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Abstract

Parameter-efficient fine-tuning (PEFT) has
emerged as the predominant technique for fine-
tuning in the era of large language models.
However, existing PEFT methods still have in-
adequate training efficiency. Firstly, the uti-
lization of large-scale foundation models dur-
ing the training process is excessively redun-
dant for certain fine-tuning tasks. Secondly, as
the model size increases, the growth in train-
able parameters of empirically added PEFT
modules becomes non-negligible and redun-
dant, leading to inefficiency. To achieve task-
specific efficient fine-tuning, we propose the
Light-PEFT framework, which includes two
methods: Masked Early Pruning of the Founda-
tion Model and Multi-Granularity Early Prun-
ing of PEFT. The Light-PEFT framework al-
lows for the simultaneous estimation of redun-
dant parameters in both the foundation model
and PEFT modules during the early stage of
training. These parameters can then be pruned
for more efficient fine-tuning. We validate our
approach on GLUE, SuperGLUE, QA tasks,
and various models. With Light-PEFT, param-
eters of the foundation model can be pruned
by up to over 40%, while still controlling train-
able parameters to be only 25% of the original
PEFT method. Compared to utilizing the PEFT
method directly, Light-PEFT achieves training
and inference speedup, reduces memory usage,
and maintains comparable performance and the
plug-and-play feature of PEFT1.

1 Introduction

Large-scale pre-trained language models have
demonstrated outstanding performance in various
natural language processing domains (Liu et al.,
2019; Brown et al., 2020; Touvron et al., 2023;
OpenAI, 2023). Along with the performance im-
provements, the scale of model parameters contin-

* Corresponding author: Peng Fu.
1Our code is available at https://github.com/gccnlp/

Light-PEFT.

ues to grow, making the cost of fine-tuning models
increasingly expensive. Moreover, the practice of
maintaining a separate copy of the large model for
each task in conventional fine-tuning incurs sub-
stantial storage costs.

To address these challenges, parameter-efficient
fine-tuning (PEFT) has been proposed: freezing
most parameters of the foundation model and fine-
tuning only a small number of parameters (Houlsby
et al., 2019; Li and Liang, 2021; Liu et al., 2022a;
Hu et al., 2022), thereby reducing the computa-
tional resource requirements during training and
performing nearly full-parameter fine-tuning. In ad-
dition, this technique eliminates the need to save an
entire model copy for each task. During inference,
task-specific models can be obtained by switch-
ing directly to the appropriate parameter-efficient
module for the given task.

However, the training efficiency of existing
PEFT methods still needs improvement. The first
problem lies in the excessive redundancy of using a
large-scale foundation model during fine-tuning for
specific tasks, which results in substantial computa-
tional costs. A typical strategy is to integrate PEFT
with quantization (Dettmers et al., 2023; Kim et al.,
2023). Nonetheless, these methods only quantize
parameters to low-bit in memory, without reduc-
ing the number of parameters and they still need
to be dequantized to high-bit during training, lead-
ing to wasted training time. Another more direct
approach for reducing parameters is model struc-
tured pruning (Hedegaard et al., 2022; Zhao et al.,
2023). However, most methods mainly focus on
the inference efficiency of the model, which means
they may result in higher training costs.

The second problem is that as the size of the
foundation model increases, the number of param-
eters in added trainable modules also increases sig-
nificantly. This introduces a lot of redundancy in
trainable parameters, leading to inefficiency in fine-
tuning. For instance, the commonly used methods
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LoRA (Hu et al., 2022) and QLoRA (Dettmers
et al., 2023) empirically insert the low-rank mod-
ules onto fixed weight. However, there is no need
to uniformly add trainable modules of the same
rank to all weights for fine-tuning each task. An
improved approach is the dynamic rank method
(Zhang et al., 2023; Valipour et al., 2023; Ding
et al., 2023), which adaptively allocates module
parameters by progressively calculating the impor-
tance of the rank during training. However, these
methods require continuous estimation during train-
ing and show limited improvement in actual train-
ing efficiency.

In this paper, we introduce a novel framework
named Light-PEFT, which aims to enhance the ef-
ficiency of the PEFT technique during fine-tuning.
The framework consists of two methods: Masked
Early Pruning of Foundation Model and Multi-
Granularity Early Pruning of PEFT. In the early
training stage, Light-PEFT estimates redundant pa-
rameters in both the foundation model (heads and
intermediate dimensions) and the PEFT modules
(module importance and rank importance) simul-
taneously. Structured pruning is used to eliminate
this redundancy, resulting in a lighter foundation
model and PEFT module for more efficient fine-
tuning.

