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Abstract

Instruction tuning enhances the instruc-
tion following ability of large language
models by finetuning with supervised in-
struction data. Previous work proposes
in-context instruction tuning (ICIT) where
specific positive or negative examples are
incorporated into the prompt for better
performance. In this work, we propose
PACIT, a simple and effective in-context
instruction tuning method, inspired by the
pedagogical concept of desirable difficulty.
The PACIT method unlocks the power of
examples by encouraging the model to ac-
tively learn to grasp the distinctions be-
tween the positive and negative examples
instead of merely reading. The model is ex-
pected to first verify the correctness of the
provided example according to the task de-
scription, which is then set as the condition
for generating a better response to the task
instance. Our extensive experiments prove
the effectiveness of Pacit, outperforming
ICIT baseline on both in-domain and out-
domain tasks up to 9.16 and 3.14 average
ROUGE-L scores, respectively. Moreover,
PACIT can notably enhance the perfor-
mance of instruction tuning even when all
positive and negative examples are gener-
ated with a self-instruct method.

1 Introduction

Large language models (LLMs) have garnered sig-
nificant interest from both academia and industry
due to their superior performance on a variety of
natural language processing tasks such as question
answering and text generation. Instruction tun-
ing (IT; Ouyang et al. 2022) optimizes the pre-
trained language models with supervised instruc-
tion data to enhance the capabilities of the instruc-
tion following and zero-shot generalization to un-
seen tasks (Chung et al., 2022; Ouyang et al., 2022;
Sanh et al., 2022; Taori et al., 2023; Xue et al.,
2023). InstructGPT (Ouyang et al., 2022) pro-
poses in-context instruction tuning (ICIL) where

∗Work done during the internship at SUSTech.
†Corresponding author.

the LLM is finetuned using instruction data with
few-shot human-crafted positive examples. Su-
perNI (Wang et al., 2022) presents a variant of
in-context instruction tuning by further incorpo-
rating specified positive and negative examples in
each task. The ICIL method achieves significant
improvement compared with the vanilla zero-shot
instruction tuning method (Ouyang et al., 2022;
Wang et al., 2022; Li et al., 2023a) with the knowl-
edge from the demonstrations.

However, previous in-context instruction tuning
merely shows the specified positive and negative
examples in the prompt, without further consid-
erations for better digestion of examples. LLMs
still struggle to follow the instructions precisely in
some scenarios (Li et al., 2023b; AlShikh et al.,
2023), which hinders their further applications.

In this work, we introduce Pacit, a simple
and novel in-context instruction tuning approach
(see Figure 1) inspired by the pedagogical con-
cept of desirable difficulty (Wikipedia, 2023; Marsh
and Butler, 2013). During finetuning with Pacit
method, the model first accomplishes a quiz about
the judgment of correctness of the provided exam-
ples based on the task description, then responds
to the task instance input. By transforming the
provided example into a related quiz of the sim-
ple classification task, we encourage the model to
be actively involved in recalling correlated infor-
mation and grasping the distinction between posi-
tive and negative examples, going beyond surface-
level information. In contrast to simply reading
the examples, this approach enhances the model’s
comprehension of the task information, thereby im-
proving its ability to follow instructions.

Extensive experiments prove the effectiveness of
Pacit, outperforming ICIT baseline up to 9.16
and 3.14 average ROUGE-L (Lin, 2004) on in-
domain and out-of-domain datasets of SuperNI
(Wang et al., 2022), respectively. The Pacit still
consistently surpasses traditional methods when
the positive and negative examples are synthesized
with self-instruct (Wang et al., 2023b) by Chat-
GPT (OpenAI, 2022). Therefore, in cases that the
human-crafted positive and negative examples are
not available, the Pacit has the potential to be a
better instruction tuning strategy even for a large-
scale instruction dataset. Our contributions are
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summarized as follows:

• We propose Pacit, a simple yet effective
in-context instruction tuning method that
achieves better instruction following ability by
better grasping the differences between posi-
tive and negative examples.

• Extensive experiments demonstrate the supe-
rior performance of Pacit over competitive
baselines consistently across in-domain and
out-domain datasets.

• The Pacit also achieves better performance
than vanilla instruction tuning when the ex-
amples are all synthesized with the self-
instruct method.1

2 Related Work

2.1 Instruction Tuning

Instruction tuning (Ouyang et al., 2022) finetunes
the pretrained language models with supervised in-
struction data to enhance the instruction following
ability and enable the zero-shot generalization to
unseen tasks (Chung et al., 2022; Wei et al., 2022;
Ouyang et al., 2022; Sanh et al., 2022; Taori et al.,
2023). The instruction tuning is an essential train-
ing stage for most large language models (Ouyang
et al., 2022; Taori et al., 2023). It commonly uses
the next token prediction as the training objective.

