
Findings of the Association for Computational Linguistics: ACL 2024, pages 4666–4682
August 11-16, 2024 ©2024 Association for Computational Linguistics

SPIN: Sparsifying and Integrating Internal Neurons
in Large Language Models for Text Classification

Difan Jiao♣∗ Yilun Liu♦∗

Zhenwei Tang♣ Daniel Matter♦ Jürgen Pfeffer♦ Ashton Anderson♣

♣University of Toronto, Canada ♦Technical University of Munich, Germany
difanjiao@cs.toronto.edu yilun.liu@tum.de josephtang@cs.toronto.edu

{daniel.matter, juergen.pfeffer}@tum.de ashton@cs.toronto.edu

Abstract

Among the many tasks that Large Language
Models (LLMs) have revolutionized is text clas-
sification. Current text classification paradigms,
however, rely solely on the output of the final
layer in the LLM, with the rich information con-
tained in internal neurons largely untapped. In
this study, we present SPIN1: a model-agnostic
framework that sparsifies and integrates inter-
nal neurons of intermediate layers of LLMs for
text classification. Specifically, SPIN sparsifies
internal neurons by linear probing-based salient
neuron selection layer by layer, avoiding noise
from unrelated neurons and ensuring efficiency.
The cross-layer salient neurons are then inte-
grated to serve as multi-layered features for the
classification head. Extensive experimental re-
sults show that our proposed framework can
significantly improve text classification accu-
racy, efficiency, and interpretability.

1 Introduction

Large Language Models (LLMs) have achieved
state-of-the-art performance in a wide spectrum of
important tasks, including text classification such
as sentiment analysis (Srivastava et al., 2022). Al-
though prompting methods (Wei et al., 2022; Ko-
jima et al., 2022) have gained popularity in de-
ploying LLMs for text classification, employing
a classification head with these models remains
a dominant paradigm, mainly due to its superior
performance in specific tasks (Chang et al., 2023).

This prevailing paradigm directly uses the ter-
minal hidden states from models that are either
pretrained on general tasks or fine-tuned for spe-
cific tasks. However, it is fundamentally limited in
several ways. First, the implicit internal structures

∗ Equal contribution.
1Code repository and interactive web demo are publicly

available via https://github.com/difanj0713/
SPIN and https://liuyilun2000.github.io/
spin-visualization/

that contribute to LLMs’ impressive performance
is neglected, forgoing potential performance gains.
Second, achieving competitive performance often
necessitates fine-tuning LLMs for the task at hand,
which in turn can be computationally expensive.
Third, this approach inherently lacks interpretabil-
ity, since it treats models as black boxes. As the
demand grows for models that not only perform
well but are also interpretable and cost-efficient to
train and run, moving beyond the current paradigm
is becoming increasingly important.

We have reason to believe that delving into the
internal of LLMs would bear fruit. As recent stud-
ies in AI interpretability (Radford et al., 2017; Bills
et al., 2023; Gurnee and Tegmark, 2023) have re-
vealed, internal representations of artificial neural
networks are remarkably adept at capturing essen-
tial features, yet the full potential of these insights
in the realm of text classification awaits further
exploration and demonstration.

In this work, we introduce SPIN: a model-
agnostic framework that sparsifies and integrates
internal neurons of intermediate layers of LLMs for
text classification. As shown in Figure 1, instead of
relying solely on the final layer’s hidden states, our
method uses internal representations (feed-forward
network activations and hidden states) as multi-
layered features to enhance the classification head.
These raw internal representations require further
processing before being utilized, as internal neu-
rons do not contribute equally to predictions. Irrel-
evant neurons that introduce noise and extraneous
information can be counterproductive, potentially
diluting the impact of crucial features. Therefore,
SPIN employs a linear probing based method to se-
lect salient neurons layer by layer, effectively spar-
sifying the internal representation. The selected
neurons are then integrated across layer to serve
as curated multi-layer features for text classifica-
tion, ensuring that the textual features encompass a
full spectrum from lower-level, simpler concepts to