To validate the effectiveness of our Light-PEFT
framework, we conduct extensive evaluations
on various foundation models (RoBERTa, OPT-
1.3B, OPT-6.7B), different PEFT structures (LoRA,
Adapter), and on diverse benchmarks (GLUE, Su-
perGLUE, and question-answering tasks). The
empirical results indicate that the proposed Light-
PEFT framework outperforms other baseline meth-
ods in performance. It significantly improves train-
ing efficiency that reduces training memory usage
by 39% and accelerates training to 1.6×. Addi-
tionally, the Light-PEFT framework improves in-
ference efficiency that reduces inference memory
by 48% and increases inference speed to 1.6×.

2 Related Works

2.1 Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning has been proposed
to reduce the computational cost of fine-tuning en-
tire model parameters (Houlsby et al., 2019; Li and
Liang, 2021; Hu et al., 2022). Following works
aim to further improve the efficiency of PEFT.
Improvements to the PEFT module. The moti-
vation behind of this category of methods is that

previous works often insert trainable modules em-
pirically, resulting in uniform ranks for all inserted
modules that are not parameter-efficient. AdaLoRA
(Zhang et al., 2023) proposes obtaining the optimal
rank for each module by iteratively pruning ranks
during training. DyLoRA (Valipour et al., 2023)
achieves this through dynamic training on a range
of ranks. AutoPEFT (Zhou et al., 2023) automati-
cally selects PEFT configurations through Bayesian
optimization. Recently, SoRA (Ding et al., 2023)
introduces masks on the ranks and gradually makes
each module sparse. However, all of these meth-
ods gradually calculate the rank allocation during
training, which does not improve the actual train-
ing efficiency in fine-tuning. Our method estimates
the rank allocation for each module in the early
stage of training and utilizes the pruned parameter-
efficient modules to improve training efficiency
during fine-tuning.
Improvements to the training paradigm of
PEFT. To enhance training efficiency, one idea
is to further reduce the memory footprint during
training. QLoRA (Dettmers et al., 2023) and PEQA
(Kim et al., 2023) reduce memory usage by quantiz-
ing the foundation model, while LST (Sung et al.,
2022) and MEFT (Liao et al., 2023), respectively
alleviate the memory footprint of intermediate acti-
vations in the foundation model through methods
ladder side-tuning and reversible structures. Our
approach is orthogonal to these methods from a
memory perspective and can be combined with
them. We explore early-stage pruning of the foun-
dation model to reduce memory usage. Moreover,
our approach can lower computational costs, speed
up training, and improve inference efficiency.

Combining PEFT with pruning, most of works
focus on improving inference efficiency. PST (Li
et al., 2022) and DSEE (Chen et al., 2023) pro-
pose combining unstructured pruning and PEFT,
which hardly achieves acceleration on practical
hardware. SPAs (Hedegaard et al., 2022) integrates
structured pruning of the foundation model with
PEFT, while CPET (Zhao et al., 2023) proposes
distilling knowledge into PEFT modules simulta-
neously with pruning to reduce performance degra-
dation. Concurrently to our works, APT (Zhao
et al., 2024) reduces the training cost of the CPET
method, presenting more efficient distillation and
pruning. However, these methods, including APT,
still require higher training time and memory costs
compared to the original PEFT methods. Our ap-
proach aims to reduce the original PEFT training
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costs, including speed and memory, by employ-
ing early-stage structured pruning to train a non-
redundant PEFT model efficiently, while improving
inference efficiency simultaneously.

2.2 Structured Pruning of Models
Model pruning has been proposed to compress
redundant parameters in models (LeCun et al.,
1989; Kurtic et al., 2022; Liu et al., 2022b; Ma
et al., 2023), with structured pruning being the
most straightforward method to achieve accelera-
tion on actual hardware. For the structured pruning
of Transformer models, the focus lies in pruning
components of the model, such as attention heads
and feed-forward dimensions (Liu et al., 2021; Xia
et al., 2022; Tao et al., 2023; Xia et al., 2024). How-
ever, most structured pruning works require addi-
tional costs during training to obtain smaller and
more accurate models for inference efficiency. In
terms of training efficiency, You et al. (2020) base
on the lottery ticket hypothesis (Frankle and Carbin,
2019) and discover the existence of early winning
tickets in DNN models, allowing early pruning
to enhance subsequent training efficiency. Subse-
quently, Chen et al. (2021) identify early tickets in
BERT models (Devlin et al., 2019) to enhance the
efficiency of BERT’s pre-training and fine-tuning.
We follow these works and explore early pruning
in parameter-efficient fine-tuning and generative
foundation models.