The key to instruction tuning is the quality
and diversity of the instruction data (Zhou et al.,
2023). The instruction data used by Instruct-
GPT (Ouyang et al., 2022) is created with hu-
man experts. It can also be created with LLMs
like ChatGPT (OpenAI, 2022) with self-instruct
(Wang et al., 2023b) method. The self-instruct
method synthesizes instruction data by prompt-
ing the LLM with few-shot examples and guide-
lines to use instructional signals from the model
itself for data augmentation. The evol-instruct (Xu
et al., 2023) method further improves self-instruct
to create more diverse instruction data with vary-
ing levels of complexities. The humpback (Li et al.,
2023c) proposes to iterativly optimize the model
and generate high-quality instruction data without
the reliance on strong proprietary LLMs, similar
to the back-translation practice in machine trans-
lation. Super natural instructions (SuperNI; Wang
et al. 2022) is a benchmark that covers 76 distinct
task types of 1616 diverse NLP tasks, including but
not limited to classification, extraction, infilling,
sequence tagging, text rewriting, and text compo-
sition. Each task in the SuperNI benchmark con-
tains the task definition, task instances and exam-
ple instances. Both task instance and example in-
stance contain the input-output pairs for the task.

1The code is available at https://github.com/
XueTianci/PACIT.

The example instances have additional tags (i.e.,
positive or negative) based on the example and the
task description.

In-context instruction tuning (Ouyang et al.,
2022; Wang et al., 2022; Li et al., 2023a) finetune
the LLMs with supervised instruction data as well
as task-specific examples. The few-shot examples
used in InstructGPT are all human-crafted posi-
tive examples. Wang et al. (2022) further incorpo-
rates specified positive and negative crafted exam-
ples into the in-context instruction tuning. Li et al.
(2023a) explore the in-context instruction tuning
in the multimodal domain. Different from previous
works that simply have the model passively read
the examples, we explore to encourage the model
to actively learn about the examples via verifica-
tion the correctness of examples.

2.2 In-Context Learning

In-context learning (ICL; Liu et al. 2022; Rubin
et al. 2022; Min et al. 2022a) is a prompt-based
method that encourages the language models to
learn from the few-shot examples presented in the
model input. Researchers explore different ap-
proaches to improve the performance of ICL. Min
et al. (2022a) and Chen et al. (2022) introduce
meta-learning to better adapt the language mod-
els to ICL. Zhao et al. (2021) estimates models’
bias towards each answer and then develop con-
textual calibration to adjust the model’s output
probabilities. SG-ICL (Kim et al., 2022) proposes
to generate demonstration examples for in-context
learning from the language model itself instead of
humans. Active Prompting (Diao et al., 2023) se-
lects the most uncertain questions as demonstra-
tion examples to further improve the performance.
Min et al. (2022b) finds that replacing gold labels
with random labels only marginally hurts perfor-
mance, which indicates models learn from the ex-
ample format rather than input-label pairs. Yoo
et al. (2022) revisit previous findings of Min et al.
(2022b) and introduce novel metrics to prove that
the input-label correspondence plays a more signif-
icant role in contextual demonstration than previ-
ously considered. However, most of these methods
focus on the inference stage and explicitly show the
correctness of the demonstration examples. Our
work focuses on the instruction tuning stage.

3 Method

In this work, we focus on the in-context instruc-
tion tuning (Wang et al., 2022) where both posi-
tive and negative examples are provided as the case
in the SuperNI dataset (see Figure 1). The model
is trained to generate a response that is similar
to the positive examples while avoiding the mis-
takes in the negative ones. Conventional works
merely present these examples and their tags in the
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In this task, you need to output “Yes” 
if the given number is a prime 
number, otherwise output “No”.

Definition:

Output: “Yes” 

Output:Examples:

In this task, you need to output “Yes” 
if the given number is a prime 
number, otherwise output “No”.

Definition:

Example 1: {input: 23, output: “Yes”}
Example 2: {input: 91, output: “Yes”}
Input: 137

Examples: Output:

(a) Vanilla In-context Instruction Tuning (SuperNI (Few-Shot))

(b) Our proposed PACIT approach

Positive examples: {input: 23, output: “Yes”}
Negative examples: {input: 91, output: “Yes”}
Input: 137

Classification: “Example 1 is correct 
and example 2 is wrong. I should learn 
from correct examples and avoid these 
wrong examples. ”
Answering: “Yes”

Figure 1: The overview of Pacit. Pacit consists of two stages: Classification and Answering. (1)
Classification: Judge the correctness of each provided example based on the task description and then
take the self-reminder action (i.e., I should learn from correct examples and avoid wrong examples.). (2)
Answering: Respond to the main task instruction conditioned on the classification results. Two stages
are executed sequentially within a single data sample.

prompt following the practice of in-context learn-
ing. We propose Pacit for better in-context in-
struction tuning by unlocking the power of pro-
vided examples. The Pacit is motivated by the
pedagogical psychological concept of desirable dif-
ficulty (Marsh and Butler, 2013; Wikipedia, 2023),
which improves the long-term performance of stu-
dents by a learning task that requires a consider-
able but desirable amount of effort.

As an example of desirable difficulty, quizzing
oneself with flashcards brings better learning out-
comes than just reading the materials, as the
quizzes require students to consistently recall as-
sociated information and encourage them to learn
the material more concretely and actively. Simply
reading the materials results in lower engagement
and less attention from students. The key infor-
mation and connected knowledge of the materials
may be overlooked. In contrast, students think,
analyze and try to apply their existing knowledge
when they tackle a problem by hand. Active in-
volvement in learning enhances their understand-
ing of the knowledge, leading to better learning
outcomes.