4666

https://github.com/difanj0713/SPIN
https://github.com/difanj0713/SPIN
https://liuyilun2000.github.io/spin-visualization/
https://liuyilun2000.github.io/spin-visualization/


Layer 𝐿

Hidden states layer 𝑳

Layer 1

Hidden states layer 𝟏

Tokenizer

Hidden states layer 𝟎

Feed-Forward Network

Multi-head self-attention

Feed-Forward Network

Multi-head self-attention

Embedding

Input

LLM

SPIN

Linear

Probing

Salient Neuron 

Selection

𝑾 𝑙
 ∗

𝜂

Neuron

Integration

Internal 

Representation

𝒙𝑙
∗

Pooling

𝒙

Terminal 

hidden states
Pooling

𝒙𝐿 Classification 

Head

(a)

(b)

Base

Figure 1: Overview of (a) baseline method that only uses the terminal hidden states; (b) SPIN that uses sparsified
and integrated internal neurons from each intermediate layers to feed the classification head.

higher-level, more complex understandings across
the hierarchical learning architecture of LLMs.

SPIN presents multiple advantages that distin-
guish it in the realm of text classification with
LLMs. Primarily, its model-agnostic nature allows
it to be employed upon various LLMs as a plug-and-
play component. Also, the use of curated internal
representations as features enables SPIN to out-
perform conventional methods that rely solely on
the terminal outputs. When applied on pretrained
models, SPIN can achieve performance compara-
ble to state-of-the-art baseline methods that involve
fine-tuning LLMs, accomplished by significantly
improved training efficiency. This is achieved by
requiring only forward passes with LLM weights
untouched, and limiting trainable parameters to
probing and the classification head, making SPIN a
cost-effective alternative to fine-tuning for text clas-
sification. In terms of inference efficiency, SPIN
enables early exiting, with up to 99% of the per-
formance preserved from processing only 60% of
LLM layers, significantly speeding up the inference
process. Additionally, with its white-box approach
of linear probing on internal neurons, SPIN en-
hances both intrinsic and post-hoc interpretability.

Our main contributions are summarized as:

• We propose SPIN, a model-agnostic text clas-
sification framework that leverages sparsified
and integrated internal neurons from interme-
diate layers of LLMs, moving beyond conven-
tional reliance on terminal hidden states;

• We conduct extensive experiments to demon-
strate SPIN’s superior performance, improved

efficiency in training and inference, and en-
hanced intrinsic and post-hoc interpretability
in text classification.

2 Methodology

2.1 Overview

In contrast to conventional text classification meth-
ods that rely exclusively on the output from the final
layer of LLMs (as in Figure 1 (a)), SPIN utilizes
internal representations from intermediate layers
of LLMs for text classification. As shown in Fig-
ure 1 (b), SPIN first sparsifies internal neurons with
linear probing-based salient neuron selection to ex-
clude noise from unrelated neurons and enhance
efficiency. The cross-layer salient neurons are then
integrated to serve as multi-grained features for the
classification head.

2.2 Neuron Sparsification

The internal representations from all layers of a
LLM can be obtained in a single forward pass.
However, these raw representations require further
processing before they can be effectively utilized
for integrated multi-grained text classification. This
necessity arises from the fact that not every internal
neuron contributes uniformly to text classification
tasks within a particular domain. Additionally, un-
related neurons can be detrimental because they
may introduce noise and unnecessary information,
which could potentially weaken crucial features.
Consequently, we pinpoint and select neurons that
exhibit the highest salience and utility for the tar-
geted task.