3 Preliminaries

3.1 Parameter-Efficient Fine-Tuning
In our framework, we choose two of the most
widely used methods: Adapter (Houlsby et al.,
2019) and LoRA (Hu et al., 2022) to validate our
approach.
Adapter. For each layer in the foundation model,
including the attention sub-layer and the feed-
forward sub-layer, Adapter inserts a trainable MLP
module after each sub-layer. It consists of a down-
projection layer Wdown ∈ Rd×r, followed by a
non-linear activation function f , and finally an up-
projection layer Wup ∈ Rr×d, where d is the hid-
den size of the foundation model, and r is the bot-
tleneck dimension in the trainable module, with
r ≪ d. The Adapter method can be formulated as
follows:

h← h+ f(hWdown)Wup (1)

where h is the output of the inserted sub-layer.

LoRA. For each linear weight matrix W ∈ Rd×d

in the foundation model, the LoRA method adds
trainable MLP modules in parallel to W . The
trainable module includes a down-projection layer
Wdown and an up-projection layer Wup. The LoRA
method can be be formulated as follows:

h← h+ s ·XWdownWup (2)

where X represents the input to the linear weight
matrix W and s is a hyper-parameter scaling factor.

3.2 PEFT Training Efficiency
In this section, we present observations on the train-
ing efficiency of PEFT. We utilize LoRA to observe
the results on two foundation models, RoBERTa
(Liu et al., 2019) and OPT (Zhang et al., 2022).
For training samples, we set the length to 128
with a batch size of 32 and the time is the sum
of 10 batches. All tests are conducted on a single
NVIDIA RTX 3090 GPU.
The impact of foundation models size. From the
perspective of training speed (Figures 1a), PEFT
methods reduce the gradient computation time, so
the forward pass time gradually surpasses the back-
ward pass time. Nonetheless, the forward calcula-
tion is still unchanged and needs to use all model
parameters to propagate the state forward and back-
propagate the loss through the entire model, becom-
ing slower as the model size increases. From the
memory perspective (Figure 1b), although PEFT
techniques reduce the memory consumption of op-
timizer states and gradients, the model weights and
intermediate activations still occupy a significant
amount of memory during training. Compressing
the foundation model to a smaller size can better
alleviate it. This highlights the importance of re-
ducing the parameter redundancy of the foundation
model for training efficiency.
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Figure 1: Impact of the foundation model size on train-
ing efficiency. The experiments are conducted on OPT
models (FP16). As the size of foundation models in-
creases, the time for forward and backward pass during
training and the required memory significantly increase.
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The impact of PEFT modules. We explore the
impact of intra-module rank and the number of
PEFT modules on training efficiency. From the
perspective of training speed, Figure 2a presents
experiments where we keep same modules and
only increase the rank. Figure 2b shows experi-
ments where we keep the same trainable parame-
ter, adding structured PEFT modules to different
weights. It can be observed that when increasing
the number of PEFT modules compared to vary-
ing the rank, both forward and backward times
significantly increased. This indicates that, during
training, the impact on speed of adding more struc-
tured PEFT modules is significantly larger than that
of increasing in rank of a single structured module.
From a memory perspective, the trainable parame-
ters affect the memory consumption of optimizer
states and gradients during training. As the size of
the foundation model increases, the redundancy in-
troduced by empirically adding trainable parameter
modules impacts training efficiency.
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Figure 2: Impact of intra-module rank and the number
of PEFT modules on training speed. The experiments
are conducted on RoBERTa-Large (FP32). Q, K, V, O
denote the Query, Key, Value and Output matrices in
the foundation model’s attention sub-layer. (a) Keeping
the same number of modules and increasing the rank
results in a relatively small change in pass time. (b)
Increasing the number of modules while keeping the
same trainable parameters leads to a significant change
in pass time.

4 Methodology

4.1 Overview of Light-PEFT
Our goal is to eliminate parameters redundancies in
the early stage, thereby reducing the computational
costs of fine-tuning. Thus, we propose the Light-
PEFT framework as shown in Figure 3, which con-
sists of two methods: Masked Early Pruning of
Foundation Model to reduce the redundancy of
the foundation model and Multi-Granularity Early

Pruning of PEFT to reduce the redundancy of the
trainable parameters. First, both methods in our
framework simultaneously estimate redundancies
during the early stage of training, where the total
training steps are denoted as t, and the estimation
for early pruning steps denoted as t′, t′ ≪ t. After
estimation, we prune redundancies in both, thus ob-
tain a non-redundant foundation model and PEFT
modules for more efficient fine-tuning. Besides
the PEFT parameters, we only need to additionally
save mask vectors, which are much smaller than
PEFT modules, to record the pruning index of the
foundation model. During inference, our method
allows the masks and PEFT modules to be easily
changed, maintaining the plug-and-play feature.