Following the insight of desirable difficulty, the
Pacit proposes a supplementary quiz with the ex-
amples and asks the model to first accomplish the
quiz before the task mentioned in the instruction.
As shown in Figure 1, the model is required to
first classify the examples presented in the prompt
into two types, positive or negative, according to
the task description. The negative example indi-
cates the unsatisfied output for the given input for
this task, which should be avoided. After that, the
model generates the response to the instruction
based on the classification result of the provided

examples. In this way, the model actively learns
about the examples by accomplishing the related
quiz, which further facilitates the understanding
and grasp of the given task.
Consistent with SuperNI, each task has a task

description ST , a training dataset D = {(X,Y )},
and an example pool consisting of positive and neg-
ative examples. For each input-output instance
pair (X,Y ) in D, we randomly select k examples
from the example pool and determine the order
of positive and negative examples randomly. Both
the input and output of examples are presented
in the prompt (Sin

e = {Xe, Ye}), while the corre-
sponding label Le (i.e., positive or negative) is set
as the answer to the supplementary quiz and is
part of the model output (see the example in Fig-
ure 1). The ground-truth label of each example is
replaced with the ordinal number and concealed in
the input. In this way, the supplementary quiz is
designed without human effort. Each data sample
in Pacit has two stages, i.e. Classification and
Answering.

Classification The model is expected to judge
the correctness of each provided example based on
the task description during the classification stage.
The ground-truth classification result Je is created
from a template shown in Figure 1 and the exam-
ple tag Le. After giving the answer to the quiz,
the model continues to generate the correspond-
ing action to be taken Ae (e.g., “I should learn
from correct examples and avoid mistakes in the
wrong examples.”). The action serves as a self-
reminder to encourage the model to take the cor-
responding action for better performance. During
the first classification stage, the model is optimized
with the next token prediction training objective.
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The ground-truth for action Ae are human-crafted
without tuning and kept the same for all samples.
All tokens in the classification result and action are
counted for the loss calculation. Formally, the loss
of the classification stage can be represented as:

Lc = −
∑

(X,Y )∈D
logP (Je, Ae|ST , S

in
e , X; θ). (1)

Answering Based on the result of the supple-
mentary quiz Je and the corresponding action Ae,
the model is elicited to output the answer Y for in-
stance input X in the task. The answering stage is
also trained with the language modeling objective.
The corresponding training loss is calculated as

La =−
∑

(X,Y )∈D
logP (Y |ST , S

in
e , X, Je, Ae; θ). (2)

The overall training loss of Pacit is the weighted
sum of these two losses L = Lc+λLa, where λ is a
hyper-parameter to balance the two losses. During
inference, the model generates the answer in the
main task after completion of the auxiliary classi-
fication task.

4 Experiments

4.1 Experiment Setting

Dataset We conduct experiments on the
SuperNI-V2 dataset (Wang et al., 2022), an
open-source dataset comprising over 800+ English
tasks with diverse task types. Each task in the
dataset includes four components: task definition,
positive examples, negative examples and expla-
nations. To ensure consistency, we utilize the
same dataset split as SuperNI: the training set
consisting of 756 diverse tasks and a hold-out test
set containing 119 unseen out-domain tasks for
evaluation purposes. Additionally, we construct
a held-in test set that mirrors the training set’s
tasks but with different task instances to prevent
any data leakage. As the performance saturates
when the number of instances per task increases
(Wang et al., 2022), we randomly sample 60
instances for each task in the training set. For
the test set, we randomly sample 100 instances for
each task of the held-out test set and 15 instances
for each task of the held-in test set, ensuring a
comparable total number of instances for both
datasets. The statistics of our training, held-in
and held-out datasets are presented in Table 1.

Construction of Dataset. To perform in-
context instruction tuning, we construct the train-
ing dataset with data samples of the format
task definition+positive/negative examples+task
instance. For each data sample, examples are
added incrementally until the maximum input

Statistics Train Set Held-In Held-Out

Number of tasks 756 756 119
# of total instances 45360 11340 11900
Avg. # of Ex. 1.83 1.79 1.75

Table 1: Statistics of our training, held-in, and
held-out datasets. ‘Avg. # of Ex.’ denotes the
average number of examples per task.

length is reached. Specifically, given a task in-
stance, we first include the instance and its cor-
responding task definition to form a data sample.
Subsequently, we randomly select a positive ex-
ample and a negative example for the task and
gradually add them to the data sample. To pre-
vent the model from simply memorizing the corre-
sponding tags, the order of the examples is shuf-
fled. If adding an example exceeds the maximum
input length limit, the addition process is stopped.
This process results in four distinct types of data
samples: (1) Without examples: training sam-
ples without any examples. (2) Only positive
example: training samples with only one positive
example. (3) Only negative example: training
samples with only one negative example. (4) Mix-
ing examples: training samples with both posi-
tive and negative examples. The proportions of
these four types within our training data are 2.9%,
6.3%, 0.5% and 90.2%, respectively. The few-shot
inference dataset is constructed similarly, while the
zero-shot inference dataset consists of data samples
with the format task definition+task instance.

