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Abstract
Sign language understanding has made signif-
icant strides; however, there is still no viable
solution for generating sign sequences directly
from entire spoken content, e.g., text or speech.
In this paper, we propose a unified framework
for continuous sign language production, eas-
ing communication between sign and non-sign
language users. In particular, a sequence dif-
fusion model, utilizing embeddings extracted
from text or speech, is crafted to generate sign
predictions step by step. Moreover, by creating
a joint embedding space for text, audio, and
sign, we bind these modalities and leverage the
semantic consistency among them to provide in-
formative feedback for the model training. This
embedding-consistency learning strategy mini-
mizes the reliance on sign triplets and ensures
continuous model refinement, even with a miss-
ing audio modality. Experiments on How2Sign
and PHOENIX14T datasets demonstrate that
our model achieves competitive performance
in sign language production.

1 Introduction
Sign language, a visual language, combines both
manual (hand gestures) and non-manual cues for
communication. It is specifically designed for the
deaf and hearing-impaired community (Hickok
et al., 1996; Armstrong and Wilcox, 2003; Camp-
bell et al., 2008; Zhou et al., 2020). According
to the World Federation of the Deaf, there are 70
million deaf people and more than 200 kinds of
sign languages in the world (Fenlon and Wilkin-
son, 2015; Núñez-Marcos et al., 2023). Improve-
ments in sign language production (SLP) can
bridge the communication gap between the deaf
and hearing (Mehdi and Khan, 2002; Harris et al.,
2009; Taskiran et al., 2018; Rastgoo et al., 2021;
Kahlon and Singh, 2023; Luo and Yang, 2024).

The challenges primarily arise from phonolog-
ical difference and data scarcity. Phonological
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Figure 1: Illustration of our sign language producer.
1) We propose a unified, multimodal spoken data-driven
framework for SLP that can directly produce sign se-
quences from spoken text or speech audio. 2) To over-
come data scarcity, we train a joint embedding space
through the spontaneous alignment of multimodal data.
Within this space, we establish a consistency learning
strategy to provide feedback signals that boost training.

difference: signs are composed of various manual
and non-manual features (Mann et al., 2010), such
as hand gestures, facial expressions and limb move-
ments (Liddell and Johnson, 1989; Johnson and
Liddell, 2011; Sandler, 2012). The differences
in phonological structure and means of expres-
sion create challenges in modeling the two lan-
guages. Data scarcity: multimodal high-quality
sign language datasets are relatively scarce, and
some datasets tend to be specific to a particular
language or domain, e.g., American sign (Duarte
et al., 2021), German weather (Forster et al., 2014;
Camgöz et al., 2018). Furthermore, hearing im-
pairments hinder pronunciation (Moeller, 2000;
Yoshinaga-Itano, 2003), making it strenuous to col-
lect sign video with aligned audio and usually re-
sulting in the lack of auditory information. Previous
researches (Zhang et al.; Camgöz et al., 2017; Hu
et al., 2021b,a; Yin et al., 2022) primarily focused
on sign language recognition, which identifies sign
fragments as the corresponding sign language lex-
icons (e.g., gloss). Several work (Saunders et al.,
2020, 2021a, 2022; Hwang et al., 2021; Walsh
et al., 2022) manage the transition from gloss to sign
sequences, yet the grammar of gloss can be perplex-
ing for those without sign language training. Saun-
ders et al. (2020, 2021b) can transcribe discrete
words or phrases into continuous sign language se-
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quences. However, directly producing continuous
signs from entire spoken sentences still remains
more exploration and efforts.

To promote barrier-free communication between
signers and speakers, we introduce a Multimodal
Spoken Data-Driven Continuous Sign Language
Production (MS2SL) framework (Fig. 1). MS2SL
can animate sign keypoint sequences from either
speech audio or text. In addition, to alleviate data
demands, we adopt an embedding-consistency
learning (ECL) strategy, which is inherently based
on the reciprocity among modalities, to bolster the
model training. Specifically, MS2SL initially em-
ploys pre-training models like CLIP (text) (Rad-
ford et al., 2021) and HuBERT (audio) (Hsu et al.,
2021) to extract features from input. Subsequently,
we utilize these features, serving as control condi-
tions for the diffusion, to generate sign sequences.
The attention mechanism (Vaswani et al., 2017)
is employed to model the relationships among
conditions, denoising steps, and sign movements.
Besides that, ECL does not require the three modal-
ities to coexist in the dataset. By learning a joint
embedding space, inspired by ImageBind (Gird-
har et al., 2023), ECL tightly binds the properties
of different modalities and generates feedback sig-
nals to boost the training process. First, we uti-
lize contrastive learning to bind audio and text in
the embedding space. Then, we leverage the se-
mantic consistency between co-occurring data to
infer and reconstruct the embedding of missing
modalitiy. The reconstruction error between the
generated signs and groundtruth can be used to it-
eratively update MS2SL until convergence. ECL
can foster cross-learning between different gen-
eration streams, allowing training even in the ab-
sence of certain modality. Furthermore, the inclu-
sion of audio data not only enriches sample diver-
sity and enhances multimodal comprehension but
also assists in accurately capturing the expression
and semantic content of sign language. We val-
idate the effectiveness of our method across two
prevalent datasets How2Sign (Duarte et al., 2021)
and (Camgöz et al., 2018). Experimental results
demonstrate that MS2SL achieves SOTA perfor-
mance, both in terms of semantic consistency and
sign accuracy. In conclusion, our primary contribu-
tions are outlined as follows:
• We propose MS2SL, a unified diffusion frame-