4.2 Masked Early Pruning of Foundation
Model

A typical Transformer model (Vaswani et al., 2017)
consists of L layers, each with a multi-head at-
tention (MHA) sub-layer and a feed-forward net-
work (FFN) sub-layer. A MHA sub-layer con-
tains NH attention heads and weight matrices
W

(i)
Q ,W

(i)
K ,W

(i)
V ∈ Rd×dH , WO ∈ Rd×d are used

for query, key, value and output, where d is the
hidden size and dH = d/NH is the hidden size
of a head. In parameter-efficient fine-tuning, the
weights of the foundation model are frozen, and
we add the PEFT module’s ∆W to these matrices.
Taking the LoRA module as an example, for an
input X the output of the MHA is calculated as
follows:

head(i) = (W
(i)
Q +∆W

(i)
Q ,

W
(i)
K +∆W

(i)
K ,W

(i)
V +∆W

(i)
V , X)

(3)

MHA(X) = Concat(head(1), ...,

head(NH))(WO +∆WO)
(4)

To identify redundancy in attention heads, we in-
troduce a trainable scalar mask mA in each layer’s
MHA sub-layer. Now the MHA becomes:

head(i) = m
(i)
A · (W

(i)
Q +∆W

(i)
Q ,

W
(i)
K +∆W

(i)
K ,W

(i)
V +∆W

(i)
V , X)

(5)

For a FFN sub-layer, which contains activa-
tion function Act(·) and weight matrices Wfc1

and Wfc2 which denote up-projection and down-
projection. With PEFT modules, for an input X
the output of the FFN is calculated as follows:

FFN(X) =Act(X(Wfc1 +∆Wfc1))

· (Wfc2 +∆Wfc2)
(6)
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Figure 3: Illustration of Light-PEFT. The left side shows the two methods in Light-PEFT. On the right side is an
illustration of the paradigm. Firstly, both methods simultaneously estimate redundancies during the early-stage of
training. After estimation, Light-PEFT prunes redundancies in both, obtaining a non-redundant foundation model
and PEFT modules for more efficient fine-tuning.

We also introduce a trainable scalar mask mF in
each layer’s FFN sub-layer to eliminate redundancy
in intermediate dimension. Now the FFN become:

FFN(X) =Act(X(Wfc1 +∆Wfc1)) ·mF

· (Wfc2 +∆Wfc2)
(7)

Inspired by Liu et al. (2017), we then use L1
regularization to learn masks mA and mF . During
the mask learning, the PEFT module and the mask
are trained jointly using gradient descent, which
allows the mask to better present the impact of
PEFT to the foundation model training on the target
task. The loss function is as follows:

Lmask = L+ λA∥mA∥1 + λF ∥mF ∥1 (8)

where L is the original loss in fine-tuning, λA and
λF are hyper-parameters to control the penalty of
regularization (see Appendix A.4 for details). The
masks are initialized to 1 at the beginning of train-
ing.

After estimating, we perform structured prun-
ing on attention heads with pruning ratio ρA layer-
wise and intermediate dimensions with ρF globally
based on the magnitudes of mA and mF .

4.3 Multi-Granularity Early Pruning of PEFT
In comparison to the fine-grained sparsity (i.e. rank
allocation) that is the focus of most previous works

(Zhang et al., 2023; Valipour et al., 2023), our
preliminary observation also confirms the signifi-
cance of coarse-grained module pruning for train-
ing speed. Therefore, we propose multi-granularity
PEFT pruning to consider both aspects simulta-
neously. Furthermore, we perform pruning PEFT
in the early stage to maximize efficiency during
training.

4.3.1 Modules Pruning

To achieve coarse-grained module pruning, we be-
gin with the original design of PEFT, where we
believe that the importance of a module is primarily
determined by the change it brings to the original in-
formation. Specifically, for the LoRA method, we
add a trainable module WdownWup on the weight
W . Thus, given an input X , the importance ratio
IM is defined as:

IM =
∥X ·WdownWup∥2
∥X ·W∥2

(9)

where ∥·∥2 represents the L2 norm, measuring the
magnitude of the vector output from the PEFT mod-
ule. Because one of the weight matrices in the
PEFT module, such as Wup in the LoRA method,
is typically initialized to zero. Therefore, during
training, the ratio of the output magnitude of the
LoRA module to the weight W ’s output magnitude

7532



indicates the importance of the changes required
by the module added at that position.

For the Adapter method, a trainable module is
added after a sub-layer. Given the output h of
the previous sub-layer, the importance ratio IM is
defined as:

IM =
∥f(hWdown)Wup∥2

∥h∥2
(10)

where IM represents the change in information of
the Adapter module on the output information h of
the previous sub-layer.

In the implementation, to better estimate the
importance of all added positions for the LoRA
method, we add LoRA modules on all weights of
the foundation model. This may result in higher
costs compared to the original LoRA in the short
term, but our early estimation steps are significantly
smaller than the total training steps, allowing for a
substantial reduction in total costs. For the Adapter
method, we follow the original approach by adding
them after both the MHA and FFN sub-layers. Af-
ter estimation, we use IM to globally prune the
entire PEFT modules with the pruning rate ρM .