Settings and Metrics Following Kung
and Peng (2023), we utilize two variants of
T5-LM-Adapt (Raffel et al., 2020) as the back-
bones of Pacit: T5-Large-lm-adapt-770M

(T5-770M) and T5-XL-lm-adapt-3B (T5-3B).
Additionally, to evaluate Pacit with a stronger
backbone, we conduct experiments using the
LLaMA-2-7B (LLaMA2-7B) model. The λ hyper-
parameter is set as 1 when calculating the overall
training loss. During inference, we employ greedy
decoding (i.e., set the temperature to 0) following
Wang et al. (2022) to obtain the most confident
predictions from the model outputs. Given the
diversity of tasks and the open-ended generation
nature of formulation, we adopt ROUGE-L metric
(Lin, 2004) for reporting aggregated performance
results. The metric has been shown to correlate
well with accuracy for classification tasks and
human evaluation (Wang et al., 2022). Unless
otherwise specified, we report results on the
held-out dataset in the Ablation Study (Section
4.3) and Analyses (Section 5).

Training Details We use Adam optimizer with
β1 = 0.9, β2 = 0.999 to finetune the models. The
models are trained for five epochs and the last
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Model
Testing Setting →
Training Setting ↓

Held-Out Held-In

Zero-Shot Few-Shot Avg ROUGE-L Zero-Shot Few-Shot Avg ROUGE-L

T5-770M

SuperNI (Zero-Shot) 38.02 40.59 39.30 46.22 42.59 44.40
SuperNI (Few-Shot) 33.30 45.08 39.19 43.59 52.96 48.27

Pacit 33.59 46.66 40.13 44.67 53.31 48.99

T5-3B

SuperNI (Zero-Shot) 42.89 45.73 44.31 49.95 47.59 48.77
SuperNI (Few-Shot) 38.54 51.08 44.81 41.49 52.96 47.23

Pacit 43.09 52.11 47.60 47.29 55.21 51.25

LLaMA2-7B

SuperNI (Zero-Shot) 44.81 49.35 47.08 49.36 48.85 49.10
SuperNI(Few-Shot) 42.14 50.71 46.43 45.53 52.68 49.10

Pacit 45.62 53.53 49.57 54.05 62.47 58.26

Table 2: The comparison results of Pacit and baselines under zero-shot and few-shot inference settings on
hold-in and hold-out datasets. Avg ROUGE-L: we calculate the averaged ROUGE-L under zero-shot
and few-shot inference settings. Bold denotes the best result.

checkpoint is used for evaluation. The global batch
size is 64. We use the linear learning rate sched-
uler. The learning rate for T5-based models is set
to 2×10−4 following Kung and Peng (2023), while
the learning rate for LLaMA-2 is set to 2 × 10−5

following Taori et al. (2023); Chen et al. (2023b).
We set the maximum input length as 1024 and
the maximum output length as 128 for all mod-
els following Wang et al. (2022). All experiments
are run on eight NVIDIA RTX-4090 GPUs using
Huggingface Transformers2 toolkit.

Baselines We compare Pacit with two base-
lines:

• SuperNI (Zero-Shot): We formulate each data
sample as task definition+main task instance
and train with conventionally instruction tun-
ing method. No examples are used during
training for this setup.

• SuperNI (Few-Shot): We use the same train-
ing dataset as Pacit, but train with conven-
tionally in-context instruction tuning. In the
subsequent text, we may use SuperNI to de-
note this method for simplicity.

4.2 Main Results

To assess the efficacy of Pacit, we compare it with
baselines as presented in Table 2. As can be seen,
Pacit consistently outperforms SuperNI (Zero-
Shot) and SuperNI (Few-Shot) methods across the
held-in and held-out datasets. Notably, the perfor-
mance gap is more pronounced for larger models
compared to smaller model. Specifically, when uti-
lizing the T5-3B and LLaMa2-7B models, Pacit
exhibits substantial improvements over the Su-
perNI (Few-Shot) method, with average ROUGE-
L score boosts of 2.79 and 3.14 on the held-out
test set, and 4.02 and 9.16 on the held-in test
set, respectively. Conversely, smaller T5-770M

2https://github.com/huggingface/
transformers

model demonstrates only marginal increases of 0.94
and 0.72 average ROUGE-L scores. We hypothe-
size that larger models, which have stronger learn-
ing capabilities, can excavate more internal infor-
mation in demonstration examples with our pro-
posed Pacit methods. Additionally, it is note-
worthy that Pacit exhibits greater improvements
on the held-in datasets compared to the held-out
datasets, indicating its ability to significantly ben-
efit seen tasks. In the zero-shot inference setting,
SuperNI (Zero-Shot) method achieves good perfor-
mance. However, its performance sharply declines
in the few-shot setting. This discrepancy can be
attributed to the importance of maintaining consis-
tency between the training and inference settings.

To further showcase the effectiveness of PACIT,
we also assess its performance in the MMLU bench-
mark (Hendrycks et al., 2020), which includes 57
subjects at varying difficulty levels with a multiple-
choice format. The results are shown in table 3.
We can observe that PACIT significantly enhances
performance in both zero-shot and few-shot sce-
narios, boosting accuracy by 5.59% and 4.46%.
In summary, Pacit outperforms all baselines and
achieves new state-of-the-art on ICIT.

Method Zero-Shot Few-Shot Avg.