4667



LLM Internal Representations. We first extract
layer-wise internal representations from LLMs:

xl = Extract(LLM∣s) ∈ RL×D
, (1)

where the internal representation of the l
th layer

xl is obtained by extracting the hidden states, i.e.,
the output of each transformer layer with dimen-
sion Dhs, or the activations, i.e., intermediate repre-
sentation within the feed-forward network of each
transformer layer with dimension Dact, of the LLM
given the input sentence s with length L. Hidden
states and activations are extensively utilized as
internal representations in interpretability research,
as evidenced by various studies (Durrani et al.,
2020; Burns et al., 2022; Gurnee and Tegmark,
2023) for hidden states, and (Bills et al., 2023;
Gurnee et al., 2023) for activations. We thus treat
the selection of the internal representation as a hy-
perparameter, i.e., D ∈ {Dhs, Dact}. The pooling
operation is subsequently applied to ensure fixed-
dimension internal representations for sentences of
variant lengths.

x
∗
l = Pooling(xl) ∈ RD

, (2)

where x∗
l denotes the extracted and pooled internal

representation.

Linear Probing. We apply linear probing (Alain
and Bengio, 2016) to identify the salient neurons in
each layer of LLMs for the targeted task. This ap-
proach is well-established for interpretability stud-
ies in LLMs (Dalvi et al., 2019; Suau et al., 2020;
Wang et al., 2022; Gurnee et al., 2023), which em-
ploys a simple linear model to interpret the saliency
of neurons within neural networks by training on
their frozen internal representations for specific
tasks. Linear probing suits our needs for two key
reasons. First, its effectiveness is supported by the
linear representation hypothesis, that neural net-
work features are linearly represented (Mikolov
et al., 2013a,b; Elhage et al., 2022). This suggests
that linear models are sufficiently complex to cap-
ture the nuanced relationships within internal neu-
rons. Second, its inherent simplicity ensures that
our focus remains on frozen internal representa-
tions as task-relevant features, rather than on learn-
ing additional task-specific dynamics upon them.
This facilitates our subsequent salient neuron selec-
tion process.

Specifically, we use the frozen internal repre-
sentation of each layer x

∗
l,i as features of input

sentence si to train layer-wise linear models for the
targeted task:

minWl,bl
1
N
∑N

i=1 L(yi, σ(Wlx
∗
l,i + bl)) + λ∑j ∣∣wl,j∣∣1,

(3)
where σ(⋅), λ, and N represent the sigmoid func-
tion, the regularization coefficient, and the number
of training sentences, respectively. The weights
and bias of the linear model Wl and bl are learned
by optimizing the linear model with the binary
cross-entropy loss L with label yi. By using
L1-regularized (Lasso) logistic regression, i.e.,
adding λ∑j ∣∣wl,j∣∣1, the magnitude of the learned
weights Wl can be interpreted as indicators of the
relative importance or contribution of each neu-
ron to the prediction (Guyon and Elisseeff, 2003;
Ng, 2004). In particular, larger weights signify a
greater influence on the model’s output, thereby
marking those neurons as particularly salient for
the targeted task. Additionally, the use of Lasso lo-
gistic regression encourages the sparsity of model
weights, thereby enhancing the distinction between
salient and non-salient neurons (Tibshirani, 1996).

Salient Neuron Selection. Then we gather the
identified salient neurons. The learned weights are
first normalized to enhance fair selection.

ŵl,i =
∥wl,i∥

∑∣Wl∣
j=1 ∥wl,j∥ , i = 1, 2, . . . , ∣Wl∣, (4)

where ŵl,i denotes the normalized weight of the
i
th element in the linear probing weights Wl. Fol-

lowing normalization, the selection of salient neu-
rons is guided by the sparsification threshold η,
which serves as a metric for determining the cu-
mulative contribution of the most significant neu-
rons. Specifically, we select the largest ŵl,i until
their cumulative summation reaches the η. This
step involves sorting ŵl,i in descending order to
obtain Ŵ

↓
l and identifying the smallest subset

Ŵ
∗
l ⊆ Ŵ

↓
l whose cumulative sum is at least η:

∑
ŵl,i∈Ŵ ∗

l

ŵl,i ≥ η. (5)

The internal neurons are then sparsified based on
their saliency, identified as follows:

Nl = {i ∣ ŵl,i ∈ Ŵ
∗
l }, (6)

where Nl denotes the positions of the salient neu-
rons in layer l, highlighting those most relevant for
the text classification task based on their normal-
ized weights.