4.3.2 Ranks Pruning
In addition to coarse-grained pruning, we further
perform fine-grained pruning on the rank of the
modules. This allows us to reduce more trainable
parameters and enhance training efficiency. Our
motivation is based on the fact that not all mod-
ules require the same rank allocation. To eliminate
redundant ranks, we use the first-order Taylor ex-
pansion (Molchanov et al., 2017) to estimate the
importance IWi,j of each parameter connected to
the rank in the PEFT module:

IWi,j =

∣∣∣∣
∂L

∂Wi,j
Wi,j

∣∣∣∣ (11)

where Wi,j represents the i-th row and j-th column
of parameters in Wdown or Wup of the PEFT mod-
ule. The importance of the rank IR is the sum of
the importance IWi,j of all parameters correspond-
ing to the rank in the column of Wdown and the row
of Wup. After estimation, we globally prune the
unimportant ranks with pruning rate ρR.

5 Experiments

5.1 Experimental Setup
Datasets and evaluation. We conduct experiments
on eight natural language understanding (NLU)

tasks from GLUE (Wang et al., 2019b) and Su-
perGLUE (Wang et al., 2019a) and six question-
answering (QA) tasks. Because our goal is to en-
hance training efficiency, training on small datasets
does not hold much significance. As a result, we
choose four larger datasets from GLUE including
MNLI (Williams et al., 2018), QNLI (Rajpurkar
et al., 2016), QQP2, and SST-2 (Socher et al., 2013),
and four larger datasets from SuperGLUE com-
prising ReCord (Zhang et al., 2018), WiC (Pile-
hvar and Camacho-Collados, 2019), BoolQ (Clark
et al., 2019), and MultiRC (Khashabi et al., 2018).
For MNLI, we report accuracy on the matched
validation set. For QNLI, QQP, SST-2, WiC and
BoolQ we report accuracy. For ReCord we report
F1 and for MultiRC we report F1 over all answer-
options (F1a). The QA tasks include OpenBookQA
(Mihaylov et al., 2018), PIQA (Bisk et al., 2020),
ARC-Easy and ARC-Challenge (Clark et al., 2018),
SciQ (Welbl et al., 2017) and WebQuestions (Be-
rant et al., 2013). We report accuracy on all QA
tasks by lm-evaluation-harness (Gao et al., 2023).
Baselines. We use RoBERTa-Large for NLU tasks,
OPT-1.3B and OPT-6.7B for QA tasks as founda-
tion models. We choose several baselines to verify
the effectiveness of our method. Full-FT is the
conventional approach for fine-tuning. Adapter
(Houlsby et al., 2019) and LoRA (Hu et al., 2022)
are original structures we used in our framework.
LayerDrop (Fan et al., 2020) is a strong baseline
method that enhances training efficiency by dy-
namically dropout layers during training. We re-
implement it combining with LoRA method. LST
(Sung et al., 2022) improves model training effi-
ciency by avoiding backpropagation in the foun-
dation model. Offsite-Tuning (Xiao et al., 2023)
uses a emulator derived from the foundation model
for efficient training, and replaces the emulator’s
layers back into the foundation model for inference.
LLM-Pruner (Ma et al., 2023) prunes model on
small amount of task-agnostic corpora and restores
performance using LoRA, thereby improving train-
ing efficiency. We re-implement their original task-
agnostic pruning and add a task-specific pruning
implementation using 1k random samples from
task data.
Implementation. For the GLUE benchmark, we
control the estimation steps for early pruning to be
around 5% of the total training steps. For the more

2https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs
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Method
#Trainable

Params
#Foundation

Model Params
GLUE Training

Speed upMNLI QNLI QQP SST-2 Avg.

Full-FT 355.0M 100% 90.4 94.7 92.2 96.4 93.4 0.7×
Adapter 0.8M 100% 90.8 94.7 91.5 96.3 93.3 1×
LoRA 0.8M 100% 90.6 94.9 91.6 96.2 93.3 1×

LayerDrop 0.5M 67% 87.4 91.7 88.3 94.7 90.5 1.4×
LST 8.6M 100% 86.7 90.2 89.7 95.1 90.4 1.4×

Ours (Adapter) 0.3M 72% 88.3 93.2 89.8 95.6 91.7 1.4×
Ours (LoRA) 0.3M 72% 89.4 93.6 89.7 95.9 92.2 1.4×

Ours (Adapter) 0.3M 67% 87.6 93.1 89.1 95.4 91.3 1.6×
Ours (LoRA) 0.3M 67% 89.0 93.5 89.2 95.8 91.9 1.6×

Table 1: Results of GLUE benchmark. The training speed is measured on a single NVIDIA TITAN RTX 24GB GPU
with batch size=32 and sequence length=128. Note that the speed computed here also includes the time required for
estimation before pruning.

challenging SuperGLUE benchmark, we set the
estimation steps to be within 10%. For QA tasks,
we uniformly use 10% of the training steps. Please
refer to the Appendix A.1 for detailed pruning set-
tings, as well as other training details.