Base 28.67% 45.30% 36.99%
SuperNI 44.02% 46.76% 45.39%
Pacit 49.61% 51.22% 50.42%
∆ (%) +5.59 +4.46 +5.03

Table 3: The comparison results of Pacit and base-
lines in the MMLU benchmark. Base: The per-
formance of the original LLaMA-2 model. For the
few-shot setting, we use 5-shot as previous works
(Hendrycks et al., 2020; Fu et al., 2023).

4.3 Ablation Study

We conduct an ablation study on the training
method of Pacit. Initially, we begin with Pacit,
which consists of two training stages: classifica-
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Definition : Two analogies that relate items to the associated containers
is given in the form ” A : B . C : ?” . ” A : B ” relates item A to
its associated container B . Your task is to replace the question mark (
?) with the appropriate container for the given item C , following the ”
A : B ” relation . Positive Example 1 - Input : jam : jar . cereal :
? Output : box . Negative Example 1 - In put : detergent : bottle .
cereal : ? Output : cupboard . Now complete the following example -
Input : money : wallet . milk : ? Output : container ✗

(a) SuperNI (Few-Shot)

Definition : Two analogies that relate items to the associated containers
is given in the form ” A : B . C : ?” . ” A : B ” relates item A to
its associated container B . Your task is to replace the question mark (
?) with the appropriate container for the given item C , following the ”
A : B ” relation . Example 1 - Input : jam : jar . cereal : ? Output
: box . Example 2 - Input : detergent : bottle . cereal : ? Output
: cupboard . Now complete the following example - Input : money :
wallet . milk : ? Output : bottle ✓

(b) Pacit

Figure 2: A concrete example of attention visualization for SuperNI (Few-Shot) and Pacit methods.

tion with action, and answering. Subsequently,
we gradually remove the action after classifica-
tion (setting (2)) and the whole classification stage
to roll back to the vanilla SuperNI (Few-Shot)
method (setting (3)). To further explore the ne-

ID Method ZS FS Avg.

(1) Pacit 43.09 52.11 47.60
(2) (1)−action 41.48 51.29 46.38
(3) (2)−aux. 38.50 51.08 45.15
(4) (3)+separate aux. (w. action) 39.87 51.23 45.55

Table 4: The performance (ROUGE-L) of ablation
study variants (ZS=zero-shot inference, FS=few-
shot inference) on held-out set. Starting from
Pacit, we gradually remove the action (ID=2) and
the auxiliary classification stage (aux., ID=3) in
each data sample.

cessity of integrating classification and answering
within a single data sample, we separate a stan-
dard Pacit training data sample into two sub-
samples: a SuperNI (Few-Shot) data sample and
a classification sample of provided examples (i.e.,
judge whether these examples satisfy the require-
ments of task definition and then generate action)
(setting (4)). This setting corresponds to multi-
task learning, where the model is jointly trained
with data samples from different tasks. An illus-
trative classification sample is provided in Figure 4
of the appendix. It’s worth noting that we do not
perform classification tasks for each example but
combine multiple examples together for classifica-
tion. This strategy mitigates performance varia-
tions that may arise from disparate training task
proportions.

The results are shown in Table 4. Removing the
action leads to a decrease of 1.22 average ROUGE-
L score, and further removing the classification
stage results in an additional decrease of 1.23 av-
erage ROUGE-L score. This observation confirms
our insights regarding desirable difficulty, as the
inclusion of a supplementary quiz on the exam-
ples and an action to emphasize its importance
guides the model to enhance its learning from the
examples. Furthermore, when comparing setting
(1) and setting (4), we find that it is necessary to
integrate classification and answering within a sin-
gle data sample, as seperating them reduces per-
formance by 2.05 average ROUGE-L score.

5 Analyses

The Visualization of Attention. To better
understand how Pacit works, we conduct a case
study by visualizing the attention weights in T5-
3B model. We visualize the averaged encoder-
decoder attention weights of different heads in the
last layer of T5-3B. Figure 2 shows a concrete ex-
ample of Pacit v.s. SuperNI (Few-Shot). The
color in each figure represents the relative attention
weights. Actually, the relative attention weights is
also based on the generated classification results
and actions for PACIT. In order to show the com-
parison more clearly, we do not include them in
the figure. As can be seen, Pacit allocates more
attention to the task definition and examples’ in-
formation compared with the SuperNI (Few-Shot)
model. The attention weights from Pacit exhibit
a broader span across the prompt. This observa-
tion is expected as the classification task in Pacit
encourages the model to focus more on task def-
inition and examples, otherwise it cannot classify
examples correctly. We also manually check some
other examples which present similar patterns.

Benchmark Method Zero-Shot Few-Shot Input/Output tokens

SuperNI
SuperNI 42.14 50.71 542/20

SuperNI+SC 41.48 50.17 2750/95
Pacit 45.62 53.53 540/48

MMLU
SuperNI 44.02% 46.76% N/1

SuperNI+SC 44.37% 47.00% 5N/1
Pacit 49.61 51.22 N/1

Table 5: The performance with additional compu-
tation tokens by Self-Consistency in zero-shot and
few-shot inference settings.