4668



2.3 Neuron Integration
LLMs exhibit a hierarchical learning structure that
they transit from encoding lower-level, simpler
concepts to capturing higher-level, more complex
understandings across their layered architecture,
and the internal neurons inherently encapsulate a
wealth of information. Following the sparsifica-
tion of internal neurons from each respective layer,
we proceed to integrate them as cross-layer multi-
grained representations into the classification head:

min
W ,b

1

N

N

∑
i=1

L(yi, σ(Wxi + b)), (7)

Conventional LLM-based text classifiers regard the
pooled hidden states of the final layer as frozen
features of the ith input sentence si, i.e., the textual
features xi = x

∗
L,i, where L denotes the total num-

ber of stacked layers in the LLM. The final layer,
while representing the LLM’s cumulative under-
standing into a single output, might overlook or un-
derutilize the nuanced and specialized knowledge
encoded in the internal neurons of intermediate
layers. Therefore, SPIN employs the cross-layer
integrated representation as multi-grained features
for classifying the i

th input sentence si:

xi =
L

⨁
l

{x∗
l,i,j∣j ∈ Nl}, (8)

where ⨁ denotes the concatenation operation.

3 Experiments

We conduct extensive experiments to evaluate our
proposed SPIN framework for text classification,
focusing on three key dimensions: performance,
efficiency, and interpretability.

3.1 Experimental Setup
Datasets. We use three well-established bench-
mark datasets for text classification. Namely IMDb,
a widely used movie review dataset for binary senti-
ment classification, SST-2, a fine-grained sentiment
analysis dataset with binary labels of the sentiment
polarity, and EDOS, a unique dataset with scenarios
and outcomes related to ethical dilemmas, labeled
by sentiment toward the ethicality of the outcomes.
For IMDb and EDOS, we use the provided dataset
splits for training, validation, and testing. Whereas
SST-2 does not provide ground truth labels of the
test set, we thus randomly select 20% data from the

training set for validation and use their provided
validation set for testing.

More details and the statistics of datasets can be
found in Appendix A.1 and Table 6. A discussion
about implementing SPIN for multiclass classifica-
tion tasks is detailed in Appendix C.2.

Language Models. We consider representative
pre-trained LLMs of mainstream architectures,
including encoder-based models (BERT vari-
ants), decoder-based models (GPT-2 variants), and
encoder-decoder models (T5 variants). As contem-
porary LLMs continue to scale in size, we demon-
strate SPIN’s scalability on LLaMA2-7B and 13B
in Appendix C.3.

Baselines. As shown in Eq.(7), a classification
head on top of the frozen terminal hidden states
is trained for text classification2. In particular,
encoder-based and decoder-based methods com-
monly employ the hidden states associated with
the [CLS] token and the final token as the frozen
textual features, respectively. For encoder-decoder
models, the encoder is optimized for understanding
and representing input text, unlike decoders, which
are designed to generate text based on the encoded
representations. For text classification, where the
goal is to understand input text rather than generate
new text, the encoder’s final layer is naturally the
most relevant source of features. Therefore, the
classification head is built on the pooled hidden
states of each encoder-decoder model’s final en-
coder layer. In the subsequent sections, we refer to
these baseline methods as Base.

It is important to note that the baseline classifi-
cation head undergoes supervised training with the
true labels from the datasets, distinguishing it from
zero or few-shot prompting methods (Wei et al.,
2022; Kojima et al., 2022).

