
chicken_legs = 2
cow_legs = 4
cows = (total_legs - (total_animals * chicken_legs)) / (cow_legs - chicken_legs)
chickens = total_animals - cows
result = chickens
return result

Answer: 6032417.0

PoT Solution from ToRA:

```python
def chicken_count():

total_animals = 3016226
total_legs = 70
# Let\'s denote the number of chickens as x. Then the number of cows is 3016226 - x.
# The total number of legs is the sum of the legs of the chickens and the cows.
# So we have the equation: 2x + 4*3016226 = 70
# Solving this equation for x gives us the number of chickens.
chickens = (total_legs - 4 * total_animals) / 2
return int(chickens)

chickens = chicken_count()
print(chickens)

921



```
```output
-6032417
```
The number of chickens is $\\boxed{6032417}$.

Our solution:

<p>
To solve this problem, we need to set up an equation based on the information given.
We know that each chicken has 2 legs and each cow has 4 legs. Let's denote the number
of chickens as $c$ and the number of cows as $w$. The total number of legs is the sum
of the legs of all the chickens and all the cows, which can be expressed as $2c + 4w = 70$.
We also know that the total number of animals is $c + w = 3016226$. We can use these
two equations to solve for $c$ and $w$.
</p>

<code>
```python
from sympy import symbols, Eq, solve

# Define the symbols
c, w = symbols('c w')

# Equation for the total number of legs
legs_eq = Eq(2*c + 4*w, 70)

# Equation for the total number of animals
animals_eq = Eq(c + w, 3016226)

# Solve the system of equations
solution = solve((legs_eq, animals_eq), (c, w))
print(solution)
```
</code>
Output: {c: 6032417, w: -3016191}

<p>
The solution to the system of equations indicates that there are 6032417 cows and
-3016191 chickens, which is not possible since the number of animals cannot be negative.
This suggests there might be an error in the interpretation of the problem or in the
equations set up. The negative number of chickens indicates that the equation for
the total number of legs is incorrect.
</p>

...(skip many verification steps)

Final Answer: None

922



A.4.3 Ambiguous question

In this instance, the solutions provided by GSM-Hard and ToRA are more precise, yielding the exact
figure of 377712.375. In fact, our model also generates this precise number during an intermediate step.
However, the question’s phrasing regarding “how many hours” is somewhat ambiguous, leading our model
to round the answer to the nearest whole number to better align with the question’s apparent emphasis on
the duration in hours.

Question: Lori wants to buy a $320.00 pair of shoes and a matching belt that is
$3021379. Her part-time job pays her $8.00 an hour. How many hours will she have
to work before she can make her purchase?

PoT Solution from GSM-Hard:

def solution():
shoes_cost = 320
belt_cost = 3021379
hourly_wage = 8
total_cost = shoes_cost + belt_cost
hours_worked = total_cost / hourly_wage
result = hours_worked
return result

Answer: 377712.375

PoT Solution from ToRA:

```python
def hours_to_work():

shoe_cost = 320.00
belt_cost = 3021379.00
total_cost = shoe_cost + belt_cost
hourly_wage = 8.00
hours_needed = total_cost / hourly_wage
return hours_needed

hours_needed = hours_to_work()
print(hours_needed)
```
```output
377712.375
```
Lori will have to work $\\boxed{377712.375}$ hours before she can make her purchase.

Our Solutions:

<p>
To find out how many hours Lori needs to work, we need to calculate the total cost
of the shoes and the belt, and then divide that by her hourly wage.
</p>

<code>

923



```python
shoes_cost = 320.00
belt_cost = 3021379
total_cost = shoes_cost + belt_cost
hourly_wage = 8.00
hours_needed = total_cost / hourly_wage\nprint(hours_needed)
```
</code>
Output: 377712.375

<p>
The calculation shows that Lori needs to work approximately 377712.375 hours to make
her purchase. Since she can't work a fraction of an hour, she will need to round up
to the nearest whole hour.
</p>

<p>
Since Lori can't work a fraction of an hour, and the calculation shows that she needs
to work approximately 377712.375 hours, she will have to work 377713 hours to make
her purchase.
</p>

Final Answer: $377713$

924