The Effectiveness of Additional Computa-
tion Considering that the effectiveness of Pacit
may come from trading off the extra token com-
pute, we also compare Pacit with the Self-
Consistency(Wang et al., 2023a)(SC for short)
method in the inference stage based on LLaMA-2
model to maintain similar computational overhead.
Specifically, we conducted 5 trials per problem
for SC with temperature 0.7(Wang et al., 2023a).
More sampling results at different temperatures
can be found in the appendix B.

Table 5 shows the results of additional com-
putation tokens in MMLU and SuperNI bench-
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marks. In the SuperNI benchmark, we can observe
that when allocating additional inference compu-
tation through the SC method leads to a decline
in performance. This is because SuperNI tasks
are more open-ended (such as QA and transla-
tion), which do not have fixed answers like arith-
metic or logical reasoning. Even after sampling
five times, there are five possible different answers.
Therefore, combining these answers through SC
does not yield performance improvements. On
the contrary, A mere increase of 28 tokens per
question in the output by Pacit results in a sub-
stantial performance improvement, yielding a 3.48
and 2.8 Rouge-L score improvement in zero-shot
and few-shot settings, respectively. In the MMLU
tasks, allocating additional inference computation
through the SC method can improve the per-
formance, gaining 0.35% and 0.24% in zero-shot
and few-shot settings. However, we can also ob-
serve that PACIT still significantly outperforms
Super+SC method with the same token cost as
standard SuperNI and five times lower compared to
Super+SC(improving the accuracy by 5.59% and
4.46% in MMLU in zero-shot and few-shot set-
tings, respectively.). In summary, the performance
gain achieved by PACIT is primarily attributable
to quizzing rather than solely allocating more com-
putation. It is also worth noting that PACIT has
the same cost as the standard SuperNI. This is
because MMLU doesn’t contain the corresponding
format as the SuperNI dataset (such as task defini-
tion), and PACIT just directly answers the choice
for problems in a common way without classifica-
tion, which suggests PACIT may not necessarily
need to be consistent with the training format to
bring improvement, showing generalization ability.
This also further demonstrates that the effective-
ness of PACIT comes from the training stage by
additional auxiliary classification tasks rather than
the inference stage.

The Relationship between Classification Ac-
curacy and Model Performance. To gain in-
sights into the correlation between the auxiliary
task (i.e., classification) and main task, we ana-
lyze the training dynamics by plotting the main
task’s performance (ROUGE-L) against the aux-
iliary task’s performance (Acc). The results are
shown in Figure 3. The classification accuracy
demonstrates a strong correlation with the main
task’s ROUGE-L score, as evidenced by the slope.
Furthermore, we calculate the Pearson correlation
coefficient between these two metrics, resulting in
a high value of 0.98. While correlation does not es-
tablish causation, it does provide valuable insights
into the interpretability of Pacit.

The Effect of Classification Labels in Train-
ing and Inference Phase. Inspired by previ-
ous work on in-context learning (Min et al., 2022b;

Figure 3: The training dynamics of the main
task (ROUGE-L) v.s. the auxiliary classification
task (Acc). Acc: The accuracy of classification.
ROUGE-L: The performance of main tasks. The
five data points represent five checkpoints obtained
after each epoch.

Madaan et al., 2023; Wei et al., 2023), we suspect
Pacit utilize examples either by (a) recognizing
the task from examples and applying LLMs’ pre-
trained priors (learning the format (Min et al.,
2022b)) and/or (b) learn the input–label map-
pings from the presented examples (learning the
input-label mapping). When ground-truth labels
are provided during in-context instruction tuning,
these two factors operate simultaneously. To study
which of these factors drives performance, we com-
pare two training settings:

• Ground-Truth: The true classification la-
bels are used, which is the standard setup of
Pacit.

• Random: The classification labels are uni-
formly sampled from the label space. In this
setup, LLMs can only learn the format.

Table 6 shows the results. At the inference
stage, in addition to the standard inference setup
of Pacit that generates classification labels from
the model (Generated), we also explore Ground-
Truth and Random variants. As can be seen,
Pacit with Ground-Truth training setting exhibits
a significantly greater improvement over Random
training setting on large model (T5-3B) compared
to small model (T5-770M). This observation re-
minds us previous research on in-context learning,
which suggests that learning the format is a
broader capability across scales, while learn-
ing the input-label mapping is enabled with
scale (Wei et al., 2023; Pan et al., 2023;
Kossen et al., 2023). We speculate that large
model is better at learning input-output mapping
than small model for Pacit. When comparing
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Model
Testing Setting →

Zero-Shot
Few-Shot

Training Setting ↓ Generated Ground-Truth Random

T5-770M

SuperNI (Ground-Truth) 33.30 - 45.08 45.26
SuperNI (Random) 30.66 - 43.54 43.48

Pacit (Ground-Truth) 33.58 46.66 46.67 46.72
Pacit (Random) 34.23 46.17 46.10 46.11

T5-3B

SuperNI (Ground-Truth) 38.54 - 51.08 51.25
SuperNI (Random) 36.71 - 49.12 48.92

Pacit (Ground-Truth) 43.09 52.11 52.17 52.07
Pacit (Random) 33.52 45.76 46.14 46.11

Table 6: The Performance (ROUGE-L) on held-out set with different classification labels in the training
and inference time. We compare two training settings and three inference settings for the labels of
few-shot examples in each data sample. Generated: classification labels generated from the model;
Ground-Truth: true classification labels; Random: randomly sampled classification labels.