5.2 Experimental Results

5.2.1 Experiments on NLU Tasks
We first evaluate our method on the GLUE bench-
mark. As shown in Table 1, we achieve comparable
performance with the original method while using
72% of the foundation model parameters (pruning
5/16 of the heads and 1/3 of the FFN intermedi-
ate dimensions) and 0.3M trainable parameters by
pruning PEFT modules and ranks. This results in a
1.4× training speedup and improvements in mem-
ory usage due to pruning. Furthermore, our method
outperforms the baseline methods with the same
speed, having fewer trainable parameters. When in-
creasing the pruning rate and retaining 67% of the
parameters in the foundation model, Light-PEFT
achieves a 1.6× training speedup while still ensur-
ing slightly better performance than the baselines.
On the more challenging SuperGLUE benchmark,
as shown in Table 2, we prune 4/16 of the heads and
30% of the FFN intermediate dimensions, retaining
76% of the parameters in the foundation model and
0.3M trainable parameters. This achieves perfor-
mance comparable to the original PEFT method
, demonstrating the effectiveness of our method
Masked Early Pruning of Foundation Model.

5.2.2 Experiments on QA Tasks
For the QA tasks (Table 3), we first conduct experi-
ments on OPT-1.3B. We prune parameters (12/32

Method #T.P. #F.P.
SuperGLUE

ReCord WiC BoolQ MultiRC Avg.

Adapter 0.8M 100% 89.5 71.0 84.3 82.4 81.8
Ours 0.3M 76% 86.0 70.1 81.2 76.0 78.3

LoRA 0.8M 100% 88.3 72.7 84.1 82.7 82.0
Ours 0.3M 76% 86.6 70.2 83.3 78.0 79.5

Table 2: Results of SuperGLUE Benchmark. #T.P. de-
notes the trainable parameters. #F.P. denotes the propor-
tion of parameters retained after pruning the foundation
model.

heads and 2/5 intermediate dimensions), retaining
64% of the foundation model parameters and 1.5M
trainable parameters, achieving comparable perfor-
mance to the original method. When the trainable
parameter in the original LoRA method is set to
1.57M (r=8), our method outperforms the original
LoRA under fewer foundation model parameters,
which demonstrates the effectiveness of our method
Multi-Granularity Early Pruning of PEFT.

Compared to Offsite-Tuning, our method
achieves better performance without the high train-
ing costs of the distillation. Compared to LLM-
Pruner, our method outperforms both task-agnostic
and specific implementations, and our pruning
process does not require the large model’s gradi-
ents, leading to significantly reduced computational
costs. Even when pruning it to 54%, we maintain
better performance than the baselines.

On the larger OPT-6.7B model, pruning more
foundation model parameters than OPT-1.3B and
using 5.2M trainable parameters, we achieve perfor-
mance comparable to the original method. When
reducing trainable parameters to 2M, our method
still demonstrates good performance. These ex-
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Method
#Trainable

Params
#Foundation

Model Params
QA Tasks

OpenBookQA PIQA ARC-E ARC-C SciQ WebQs Avg.

OPT-1.3B
Full-FT 1.3B 100% 31.4 75.2 61.3 27.7 92.5 31.2 53.2

Offsite-Tuning - 100% 29.0 74.5 59.4 27.8 92.9 26.2 51.6
LoRA (r=64) 12.6M 100% 33.6 74.7 59.5 29.5 92.0 29.8 53.2
LoRA (r=8) 1.6M 100% 29.6 74.6 59.9 29.1 93.0 28.7 52.5

LLM-Pruner (ag.) 10.6M 70% 29.0 72.4 54.0 24.7 89.2 20.7 48.3
LLM-Pruner (sp.) 10.6M 70% 30.4 72.9 55.9 27.6 88.7 26.5 50.3

Ours (LoRA) 1.5M 64% 33.2 74.1 59.0 28.4 92.7 28.6 52.7
Ours (LoRA) 1.9M 54% 33.2 72.6 57.6 27.5 91.8 28.2 51.8

OPT-6.7B
Offsite-Tuning - 100% 33.8 77.7 66.8 33.9 91.9 23.9 54.7
LoRA (r=64) 33.6M 100% 39.2 78.5 67.5 36.7 94.0 38.5 59.1
Ours (LoRA) 5.2M 52% 39.4 74.9 63.4 32.7 92.9 35.8 56.5
Ours (LoRA) 2.0M 52% 37.2 76.0 64.4 31.7 93.3 34.7 56.2

Table 3: Results of QA Tasks. Full-FT and Offsite-Tuning results are from Xiao et al. (2023). For the original LoRA
method, we add modules (rank=64) to the Query and Value matrices to achieve results similar to Full-FT. For the
LLM-Pruner method, We re-implement their original task-agnostic pruning (ag.) and add a task-specific pruning
(sp.) implementation using 1k random samples from task data.