work for efficient multimodal spoken to sign lan-
guage production. MS2SL is able to directly
convert entire speech or text sentences into corre-

sponding sign keypoints sequences.
• We present an ECL strategy that leverages the

intrinsic relations to enhance data utilization.
• We show that joint embedding is suitable for gen-

erative tasks that are prone to modality missing.

2 Related Work
Sign Language Understanding. Similar to spoken
language, sign language follows specific linguis-
tic rules (Sandler and Lillo-Martin, 2006; Brentari,
2011; Petitto et al., 2016; Sandler, 2017). Existing
researches are primarily dedicated to sign language
translation (SLT) and recognition. SLT typically
involves translating sign language into spoken lan-
guage (Camgöz et al., 2018; Coster et al., 2022;
Camgöz et al., 2020; Lin et al., 2023). Sign lan-
guage recognition (Adaloglou et al., 2022; Selvaraj
et al., 2022) means interpreting and classifying of
body movements in videos, covering isolated (Ima-
shev et al., 2020) and continuous signs (Cui et al.,
2017; Camgöz et al., 2018, 2020). SLP (Arkushin
et al., 2023) is the process of creating sign se-
quences from spoken text, and can be seen as the re-
verse process of SLT. These existing studies on SLT
and SLP primarily focus on converting between
sign videos and discrete glosses, either directly or
indirectly. A few of Text2Sign works (Saunders
et al., 2020, 2021a,b) are grounded in datasets with
relatively homogeneous scenario (Camgöz et al.,
2018) and discrete spoken transcriptions.
Diffusion Model. The diffusion model demon-
strates exceptional proficiency in various genera-
tive tasks (Ho et al., 2020; Choi et al., 2021; Lug-
mayr et al., 2022; Avrahami et al., 2022). Beyond
image generation, diffusion models also perform
well in generating sequence data (Yuan et al., 2022;
Wu et al., 2023). In recent years, some work has
begun to apply diffusion models to SLP. By itera-
tively updating information, diffusion models can
gradually infer the distribution of subsequent data,
thereby providing more accurate and coherent re-
sults. Ham2Pose (Arkushin et al., 2023) leverages
diffusion to animate HamNoSys, a lexicon of sign
symbols, into sign keypoint sequences. Though im-
pressive, Ham2Pose can only produce videos with
a single sign symbol, falling short in conveying
sentences with complete semantics.
Cross-modal Consistency Learning. Deep learn-
ing often requires ample labeled data to work prop-
erly. However, the cost of collecting sign data is
prohibitive and audio data is often lacking. Recent
methods enhance model training by applying con-
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sistency training to massive unlabeled data (Bach-
man et al., 2014; Sajjadi et al., 2016; Clark et al.,
2018; Miyato et al., 2019). The principle of con-
sistency learning, employing the cyclical duality
between different tasks or data as feedback sig-
nals to regularize training (He et al., 2016), has
its roots in the domain of language translation (Yi
et al., 2017; Lu et al., 2017; Zhao et al., 2020). It
primarily encompasses inter-task (dual-learning)
and intra-task (cycle-consistency learning) vari-
eties. Dual-learning simultaneously trains bidirec-
tional mapping functions between tasks, creating
a primal-dual pair where one function’s output ap-
proximates the input of the inverse function (Yi
et al., 2017; Wang et al., 2022; Zhang et al., 2018;
Shah et al., 2019; Wang et al., 2019; Zhao et al.,
2020; Xie et al., 2020). Cycle-consistency learn-
ing is designed to enhance the self-reconstruction
capabilities of samples produced intrinsically by
the same model (Zhu et al., 2017; Almahairi et al.,
2018; Rao et al., 2020; Mathew et al., 2020). How-
ever, these methods frequently emphasize the du-
ality between two tasks or modalities, overlooking
the interplay and mutual influence among multi-
modal data within the same task.

Limited studies focus on directly generating sign
language sequences from entire spoken sentences.
To our best knowledge, we are the pioneers in ef-
fecting this conversion. This study harnesses se-
quential diffusion models to incrementally generate
noise predictions, enabling cross-modal sign lan-
guage generation. With the help of ECL, MS2SL
can generate various feedback signals even in the
absence of co-occurring ternary data: assessing the
reconstruction loss with the signs generated from
the reconstructed audio embeddings.