Model
Testing Setting →
Training Setting ↓ Zero-Shot Few-Shot Avg. ROUGE-L

T5-770M

SuperNI (1 pos and 1 neg) 33.30 45.08 39.19
SuperNI (2 pos and 2 neg) 30.75 45.82 38.28
Pacit (1 pos and 1 neg) 33.59 46.66 40.13
Pacit (2 pos and 2 neg) 28.66 45.85 37.26

T5-3B

SuperNI (1 pos and 1 neg) 38.54 51.08 44.81
SuperNI (2 pos and 2 neg) 35.72 49.64 42.68
Pacit (1 pos and 1 neg) 43.09 52.11 47.60
Pacit (2 pos and 2 neg) 38.92 51.41 45.17

Table 7: The performance (ROUGE-L) on held-out set with different numbers of demonstration examples
in zero-shot and few-shot inference settings. N pos and M neg: There are N positive examples and M
negative examples in each training sample at most.

different inference setups, we find that the model
tuned by Pacit is insensitive to labels at the infer-
ence stage for both small and large models. This
aligns with previous work’s (Wei et al., 2023) obser-
vation that instruction-tuned models rely more on
their own semantic priors so that they are less in-
fluenced by the labels presented in examples when
conducting few-shot inference. For SuperNI, we
find that random labels at training time influence
small and big models similarly. We leave more in-
depth studies as future work.

The Influence of Number of Demonstration
Examples. Humans can improve their ability to
complete downstream tasks by learning from more
demonstration examples. Therefore, we construct
experiments to explore whether more examples in
each data sample lead to better performance. Since
the average number of positive examples and neg-
ative examples of the SuperNI dataset are 2.8 and
2.4, we cannot conduct experiments with a max-
imum number of examples greater than 3. The
results are shown in Table 7. We use the same
number of demonstration examples in both train-
ing and few-shot inference time. Overall, more ex-

amples consistently lead to performance degrada-
tion for both SuperNI and Pacit in zero-shot and
few-shot settings. For example, the performance
of Pacit on T5-770M and T5-3B drops by 2.86
and 2.43 average ROUGE-L when switching from
a pair of positive and negative examples to two
pairs, respectively. We suspect with more demon-
stration examples, Pacit as well as SuperNI could
be misguided by interference among examples and
their spurious correlations. A similar phenomenon
has been observed in in-context learning. We refer
the readers to Chen et al. (2023a) for more detailed
discussions.

The Performance of Pacit with Generated
Examples. A limitation of Pacit is its reliance
on positive and negative examples during train-
ing. However, the positive and negative exam-
ples are not readily available for many instruc-
tion datasets. As human annotation is expen-
sive and time-consuming, we tackle the problem
by leveraging automatically generated examples
from LLM. Specifically, we generate examples with
the self-instruct (Wang et al., 2023b) method,
which is a framework for improving the instruction-
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Model
Testing Setting →
Training Setting ↓ Zero-Shot Few-Shot Avg ROUGE-L

T5-770M
SuperNI (Zero-Shot) 32.66 37.50 35.08
SuperNI (Few-Shot) 23.08 40.54 31.81

Pacit 32.62 41.16 36.89

T5-3B
SuperNI (Zero-Shot) 37.63 41.53 39.58
SuperNI (Few-Shot) 36.38 43.09 39.73

Pacit 37.95 44.23 41.09

Table 8: The Performance (ROUGE-L) with generated examples (by Self-Instruct) in zero-shot and few-
shot inference settings.

following capabilities of LLMs by bootstrapping off
their own generations. We choose the ChatGPT
(gpt-3.5-turbo-0613) as the backbone LLM and
set the temperature to 0.7 to improve the diver-
sity of generated data. To create our example seed
pool, we randomly select eight pairs of positive and
negative examples in total from all examples of dif-
ferent tasks. For each generation, we construct the
prompt with task definition and few-shot demon-
strations to generate new pairs of positive and neg-
ative examples. The few-shot demonstrations con-
sist of four pairs of positive and negative examples
and their corresponding task definitions randomly
sampled from the seed pool. In this way, we re-
duce the number of annotated training examples
from 1384 to 8. Due to the API expense of the
proprietary LLM, we only construct 5040 training
samples (84 different tasks with 60 training sam-
ples each). The entire data template for generating
new positive and negative examples is shown in the
appendix A (see Figure 6).

The performance with generated examples is
shown in Table 8. As can be seen, with generated
examples, Pacit improves over baseline without
any examples (SuperNI (Zero-Shot)) by 1.81 Avg
ROUGE-L on T5-770M and 1.51 Avg ROUGE-L
on T5-3B, and vanilla in-context instruction tun-
ing baseline (SuperNI (Few-Shot)) by 5.08 Avg
ROUGE-L on T5-770M and 1.63 Avg ROUGE-L
on T5-3B. These results are particularly impres-
sive considering that the quantity of our samples
accounts for only 11% of the samples used in the
main experiment and the generated examples from
self-instruct are noisy (Wang et al., 2023b). Fur-
thermore, we find that the improvement brought
by Pacit over SuperNI (Zero-Shot) is larger for
T5-770B compared with T5-3B. This finding con-
trasts with the main experiments, where T5-3B
exhibits an additional 2.46 average ROUGE-L im-
provement over T5-770M. This disparity can be
attributed to small model’s limited ability to learn
from the input-label mapping, as its performance
is less affected by noisy labels generated by self-
instruct.