PEFT Pruning
Strategy

LoRA Adapter

QNLI SST-2 QNLI SST-2

all 93.5 95.8 93.1 95.4
w/o module p. 93.8 96.1 92.9 95.5

w/o rank p. 93.8 95.8 93.2 95.2
w/o all 93.6 95.6 93.0 95.1

Table 4: Ablation Study of Multi-Granularity Early
Pruning of PEFT. We investigate the results of not using
coarse-grained module pruning (w/o module p.), not
using fine-grained rank pruning (w/o rank p.), and not
using any PEFT pruning (w/o all).

perimental results demonstrate that in QA tasks,
we can use the Light-PEFT framework to remove
more redundant parameters from the foundation
model and trainable modules, improving training
efficiency while ensuring performance.

5.3 Analysis

5.3.1 Ablation Study
In the Section 5.2, we have demonstrated the per-
formance of foundation model pruning (more ex-
periments in Appendix A.2). Here, we conduct
ablation study to examine two PEFT pruning strate-
gies, module pruning and rank pruning (Table 4).
Compared to not using any PEFT pruning, using
module pruning or rank pruning generally improves
generalization and thus enhances performance in
most cases, indicating the effectiveness of the two
proposed pruning strategies. Moreover, by combin-
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Figure 4: Training Efficiency. The experiments are con-
ducted on RoBERTa-Large, and we set batch size=32
and sequence length=128. Our method retains 67% of
foundation model parameters and 0.3M trainable param-
eters.

ing the two pruning strategies, the model maintains
a comparable level of performance despite having
more pruned trainable parameters.

5.3.2 Training and Inference Efficiency
We validate the training and inference efficiency
of our method on NVIDIA RTX 3090. In terms
of training efficiency (Figure 4), we conduct ex-
periments on RoBERTa-Large, retaining 67% of
foundation model parameters and 0.3M trainable
parameters that resulted in 32% reduction in model
weight memory, 40% reduction in activations mem-
ory, and 39% reduction in peak memory. Calcu-
lating the total time for 10 batches, we achieve
2.2× speedup in forward and backward pass time
compared to the original LoRA.
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Method
#Foundation

Model Params
NM

(ρM )
Inference
Speed Up

Load
Memory

Vanilla 100% 192 (-0%) 1× 12.5G

Light-PEFT

76% 192 (-0%) 1.1× 9.5G
52% 192 (-0%) 1.2× 6.5G
52% 96 (-50%) 1.4× 6.5G
52% 48 (-75%) 1.6× 6.4G

Table 5: Inference Efficiency. The experiments are con-
ducted on OPT-6.7B. ρM denotes the PEFT module
pruning rate, where 0% indicates inserting LoRA mod-
ules (r=8) onto all matrices of the foundation model.
And NM denotes the remaining number of LoRA mod-
ules after PEFT module pruning. We set batch size=96
and max length=100.

In terms of inference efficiency (Table 5), we
conduct experiments on OPT-6.7B, representing
widely used generative LLMs. Compared to the
common practice of adding LoRA modules onto
all matrices in the fine-tuning of LLMs (Vanilla),
our proposed foundation model pruning and PEFT
module pruning can effectively increase inference
speed by up to 1.6×. Additionally, foundation
model pruning can effectively reduce the model
loading memory usage by up to 48%.

6 Conclusion

This paper introduces Light-PEFT, a novel frame-
work designed to improve the efficiency of the
PEFT technique during fine-tuning. The frame-
work comprises two methods: Masked Early Prun-
ing of Foundation Model and Multi-Granularity
Early Pruning of PEFT. The Light-PEFT frame-
work estimates redundant parameters in both the
foundation model and PEFT modules during the
early stage of training and prunes them to achieve
more efficient fine-tuning. We validate our ap-
proach on GLUE, SuperGLUE, and QA tasks us-
ing various models. The experiments demonstrate
that Light-PEFT achieves training and inference
speedup, reduces memory usage, and maintains
comparable performance.

Limitations

Although Light-PEFT has achieved improved train-
ing and inference efficiency along with good per-
formance, our work primarily focuses on the single-
task fine-tuning scenario. A future direction worth
exploring is the estimation and early pruning of
redundant parameters on the multi-task learning
scenario, enabling efficient fine-tuning across mul-
tiple tasks.