Implementation Details. We conduct a grid
search to optimize the hyperparameter settings of
SPIN, including the Lasso regularization coeffi-
cient λ, the sparsification threshold η, the choice
of pooling strategy, and the choice of internal rep-
resentations (hidden states or FFN activations, as
described in Section 2.2). The ranges for the grid
searching and the optimal hyperparameter settings
can be found in Table 7 and Table 8 in Appendix
A.2. For performance comparisons, we adhere to

2For the detailed implementations, we refer to https:
//github.com/huggingface/transformers/
tree/v4.37.2/src/transformers/models

4669

https://huggingface.co/datasets/imdb
https://huggingface.co/datasets/sst2
https://github.com/rewire-online/edos
https://github.com/huggingface/transformers/tree/v4.37.2/src/transformers/models
https://github.com/huggingface/transformers/tree/v4.37.2/src/transformers/models
https://github.com/huggingface/transformers/tree/v4.37.2/src/transformers/models


IMDb (Acc.) SST-2 (Acc.) EDOS (Macro F1)

Base SPIN %impr. Base SPIN %impr. Base SPIN %impr.

DistilBERT 86.95 89.78 +3.25 81.88 83.94 +2.52 65.09 75.79 +16.44
RoBERTa 89.67 93.61 +4.39 84.06 90.59 +7.77 68.81 73.50 +6.82
GPT2 87.72 91.94 +4.81 85.89 87.73 +2.14 68.57 76.08 +10.95
GPT2-M 88.59 93.92 +6.02 86.12 90.25 +4.80 71.17 75.74 +6.42
GPT2-XL 91.86 94.92 +3.33 90.02 93.23 +3.57 72.56 76.79 +5.83
Flan-T5-S 84.08 91.15 +8.41 77.17 88.99 +15.32 59.62 74.51 +24.97
Flan-T5 90.01 94.14 +4.59 78.26 92.32 +17.97 66.64 78.04 +17.11
Flan-T5-XL 90.50 96.12 +6.21 84.75 95.64 +12.85 70.08 81.48 +16.27

SoTA 96.21 97.50 82.35

Table 1: Performance of SPIN and baseline method (Base) over pretrained LLMs, with the state-of-the-art fine-tuned
model performance (SoTA) for each dataset. %impr. denotes percentages of improvement. The best results (except
for SoTA) and the largest %impr. are in boldface.

the official evaluation metrics specified by each
benchmark dataset. In particular, we employ ac-
curacy as the metric for IMDb and SST-2, and
Macro-F1 for evaluations on EDOS.

3.2 Results and Analysis

3.2.1 SPIN Performance
Performance Improvement. We develop SPIN
on top of various mainstream model architec-
tures, including encoder-based models (BERT vari-
ants), decoder-based models (GPT-2 variants), and
encoder-decoder models (T5 variants), demonstrat-
ing SPIN is compatible with a wide spectrum of
pre-trained LLMs. As the results shown in Ta-
ble 1, each version of SPIN consistently outper-
forms the corresponding baseline method across all
benchmark datasets. Specifically, the performance
improvement is as much as 25% on EDOS com-
pared to the baseline method on Flan-T5-S. Even
for larger and more advanced models that are al-
ready performing well, SPIN can still be a highly
effective plug-and-play component to boost the per-
formance, e.g., Flan-T5-XL on IMDb improved by
6% with SPIN. Therefore, as long as the model
weights and architecture are provided, it is promis-
ing to use SPIN as a model-agnostic component for
further performance improvement.

3.2.2 SPIN and Fine-tuning
In this section, we briefly discuss the comparabil-
ity and compatibility of SPIN with full fine-tuning
LLMs for text classification tasks. For the analysis
of SPIN in conjunction with Parameter-Efficient
Fine-Tuning (PEFT) techniques, a detailed discus-
sion is provided in Appendix C.1.