6 Conclusions

In this paper, we introduce Pacit, an effective in-
context instruction tuning approach that unlocks
the power of examples to enhance the instruction
following ability of LLMs. Inspired by the peda-
gogical observations, Pacit proposes to encourage
the model to actively learn and comprehend the
differences between the provided positive and neg-
ative examples rather than passively reading them.
The model completes a quiz to assess the correct-
ness of examples first and subsequently responds
to the main task instruction based on the grasp of
the examples. Experiments on SuperNI dataset
demonstrate the superior performance of Pacit
over competitive baselines. In our preliminary ex-
periment, Pacit is observed to improve the per-
formance of instruction tuning with positive and
negative examples created with the self-instruct
method, which shows a promising approach for
better instruction tuning with large-scale instruc-
tion data. However, the generated examples with
self-instruct method need further filtering to en-
hance the performance of Pacit as the noisy exam-
ples may have negative impact on the performance.
We leave the exploration of filtering the augmented
data as well as scaling Pacit to larger models like
LLaMA-2-13B, LLaMA-2-70B and larger datasets
as future work.

7 Limitations

The proposed Pacitmethod requires both positive
and negative examples which are not readily avail-
able for many instruction datasets. These exam-
ples can be created with human efforts, resulting in
additional expenses. They can also be synthesized
with self-instruct method or other LLM-based data
augmentation methods. In this case, the generated
data samples need to undergo additional filtering
following the common practice of data augmenta-
tion.
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A Data Templates

1. Data Template for Pacit. Our proposed
Pacit method takes the task definition, examples
and instance input as the prompt. The model first
generates the response to the auxiliary classifica-
tion task and corresponding action of the provided
examples. Based on the quiz result and action to
be taken, the model then produces the outputs for
the instance input for the given task.

Task Definition: {{definition}}
Example 1
- Input: {{exp.input}}
- Output: {{exp.output}}
Example 2
- Input: {{exp.input}}
- Output: {{exp.output}}
Evaluation Instance
- Input: {{exp.input}}

Classification
- Classification result: {{Example 1
is correct/wrong and example 2 is cor-
rect/wrong.}}
- Generated action: {{I should learn
from correct examples and avoid the mis-
takes in these wrong examples.}}

Answering
- Output: {{exp.output}}

Figure 4: The data template used for Pacit
method.
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2. Data Template Used when Separat-
ing Two Stages of Pacit. The data template
shown in Figure 4 is used when the model is trained
with separated classification and few-shot answer-
ing in Section 4.3. In this case, the model will
only verify the correctness of provided examples in
the classification sub-task instead of one stage of
Pacit.

Task Definition: {{definition}}
Example 1
- Input: {{exp.input}}
- Output: {{exp.output}}
Example 2
- Input: {{exp.input}}
- Output: {{exp.output}}
Judge whether each example conforms to
the task definition.

- Prediction: {{Example 1 is cor-
rect/wrong and example 2 is cor-
rect/wrong. I should learn from cor-
rect examples and avoid mistakes in the
wrong examples.}}

Figure 5: The data template used for the classifica-
tion task when training with separated two stages.

2. Data Template for Generating Exam-
ples with Self-Instruct. When generating pos-
itive and negative examples with the Self-instruct
method, we randomly select four pairs of positive
and negative examples in total from all examples of
different tasks in the SuperNI dataset as in-context
learning examples. We use ChatGPT (gpt-3.5-
0613) to generate a positive and negative example
pair based on the prompt shown in Figure 6.

Few-Shot Demonstrations:
Demonstrated Task Definition:
{{definition}}
Positive Example
- Input: {{exp.input}}
- Output: {{exp.output}}
Negative Example
- Input: {{exp.input}}
- Output: {{exp.output}}
......
Generated Examples:
Task Definition: {{definition}}

Positive Example
- Input: {{gen.input}}
- Output: {{gen.output}}
Negative Example
- Input: {{gen.input}}
- Output: {{gen.output}}

Figure 6: The data template for generating posi-
tive and negative examples with the Self-instruct
method.

B Different sampling temperatures

Table 9 shows the influence of different sampling
temperatures on the SC results. Due to the open-
ended format of the SuperNI task, sampling multi-
ple times and selecting the most consistent answers
will not improve performance and even lead to a
slight decrease. Additionally, as the sampling tem-
perature increases, performance decreases further.
This may be due to increased diversity leading to
uncertainty in the answers.

Temperature Zero-Shot Few-Shot Avg

0.0 42.14% 50.71% 46.43%
0.3 41.92% 50.70% 46.31%
0.5 41.75% 50.49% 46.12%
0.7 41.48% 50.17% 45.83%
PACIT 45.62% 53.53% 49.58%

Table 9: The performance with Self-Consistency
at different temperatures in zero-shot and few-shot
inference settings.
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