3 Method
Assuming the triplets (A, T ,S) represent the au-
dio, text, and sign space respectively, our goal is
to learn the mapping from text or audio to sign
within a unified framework (Fig. 2). Given a train-
ing dataset D={(a, t, s) ∈ A×T ×S}, MS2SL
can realize text-to-sign T 7→S : s = G(t) and
audio-to-sign A7→S : s = G(a), where G is the
sign sequence diffusion generator. We initially em-
ploy pretrained models CLIP (Radford et al., 2021)
and HuBERT (Hsu et al., 2021) to extract features
from text t and audio a. Next, we employ three en-
coders Ea, Et, Es to encode these features, acquir-
ing their embeddings ea, et, and es. Subsequently,
drawing on the operating mechanism of diffusion

models, we employ a diffusion step encoder Eh

and a sign noise encoder En to encode step h and
noise n to eh and en, respectively. Finally, we uti-
lize the generator G to produce the sign sequences:
ŝt = G(et, eh, en) and ŝa = G(ea, eh, en).

The paucity of co-occurring triplet data renders
the direct training of MS2SL a formidable task. To
overcome this challenge, we develop a joint em-
bedding space that facilitates the natural alignment
of multimodal data. Furthermore, we employ ECL
strategy to exploit the reciprocity among modalities
within the embedding space, effectively furnishing
feedback signals to boost the training.

3.1 Sign Predictor
Cross-linguistic Modeling. MS2SL aims to solve
the problem of generating variable-length sequences
across modalities. It necessitates phonological mod-
eling between spoken and sign language, associat-
ing text and audio to the same target sign sequence.
The causal attention mechanism can serve as a po-
tent remedy for this challenging issue. Taking text-
to-sign as an example, we first concatenate the em-
beddings of text et, denoising step eh and noise en.
Next, we apply the causal self-attention (Radford
et al., 2018) to model the relationship among
them. The mask in causal attention ensures that
the model only processes past and present informa-
tion, maintaining temporal and logical coherence
in the output. As such, the output is computed
as: CausalAtt[et; eh; en]. During inference, we
initiate from the text embedding and produce in-
dices autoregressively, ceasing generation when
the model predicts the sequences. Likewise, the
concatenated entity of the audio ea, step eh, and
noise en can also undergo the causal attention to
capture the relationship between audio and sign.
In causal attention, we adopt the common prac-
tice of positional encoding, which can model key-
points and inter-frame context while capturing
cross-modal relations. Thus, to simplify the model
structure, we does not explicitly design a temporal
module. Finally, we employ two fully connected
layers to output the sign prediction ŝh for step h.
Sign Language Production. We apply a diffusion
model as the sign generator. Similarly, taking text-
to-sign as an example, the diffusion generator G is
responsible for the gradually producing a continu-
ous sign sequence ŝ. Diffusion generator G sim-
ulates data distribution through a gradual forward
and reversible process (Ho et al., 2020), training by
maximizing the evidence lower bound to approxi-
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ê′t, ê
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Figure 2: Overview of our framework for MS2SL. It includes three key components: sign predictor (§3.1),
modality binding (§3.2) and ECL strategy (§3.3). MS2SL directly unifies spoken content from different modalities
into a common sign language production framework. The introduction of the joint embedding space and ECL
reduces the reliance on co-occurring (text, audio, sign) triplet.

mate target distributions. Diffusion model aims to
reconstruct the input from a latent variable. The
forward process gradually transforms the input into
noise by adding Gaussian noise. The reverse pro-
cess starts from random noise and progressively
removes the noise to recover the original data.

Common training for diffusion models involves
independent noise prediction at each forward step h,
potentially reducing sequence coherence and consis-
tency. Following (Arkushin et al., 2023), we adopt
the holistic training method. We apply a schedule
function δh = 1/log(h+ 1) (δ ∈ [0, 1]) and a step
size αh = δh − δh+1. The predicted signs ŝh at
step h, as:

ŝh = αhph + (1− αh)ŝh−1, (1)
where the predicted signs ph at step h are given
as G(t). This method utilizes the output from the
previous iteration as the input for the subsequent
step, gradually reducing the step size as the process
continues. Each step combines previous outcomes
with current predictions, reducing reliance on the
initial noise. We also enhance training robustness
by introducing a random noise to ŝh at each step.
Finally, the predicted initial sign ŝ0 is outputted. The
loss of the diffusion is defined as:

Ld = αhs0 + (1− αh)sh+1. (2)

3.2 Modality Binding
MS2SL operates in an aligned embedding space,
typically dependent on audio, text, and sign data
for tri-modal alignment. However, the difficulty
for people with hearing impairments to perceive
sound variations poses a challenge in recording
these co-occurring triplets. Fortunately, Image-
Bind (Girdhar et al., 2023) reveals that a model
can learn to align modalities in a joint embedding

space by employing contrastive learning (Hadsell
et al., 2006). Training with (Image, Modality1) and
(Image, Modality2) pairs can lead to a spontaneous
alignment of Modality1 and Modality2 in embed-
ding space. This alignment allows the model to
excel in various tasks without requiring direct train-
ing on specific pairs of (Modality1, Modality2).