Comparability. We compare SPIN with the state-
of-the-art fine-tuned models on XLNet (Yang et al.,

3.82T

7.19T

8.74T

96.2T

13.7T

149T

3.90T

7.39T

8.93T

99.6T

14.0T

152T

10.1T

18.8T

20.6T

242T

37.2T

428T

10T 100T 10 15 

Flan-T5-XL

Flan-T5

GPT2-XL

GPT2

RoBERTa

DistilBERT Base SPIN Fine-tuning

Floating point operations

Figure 2: Floating point operations cost for training of
baseline, SPIN, and full fine-tuning on different models.
The cost of SPIN is estimated on FFN activations with
η = 0.5, and the cost of fine-tuning is estimated based
on the lowest demand assumption of 1 epoch.

2019b) for IMDb, T5-11B (Raffel et al., 2020) for
SST-2, and DeBERTa-v3-base (He et al., 2021) for
EDOS. As shown in Table 1, the best performing
SPIN upon the considered models can approximate
the SoTA performance, e.g., SPIN with Flan-T5-
XL achieves 99.91% of the performance of XLNet
fine-tuned on IMDb.

In particular, SPIN can adapt to the targeted
task without back-propagation and parameter up-
dates on pre-trained LLMs. It utilizes frozen LLM
weights and limits the parameter learning process
to the classification head, thus having significantly
fewer trainable parameters, as discussed in Ap-
pendix B.1. This results in reduced storage require-
ments for hosting the model and potentially less
data needed to effectively achieve optimal learning
under the scaling law (Brown et al., 2020; Hoff-
mann et al., 2022).

SPIN’s better training efficiency is also evi-
denced by Figure 2, where we compare the theoret-
ical computational cost within the training phase

4670



IMDb SST-2 EDOS

Base SPIN Base SPIN Base SPIN

DistilBERT 92.80 92.88 91.05 91.19 78.74 81.12
RoBERTa 94.67 95.68 94.03 94.38 80.48 80.88
GPT2 94.06 94.50 91.51 92.32 — —

Table 2: Performance of SPIN and baseline method
(Base) over published fine-tuned LLMs. GPT2 fine-
tuned on EDOS is not publicly available.

20% 40% 60% 80% 100%

DistilBERT 85.20 84.73 87.45 88.67 89.78
RoBERTa 87.06 89.72 93.13 93.50 93.61
GPT2 87.51 89.00 91.10 91.88 91.94
GPT2-M 88.52 91.36 93.36 93.92 93.92
GPT2-XL 89.66 93.15 94.73 94.92 94.92
Flan-T5-S 82.88 87.74 90.93 91.32 91.32
Flan-T5 84.58 92.55 94.14 94.14 94.14
Flan-T5-XL 89.21 95.28 96.12 96.12 96.12

Table 3: Performance of SPIN on IMDb with early-
exiting at different percentages of LLM layers used.

of SPIN and fine-tuning with floating-point opera-
tions (Kaplan et al., 2020), with detailed estimation
in Appendix B.2. This reduced need for extensive
parameter updates, i.e., SPIN only requires slightly
more computations than forward passes, ensures
SPIN’s scalability and accessibility, making it a
viable option for applications with limited compu-
tational resources.

Compatibility. On the other hand, we can ide-
ally build SPIN upon fine-tuned models to further
improve its performance. However, the specific
weights and architecture used to achieve SoTA re-
sults on the corresponding datasets are not publicly
available, which are required for the development
of SPIN. Therefore, we use publicly accessible fine-
tuned LLMs for this purpose. As shown in Table 2,
SPIN consistently outperforms the corresponding
baseline results across all datasets, demonstrating
its effectiveness when applied to already fine-tuned
and well-performing models. A rigorous statis-
tical analysis confirming the significance of this
improvement is provided in Appendix C.5.

The scarcity of larger task-specific fine-tuned
models here primarily due to the industry’s shift of
interest towards developing general-purpose LLMs,
driven by the expensive costs of fine-tuning for spe-
cific tasks. This trend underscores the critical need
for developing lightweight and scalable approaches,
such as our proposed SPIN, to adapt LLMs to spe-
cialized tasks without incurring significant data and
computational burdens.