Ethics Statement

The goal of our Light-PEFT framework is to en-
hance training efficiency and reduce computational
resource costs, which has positive impacts.
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A Appendix

A.1 Details of Experimental Setup
Hardware. We use NVIDIA TITAN RTX and
NVIDIA RTX 3090 for NLU experiments and ex-
periments using OPT-1.3B in QA Tasks. Addition-
ally, we use NVIDIA A800 for experiments using
OPT-6.7B in QA Tasks.
Implementation. The implementation of Light-
PEFT is based on Transformers (Wolf et al., 2020),
LLM-Adapters (Hu et al., 2023), and EarlyBERT
(Chen et al., 2021). The data processing for Super-
GLUE and QA tasks follows Liu et al. (2022a) and
Xiao et al. (2023), respectively.
Hyper-parameters. We use AdamW as the opti-
mizer for training. Other detailed settings for NLU
tasks are provided in Table 7, while the settings for
QA tasks can be found in Table 8 and Table 9.

A.2 The impact of the pruning rate on the
foundation model.

We analyze the impact of different foundation
model pruning rates on performance on the WiC
dataset (Figure 5). It is observed that within a cer-
tain range (above 62.5%), pruning results in a rel-
atively minor decrease in performance. However,
once this threshold is exceeded, a significant perfor-
mance decline occurs, demonstrating that pruning
within this range removes redundant parameters.
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Figure 5: The impact of the pruning rate on the founda-
tion model.

A.3 The impact of the estimation steps of
early pruning

We analyze the impact of the early pruning estima-
tion steps on performance using the BoolQ dataset
(Figure 6). It is observed that once the estima-
tion steps exceed 6.8% of the total training steps,
further estimation does not lead to performance im-
provement. This demonstrates that our method can

effectively identify redundant parameters in both
the foundation model and PEFT modules during
the early stage of training.
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Figure 6: The impact of the estimation steps of early
pruning.

A.4 The settings of mask learning penalty
In practice, we keep λA and λF consistent and
assess the impact of these hyper-parameters in pilot
experiments (Table 6). Based on this result, we
uniformly set λA and λF to 1× 10−4 and achieve
good task performance in our main experiments.

λA, λF SST-2 QNLI Avg.

1 ∗ 10−2 95.8 91.9 93.85
1 ∗ 10−3 95.9 93.5 94.70
1 ∗ 10−4 95.9 93.6 94.75
1 ∗ 10−5 95.6 91.9 93.75

Table 6: The impact of λA and λF on the performance
of tasks.
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Method Dataset MNLI QNLI QQP SST-2 ReCord WiC BoolQ MultiRC

LoRA

Estimation Steps 1000 1000 1000 800 2000 680 400 600
Rank 8
ρM 75%
ρR 50%

Estimation lr 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Fine-Tuning lr 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4

Batch Size 32 32 32 32 32 16 32 16
Sequence Length 128 128 128 128 256 128 128 384

# Epochs 5 5 5 10 5 50 20 20

Adapter

Estimation Steps 1000 1000 1000 800 2000 680 400 1000
Rank 8
ρM 25%
ρR 50%

Estimation lr 6e-4 8e-4 3e-4 6e-4 6e-4 3e-4 6e-4 7e-4
Fine-Tuning lr 4e-4 3e-4 3e-4 3e-4 3e-4 1e-4 6e-4 5e-4

Batch Size 32 32 32 32 32 16 32 16
Sequence Length 128 128 128 128 256 128 128 384

# Epochs 5 5 5 10 5 50 20 20

Table 7: Hyperparameters for NLU Tasks.

Method Dataset OpenBookQA PIQA ARC-E ARC-C SciQ WebQs

LoRA

Estimation Steps 1 Epoch 1 Epoch 1 Epoch 1 Epoch 1 Epoch 1 Epoch
Rank 8
ρM 50%/50%
ρR 50%/25%

Estimation lr 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Fine-Tuning lr 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4

Batch Size 64 64 64 64 64 64
Sequence Length 128 128 128 128 128 128

# Epochs 10 10 10 10 10 10

Table 8: Hyperparameters for QA Tasks on OPT-1.3B.

Method Dataset OpenBookQA PIQA ARC-E ARC-C SciQ WebQs

LoRA

Estimation Steps 1 Epoch 1 Epoch 1 Epoch 1 Epoch 1 Epoch 1 Epoch
Rank 8
ρM 50%/75%
ρR 25%/50%

Estimation lr 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Fine-Tuning lr 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4

Batch Size 32 32 32 32 32 32
Sequence Length 128 128 128 128 128 128

# Epochs 10 10 10 10 10 10

Table 9: Hyperparameters for QA Tasks on OPT-6.7B.
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