We extend the findings of ImageBind and con-
struct a joint embedding space for the triplet
dataset (A, T ,S), where MS2SL employs (text,
sign) pairs as anchors to establish a cohesive space
linking audio, text, and sign. Let’s explore a pair of
modalities (T ,S) with aligned observations. Given
a sign sequence s and its corresponding caption t.
We first employ pretrained models CLIP (Radford
et al., 2021) to extract textual features and en-
code them into normalized embeddings: et and es.
Then, we leverages the paired modalities (T ,S)
to align the text with sign. The corresponding
encoders are optimized by InfoNCE (Oord et al.,
2018) loss LT , S :

LT , S = −log
exp(sim(et, es)/τ)∑M

m=1 exp(sim(et, esm)/τ)
. (3)

Within the mini-batch, we consider each instance,
whose index is not equal tom, as a negative example.
This approach aims to draw different embedding
pairs closer within their joint embedding space.
Similarly, we can also obtain LA, S and LT , A for
the pairs (A,S) and (T ,A). Interestingly, we also
observe the emergent alignment between modal
pairs (T ,A) in our embedding space. This phe-
nomenon can occur when the training is solely
based on pairs (T ,S) and (A,S), a trend that mir-
rors the findings reported in (Girdhar et al., 2023).
Accordingly, MS2SL is designed to mainly lever-
age modal pairs (T ,S) and (T ,A), circumventing
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the need for triplet data. In practice, this is achieved
by employing a triadic loss:

Lnce = LT , S + LT , A + LA, S . (4)

As such, the embedding space can not only spon-
taneously align unseen triples but also be used in
reconstructing unobserved modalities in ECL.

3.3 Embedding-consistency Learning

Given a tuple (A, T ,S), we employ a cyclic ap-
proach with the bound joint embedding to generate
feedback signals for bidirectional cross-learning,
fostering model training. When triplet data is avail-
able, the encoders first extract features from their
respective modalities. Then, audio and text in-
dependently generate predicted sign language se-
quences ŝa and ŝt. To fully utilize real data, we cal-
culate ECL loss after 500 epochs of model training.
The vanilla model, built on authentic data, guaran-
tees minimal distribution differences between gen-
erated pseudo-embeddings and the original dataset.
Semantic consistency is calculated using the em-
beddings êt and êa from encoder Es, which en-
codes the two predicted sequences. We can obtain
the text-to-sign error ∆(êt, es) and the audio-to-
sign loss ∆(êa, es):

∆(êt, es)=∥êt, es∥2,
∆(êa, es)=∥êa, es∥2.

(5)

Evaluation scores are derived from comparing the
two embeddings êt and êa. Both audio and text
can receive feedback signals from the generative
streams of each other. To compensate for the miss-
ing audio modality and ensure smooth processing,
we use a mapping network M and text embeddings
to generate pseudo audio features. The operation is
conducted in the embedding space, thus minimally
affecting inference speed. For unpaired natural
audios U , we can get the formula:

L(T , A, S)=∥Es(G(ea))−Es(G(et))∥2,
L(T ′, S′) =∥Es(M(G(e′

t)))−Es(G(e′
t))∥2.

(6)

Then our ECL loss is defined as:

Lecl=L(T , A, S)∈D+ L(T ′, S′)∈U . (7)

MS2SL translates entire spoken sentences into con-
tinuous sign language sequences. Overall, our total
loss comprises three components, i.e., the diffusion
model loss, ECL loss, and joint embedding loss:

L = λ1Ld + λ2Lecl + λ3Lnce, (8)

where the cofficients are empirically set as λ1 =
λ2 = λ3 = 1.

3.4 Implementation Details

Training. MS2SL takes speech audio or text as in-
puts. We utilize pre-trained models for encoding
both speech and text, HuBert (Hsu et al., 2021)
for speech and CLIP (Radford et al., 2021) for
text. We first extract embeddings et, ea, es, eh, en
through five encoders. We employ keypoints to
represent signs, like the 137 human keypoints in
How2Sign (Duarte et al., 2021), which are normal-
ized and standardized before being input into the
model. et, ea and es participate in learning the
joint embedding space. Concurrently, et, ea, eh
and en serve as conditions to control the genera-
tion of text-to-sign and audio-to-sign, respectively.
Here, we adopt the common practice (Saunders
et al., 2021a,b; Arkushin et al., 2023) of using the
first sign pose as initial noise. The first 500 epochs
skip the audio-to-sign generation flow in the ab-
sence of audio. After obtaining a vanilla model,
we apply the mapping network M to transform
et into ea to continue the training until the model
converges. Since PHOENIX (Forster et al., 2014)
dataset is in German sign language, and our pre-
trained model is primarily based on English, we
utilize the penultimate layer features of CLIP along
with MLP to align and transform between German
and English. As for ECL, we incorporate cycles
among the three modalities, namely audio-to-sign,
text-to-sign, and audio-to-text, greatly enhancing
the efficiency of data utilization. We adopt the com-
monly used exponential moving average (Cai et al.,
2021) strategy with diffusion parameters (Cai et al.,
2021) to ensure smoother, more robust training.
For details, please refer to the supplementary.
Inference. The model can perform SLP from audio
or text independently. Inference for each modality
involves executing the sequence sampling of the
diffusion model. Taking text-to-sign as an exam-
ple, the process starts with CLIP encoding the text
into features. These text features are then fed into
the sign predictor, which sequentially generates a
sequence noise prediction. The completion of this
sampling process results in the generation of the
desired sign sequence. The process for generating
signs from speech is similar. We take the average
of twenty generations to mitigate deviation.
Reproducibility. Our method is implemented using
PyTorch on 2RTX 4090 GPUs, with a training time
ofabout12hoursandanaverage inference timeof0.3
seconds. Following (Zhang et al., 2023), we remove
data with word count exceeding 20.
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Methods
How2Sign PHOENIX14T

BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE
Back-translation 10.89±.003 13.32±.01 16.71±.06 22.38±.05 23.23±.03 20.53±.01 25.13±.03 32.81±.04 44.01±.02 45.61±.03

PT (Saunders et al., 2020) 2.01±.02 3.86±.04 7.04±.00 13.69±.04 13.81±.03 11.32±.02 12.91±.01 19.04±.05 31.36±.01 32.46±.01

MOMP (Saunders et al., 2021b) 2.34±.04 3.92±.01 7.63±.02 13.68±.06 13.83±.05 11.19±.03 13.14±.02 19.64±.01 32.22±.04 32.96±.02

Ham2Pose (Arkushin et al., 2023) 2.93±.06 4.07±.04 7.31±.02 12.38±.03 13.29±.01 11.71±.03 13.22±.03 20.16±.05 33.39±.00 34.02±.04

T2M-GPT (Zhang et al., 2023) 3.53±.03 5.14±.01 7.92±.05 12.87±.05 13.99±.03 11.66±.02 13.35±.07 21.19±.00 35.24±.02 35.44±.03

MS2SL w/o ECL 3.76±.02 6.03±.02 8.05±.04 14.51±.05 15.10±.06 12.03±.02 14.32±.04 21.72±.03 35.36±.06 35.68±.08

MS2SL-T2S 4.26±.04 6.84±.02 9.17±.05 14.67±.03 16.38±.03 12.77±.06 15.81±.07 22.04±.03 36.41±.01 36.63±.03

Table 1: Comparisons of text-to-sign with the state-of-the-art methods (§4.2) on How2Sign (Duarte et al.,
2021) and PHOENIX14T (Camgöz et al., 2018). For each metric, we repeat the evaluation 20 times and report the
average. Red and Blue indicate the best and the second best result, respectively.

4 Experiments
We evaluate the effectiveness of MS2SL under text-
to-sign and audio-to-sign settings.

4.1 Experimental Setup
Datasets. We conduct experiments on two continu-
ous sign language datasets:
• How2Sign (Duarte et al., 2021) is a challenging

multimodal American sign language dataset with
a 16k-word vocabulary and comprehensive anno-
tations. It includes 1, 176 entries with audio and
has train/dev/test splits of 31165/1741/2357.

• PHOENIX14T (Camgöz et al., 2018), a widely
applied German weather sign language dataset,
contains 2, 887 words, 1, 066 sign annotations,
with train/dev/test splits of 7096/519/642.

Evaluation Metrics. Following (Saunders et al.,
2020), we adopt back-translation approach for
evaluating, i.e., we leverage the cutting-edge SLT
model (Camgöz et al., 2020) to ingeniously trans-
late back from generated signs to text. Subse-
quently, we calculate BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) scores, which are com-
monly used metrics for SLP and machine trans-
lation. We apply ROUGE-L F1-Score and report
BLEU-1 to BLEU-4 for translation performance at
different phrase lengths.
Competitors. For text-to-sign generation stream,
we consider four SOTA competitors:

• Ham2Pose (Arkushin et al., 2023), which em-
ploys transformer and diffusion model, animates
HamNoSys (a sign notation) into sign poses.

• T2M-GPT (Zhang et al., 2023) combines VQ-
VAE (van den Oord et al., 2017) and CLIP (Rad-
ford et al., 2021) for motion generation.

• PT (Saunders et al., 2020) translates discrete spo-
ken sentences into sign sequences.

• MOMP (Saunders et al., 2021b) divides SLP into
two sub-tasks: latent sign representation and ani-
mation imitation.

As for the audio-to-sign stream, since there are
not specific methods, we extend MS2SL to mul-
tiple implementations for a thorough evaluation,
including audio-to-sign, audio-to-text-to-sign, and
text-to-audio-to-sign. For audio-to-text-sign, we
apply WeNet (Yao et al., 2021) to translate audio
into text, followed by the generation of signs. Con-
versely, for text-to-audio-to-sign, we employ Deep-
Voice (Gibiansky et al., 2017) to convert text into
audio for subsequent sign generation.