Figure 3: Activation probability distributions for individ-
ual salient neurons and integrated classifier at different
layers of GPT2-XL. (Top) Distributions of SPIN with
integrating neurons up to the specified layer, along with
accuracy scores in text classification. (Bottom) Distri-
butions of the most salient neurons according to their
importance attributed by layer-wise neuron selection.
Red regions indicate predictions for negative samples,
and green regions for positive ones.

3.2.3 Inference Efficiency

The cost for inference is crucial for real-world
model deployment. We evaluate the effectiveness
of SPIN with early-exit, such that predictions are
made before the entire forward pass finishes (Pope
et al., 2023; Bae et al., 2023; Chen et al., 2023).
In particular, only the internal neurons of part of
the layers are sparsified and integrated to feed the
classification head. As shown in Table 3, SPIN en-
ables early exiting in the top 60% of layers, which
ensures up to 99% of the performance achievable
when using all layers, significantly speeding up the
inference process while maintaining high accuracy.

3.2.4 Interpretability

Intrinsic Interpretability. The exploration of
the internal mechanisms of LLMs has laid a ro-
bust groundwork, from which we could investigate
the rich interpretable data embedded within LLM
neurons that is exploited by our SPIN framework.
The sparsification process of SPIN can be viewed
as a filtering of neurons, with both the training of
linear regressors and the selection of salient neu-
rons based on weight importance criteria inherently
holding interpretability (Guyon and Elisseeff, 2003;
Ceci et al., 2020). The integration process simply
concatenates the selected salient neurons together,

4671



0.84

0.86

0.88

0.90

0.92

0.94

0.96
Ac

cu
ra

cy
DistilBERT
RoBERTa
GPT2
GPT2-Medium
GPT2-XL
Flan-T5-S
Flan-T5
Flan-T5-XL

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.8
Sparsification Threshold

0%

50%

100% Other Neurons
Salient Neurons

Figure 4: (Top) SPIN performance as a function of
sparsification threshold η. (Bottom) The percentage of
selected salient neurons with each η.

ensuring knowledge inherent in each individual
salient neuron of LLM remains unchanged before
being fed into the classification head.

In Figure 3, we provide a visualized breakdown
of how SPIN’s ability derives from the combina-
tion of neuron sparsification and integration. As
is illustrated, each layer of the sparsified neurons
collectively contributes their knowledge in differ-
entiating positive and negative samples to the in-
tegrated classifiers thence and above, enhancing
progressively the performance of SPIN at higher
levels. This synergistic interaction empowers the
overall decision-making and performance for the
classification task.

Post-hoc Interpretability. For a detailed post-
hoc analysis of how SPIN interprets each compo-
nent of the input text, we demonstrate that sentence-
wise SPIN classifiers, once trained, can be adeptly
extended to provide token-wise predictions by sim-
ply bypassing the initial pooling process and di-
rectly engaging with the representations of each
individual token during application. Further analy-
sis and discussion is continued in Appendix C.4.

3.2.5 Hyperparameter Sensitivity
As shown in Figure 4, with the increasing η, indi-
cating that more neurons—yet less salient as sorted
with decreasing weights—are being included, the
performance gain gradually vanishes. The minimal
accuracy gains beyond certain η values suggest
that the most salient features are already captured
by a smaller, more focused set of neurons, and
adding more neurons beyond this set contributes
little to the overall performance. Especially, merely
marginal performance improvement is observed

#Neurons selected per layer
1 5 10 50 100

w/o SP 69.90 74.78 82.75 87.01 90.98
SPIN 93.71 94.24 94.42 94.47 94.63

Table 4: Performance of SPIN and w/o SP, a variant of
SPIN that uses random neuron selection without our de-
signed sparsification strategy, across different numbers
of neurons selected per layer.