4.2 Comparison to State-of-the-art
Quantitative Results. We present the comparative
analysis results in Table 1 on How2Sign and
PHOENIX14T test set. MS2SL demonstrates im-
pressive gains against the four robust methods,
establishing a new benchmark for SOTA perfor-
mance. In the generation of text-to-sign, our ap-
proach yields a ROUGE of 14.67, marking a no-
table increase of 2.39 over its counterpart (T2M-
GPT, which has a 13.99 ROUGE). Furthermore,
MS2SL combined with ECL surpasses the stan-
dalone by 1.28. How2Sign (Duarte et al., 2021) and
PHOENIX14T (Camgöz et al., 2018) are datasets
of different scales, demonstrating the robustness of
our method and the burgeoning potential of diffu-
sion models in generating long sign sequences.

Table 2 reports the audio-to-sign results on
How2Sign, noting that PHOENIX14T is not in-
cluded here due to the absence of audio data. Our
method significantly enhance performance, achiev-
ing notable improvements (i.e., BLEU-1 increase
from 9.49 to 11.77, ROUGE from 9.60 to 12.16).
The ECL strategy also enhances ROUGE by 1.12.
Considering the scarcity of audio modality data,
this achievement is particularly noteworthy and
shows its real-world applicability. We can also con-
clude that it is difficult to obtain a well-performing
model by training solely with the limited audio data
in How2Sign. This also highlights the urgency of
utilizing non-co-occurring triplets.
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Figure 3: Results examples (§4.2): Left column: text-to-sign generation stream, right column: audio-to-sign
generation stream. Under given conditions, our MS2SL can generate signs that are more semantically consistent
with the spoken description and have more precise keypoints.

Methods BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

T2A2S (§4.1) 0.98±.04 1.32±.02 3.71±.02 8.38±.01 8.52±.00

A2T2S (§4.1) 1.02±.02 1.47±.01 4.66±.05 9.49±.08 9.60±.04

MS2SL w/o ECL 1.24±.07 1.63±.03 4.71±.01 10.59±.01 11.04±.03

MS2SL-A2S 1.67±.01 1.94±.03 5.90±.02 11.77±.05 12.16±.01

Table 2: Audio-to-Sign results on How2Sign (§4.2).

Qualitative Comparison. Fig. 3 presents visual re-
sults on How2Sign (Duarte et al., 2021). It demon-
strates that our method can produce signs that are
more closely aligned with their semantic mean-
ing. After meticulous examination, it is evident
that MS2SL surpasses other models in generating
actions with smoother transitions, heightens expres-
siveness, greater diversity, and superior adherence
to physical constraints. Some noise and jitter are
noted in the audio-to-sign generation stream. The
main reason is that our method focuses on translat-
ing complete spoken content into sign sequences,
whereas previous studies (Saunders et al., 2020,
2021a; Arkushin et al., 2023) target the creation of
discrete lexical symbol or phrase. The challenge of
training models to convey extended semantic con-

Methods How2Sign PHOENIX14T
PT (Saunders et al., 2020) 1.29 1.54
Ham2Pose (Arkushin et al., 2023) 1.97 1.73
A2T2S (§4.1) 1.87 2.09
T2M-GPT (Zhang et al., 2023) 2.19 2.20
MS2SL 2.65 3.21

Table 3: User study (§4.2).

tent and long sequences often leads to incoherent
movements during sign generation.
User Study. Given the challenge of finding sign
language experts, who require extensive training,
we conduct a user study with 10 hearing volunteers.
We ask the volunteers to compare sign sequences
generated by different methods. We slow down
sign sequence playback for easier comparison by
volunteers. Volunteers select the sequence closer
to the ground truth and assign a score. Our scoring
range is from 1 to 5, with higher scores indicating
closer proximity to the ground truth. Most partici-
pants report that the sign sequences generated by
MS2SL are smoother and more accurate (Table 3).
User feedback highlight the advantages of MS2SL
in terms of expression clarity and pose accuracy.
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Methods BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Audio 0.98±.04 1.32±.02 3.71±.02 8.38±.01 8.52±.00

Text 1.74±.00 2.41±.02 3.43±.07 8.62±.03 9.57±.01

T2A2S 1.85±.0 2.35±.03 4.26±.02 8.52±.08 9.28±.03

MS2SL 4.26±.04 6.84±.02 9.17±.05 14.67±.03 16.38±.03

(a) data from different modalities

Methods BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

0k 3.76±.06 6.03±.02 8.05±.05 14.51±.04 15.10±.02

5k 3.79±.06 6.23±.02 8.17±.05 14.62±.04 15.56±.02

10k 3.82±.03 6.37±.03 8.31±.02 14.57±.06 15.87±.00

15k 4.26±.04 6.84±.02 9.17±.05 14.67±.03 16.38±.03

(b) embedding consistency learning

Steps BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE
0 0.62±.02 2.08±.03 4.16±.07 9.57±.03 9.72±.05

5 1.09±.04 2.42±.06 5.24±.04 10.44±.00 10.90±.01

10 4.26±.04 6.84±.02 9.17±.05 14.67±.03 16.38±.03

15 4.04±.01 6.23±.04 9.58±.0 15.26±.02 17.33±.01

20 4.87±.01 6.66±.04 9.67±.0 15.45±.02 17.24±.01

(c) diffusion model

Pre-trained BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

WavLM (Chen et al., 2022) 1.63±.06 1.79±.02 6.12±.01 10.94±.00 11.43±.02

HuBert (Hsu et al., 2021) 1.67±.07 1.94±.04 5.90±.02 11.77±.06 12.16±.01

CLIP (Radford et al., 2021) 4.26±.04 6.84±.02 9.17±.05 14.67±.03 16.38±.03

BERT (Devlin et al., 2019) 4.11±.04 6.91±.02 10.27±.01 13.37±.05 16.52±.06

(d) different pretrained models

Table 4: A set of ablation studies (§4.3). All experiments employ the same network and structure, with slight
variations arising due to different inputs. We report the results of text-to-sign generation by default.

4.3 Ablation Study
We conduct careful profiling of the impact of each
module within MS2SL on How2Sign.
Data in Different Modalities. We primarily con-
duct four experiments: audio-to-sign, text-to-sign,
text-to-audio-to-sign, and MS2SL, to compare and
analyze the role of different modalities. As shown
in Table 4a, although direct generation from audio-
to-sign and text-to-sign can yield appropriate re-
sults, MS2SL significantly outperforms them. Re-
moval of text data leads to a 6.29 decrease in
BLEU-1, highlighting its crucial role. The mediat-
ing role of text leads to an increase 0.76 in ROUGE.
Multimodal data yields superior results compared
to its unimodal counterpart, enriching the learning
process with more diverse information.
Embedding Consistency Learning. We investi-
gate the impact of the cyclical consistency training
presented in § 3.3, and the results are illustrated in
Table 4b. We note that common training method
performs comparably to baseline models, while
cyclical consistency boosts model performance
akin to adding substantial training data. Compared
to the alternative only with single modality, MS2SL
approach shows a 1.12 increase in BLEU-2 and a
1.28 increase in ROUGE, demonstrating the syn-
ergistic effect of integrating data from multiple
modalities. We further pay particular attention to
the impact of dataset size. We also observe a direct
correlation between dataset size and model accu-
racy. For smaller datasets (under 10k samples), the
accuracy plateau around 15.5. Several insights can
be drawn: i) Performances improve as more train-
ing data is used. ii) Over 10k unpaired data entries,
the signs might be of good quality, but the model
cannot further improve on a large scale, possibly
due to the scarcity of audio. This trend shows that

more data notably improves sequence generation,
even without clear semantic boundaries.
Diffusion Model. As shown in Table 4c, imple-
menting the diffusion model lead to a significant
enhancement. The quality metrics, such as BLEU-
1 and ROUGE, improved by 5.1 and 6.66, respec-
tively, compared to non-diffusion model approach.
Our study explores denoising steps ranging from
5 to 20, revealing a discernible trade-off between
generation quality and computational efficiency.
Compared to a fixed 10-step denoising process, the
20-step process unsteadily improve 0.78 in BLEU-
1 by approximately 5.3% with a disproportionate
increase in computational load. Thus, in this paper,
10 is set as the default number of denoising steps.
Pre-trained Models. We select four widely used
models, including, CLIP (text), BERT (text) (De-
vlin et al., 2019), HuBert (audio) and WavLM (au-
dio) (Chen et al., 2022), to assess their impact on
performance. As shown in Table 4d, for audio-to-
sign generation, the impact of HuBert and WavLM
on performance is minor, with negligible differ-
ences observed between the two pre-trained mod-
els. GPT outperforms CLIP models in text-related
tasks, with a slight improvement of up to 0.14 in
ROUGE. This may be because BERT focuses on
natural language processing, leading to enhanced
text understanding capabilities.

5 Conclusion

We explore a unified framework that combines dif-
fusion and pretrained models to generate sign lan-
guage from spoken depictions. We surpass other
competitors and solidify this classic framework as
a highly competitive method for SLP. MS2SL effec-
tively handles diverse modalities of data for analy-
sis and decoupling. Despite its advancements, our
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model struggles with maintaining contextual flow
in generation, and MS2SL cannot handle lengthy
data, which is a future focus. Our research pioneers
direct sign language generation from speech, offer-
ing some insights to advance the community.

Limitations

Despite significant advancements, our method still
faces key technical limitations. First, the com-
plexity and fluidity of authentic sign language are
challenging to fully capture and reproduce, as it
involves not just hand movements but also facial
expressions, body language, and the speed of ges-
tures. Moreover, converting text or speech into
sign language involves complex natural language
processing challenges, especially in handling gram-
mar and semantics. Lastly, MS2SL struggles to
effectively generate long sequences of key move-
ments, limiting the coherence and completeness
of sign language expression. These limitations in-
dicate that, while the potential of sign language
generation technology is immense, significant tech-
nical barriers still need to be overcome to achieve
comprehensive and precise sign language commu-
nication. These are also the directions we are com-
mitted to addressing in the future.
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Supplementary Material

In the appendix, we provide the following com-
ponents that offer a more comprehensive under-
standing of our method:
• §B: More Experimental Results.
• §A: Architecture Details.
• §C: Impacts.

We employ GPT-3.5 to refine and enhance our writ-
ing. We are immensely grateful for the substantial
assistance provided by GPT.

A More Experimental Results
We conducte multiple experiments and report the
results on PhoenixT (Camgöz et al., 2018), and we
does not conduct comparative experiments for the
audio-to-sign generation stream due to the absence
of any audio data in PhoenixT. As shown in Ta-
ble 7 and 8, we report the diagnostic results on
PhoenixT. After integrating the diffusion process
into MS2SL, we note modest enhancements. In
particular, BLEU-1 score shows a notable improve-
ment, rising by 1.88, and ROUGE score experience
a increment of 2.11 (Table 7).

Methods BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE
0 10.19.±.01 12.58±.04 18.48±.05 31.92±.04 33.80±.01

5 10.91±.03 13.11±.02 21.47±.05 33.8±.06 35.91±.00

10 12.77±.06 15.81±.07 22.04±.03 36.41±.01 36.63±.03

15 12.97±.02 15.06±.01 22.25±.05 36.73±.02 37.10±.02

Table 7: Denoising steps.

In the comparison of pre-trained models (Table 8),
the conclusion is similar to that with How2Sign,
indicating no significant differences among various
text pre-training models. This is due to the relatively
small dataset and vocabulary size of PhoenixT, for
which the current models are sufficiently.

Methods BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

GT 20.53±.01 25.13±.03 32.81±.04 44.01±.02 45.61±.03

CLIP (Radford et al., 2021) 12.77±.06 15.81±.07 22.04±.03 36.41±.01 36.63±.03

Bert (Devlin et al., 2019) 12.52±.02 15.76±.04 22.39±.03 37.13±.02 36.45±.05

Table 8: Different text pre-trained models.

B Architecture Details
The sign predictor, designed for predicting noise
at each step h in the diffusion process (Nichol and
Dhariwal, 2021; Arkushin et al., 2023), boasts a
streamlined network architecture with several spe-
cialized modules. Table 9 details the parameter
configurations of each module in MS2SL.
Encoders. We employ a total of five encoders
to process different types of input content. Each

encoder consists of two attention layers and a
Multi-Layer Perceptron (MLP). Attention mech-
anisms (Radford et al., 2018) in each encoder en-
able the model to focus on the most relevant fea-
tures of input data, enhancing its ability to ex-
tract and learn complex patterns. MLP further
processes those focused information to generate
embeddings et, ea, es, eh and en, introducing non-
linear transformations to add depth to the analysis
and enabling the extraction of higher-level features.
Producer. The producer is a central component
of the model, responsible for synthesizing and out-
putting the final sign predictions. MS2SL utilizes
the attention mechanism to learn the relationships
between different input content, gathered and pro-
cessed by the encoders. We utilize six multi-head
attention blocks. Finally, we also use an MLP to
transform the predicted features into coordinates
for 137 sign keypoints in How2Sign (Duarte et al.,
2021) and PHOENIX14T (Camgöz et al., 2018).

We also designed a length predictor to fore-
cast the length of the generated sign language se-
quences. By accurately predicting the sequence
length, the length predictor helps maintain the co-
herence and consistency of the model’s outputs,
ensuring they are accurate not only in content but
also in their temporal unfolding. To reduce the
overall parameters of the model, we employed sep-
arate predictors for estimating the length of the
input text and audio, respectively.

C Impacts
Sign language production technology has signifi-
cant impacts in both social and technological areas.
Socially, it greatly enhances accessible communica-
tion, improving information access and interaction
for deaf and hard of hearing individuals, especially
in daily life, education, and work environments. It
can foster social inclusiveness, aiding in the dis-
mantling of communication barriers and facilitating
the integration of the deaf community into broader
society. SLP also serves as an educational tool,
aiding deaf students in better understanding and
absorbing information and facilitating the learning
of sign language for hearing individuals. Techno-
logically, the advancement of SLP drives progress
in image recognition, natural language processing,
and machine learning. This involves tackling chal-
lenges such as multimodal learning, text and au-
dio comprehension, content generation, and data
scarcity simultaneously. We conduct cyclic con-
sistency learning on a joint embedding space, pro-
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Module Text Encoder Audio Encoder Sign Encoder Step Encoder Noise Encoder

Input text audio sign keypoints step number sign noise

Feature extraction CLIP (Radford et al., 2021) Hubert (Hsu et al., 2021) Positional Encoding nn.Embedding Positional Encoding

Embedding Generation
Attention Blk ×2 Attention Blk ×2 Attention Blk ×2 Attention Blk ×2 Attention Blk ×2

MLP MLP MLP MLP MLP

Embedding Fusion
Length prediction (MLP) -

Concatenation

Sign Prediction
Attention Blk ×6

MLP

Table 9: Network architecture of the sign predictor (§B).

viding effective insights for niche domains. It aslo
poses some potential risks, including insufficient
accuracy, cultural nuances, and misinterpretations.
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