#Layer 8 16 24 32 48

w/o IN 87.17 89.84 92.72 94.12 92.41
SPIN 88.34 92.09 94.70 94.91 94.92

Table 5: Performance of SPIN and w/o IN, a variant of
SPIN that uses salient neurons from individual layers
without our designed cross-layer integration strategy.
We report the results of the best-performing individual
layer across different early-exiting settings.

when η > 0.2, demonstrating that SPIN can be
well-performing with an easily found hyperparam-
eter setting. On the other hand, SPIN showcases a
remarkable ability to select a highly compact subset
of salient neurons as shown in the bottom half of
Figure 4. At a sparsification threshold of η = 0.4,
SPIN selects only about 3% of neurons per layer.
Despite this stringent selection, the performance
remains highly competitive, underscoring the effi-
cacy of our linear probing-based neuron selection
method. Moreover, even at a relatively high thresh-
old of η = 0.8, the proportion of selected neurons
does not exceed a quarter. This can be credited to
the deployment of Lasso regressors, which effec-
tively promotes feature sparsity.

3.2.6 Ablation Study

We conduct ablation studies with GPT2-XL on the
IMDb dataset to verify the contribution of each
component in SPIN. As shown in Table 4, SPIN
consistently outperforms the SPIN variant without
our designed sparsification strategy across differ-
ent numbers of neurons selected per layer (w/o
IN), demonstrating the effectiveness of our linear
probing-based neuron sparsification method. In
addition, we compare SPIN with its variant that
without the cross-layer integration (w/o IN). The
results in Table 5 indicate the necessity of integrat-
ing cross-layer multi-grained features, as SPIN con-
sistently outperforms w/o IN across various early-
exiting settings. These findings underscore the cru-
cial roles that both sparsification and integration
play within the SPIN framework.

4672



4 Related Work

Deep Neural Networks in Text Classification.
The integration of Deep Neural Networks (DNNs)
into text classification has significantly altered the
methodological landscape of Natural Language
Processing. An early study by Kim (2014) demon-
strated the potential of Convolutional Neural Net-
works (CNNs) to capture semantic features from
text. Research by Conneau et al. (2017) expanded
the utility of DNNs through sentence embeddings
and transfer learning, achieving advanced perfor-
mance across multiple text classification bench-
marks. Transformer-based models (Devlin et al.,
2019) have systematically enhanced text classifica-
tion by offering a versatile framework capable of
understanding complex linguistic patterns. Stud-
ies (Yang et al., 2019b; Caselli et al., 2021) have
since further pushed the performance of this ap-
proach. The success of ChatGPT marks the ad-
vent of a new generation of text classification using
LLMs, with authors reporting mixed results (Susn-
jak, 2024; Matter et al., 2024; Gilardi et al., 2023).

Interpretation of Language Models. The ratio-
nale of SPIN primarily relates to the literature on
interpreting internal representations in language
models. Classic models like word2vec (Mikolov
et al., 2013a) initially illustrated the linearly inter-
pretable semantic features within the word embed-
ding space. In transformer-based language models,
the understanding of task-specific knowledge ac-
quisition has been advanced by studies identifying
internal neurons as experts based on their activation
patterns (Suau et al., 2020; Durrani et al., 2020;
Burns et al., 2022; Gurnee et al., 2023). Recent
works (Bills et al., 2023; Templeton et al., 2024)
have also explored automated tools for evaluating
the behaviors and interpretable features of individ-
ual neurons within modern LLMs.

Internal Neurons for Text Classification. Be-
yond interpretability, the prospect of leveraging
internal representations for text classification has
attracted attention in the literature. Studies as early
as Radford et al. (2017) have shown the poten-
tial of using individual neuron activations in Long
Short-Term Memory (LSTM) models for sentiment
classification. Relevant research including Wang
et al. (2022) empirically validated the potential
of using the top-ranked task-specific neurons in
RoBERTa (Liu et al., 2019) for classification, at-
taining performance competitive with fine-tuned

models. Gurnee and Tegmark (2023) demonstrates
the effectiveness of leveraging internal representa-
tions in large models like LLaMA2 (Touvron et al.,
2023) for spacial and temporal classification tasks.
Inspired by these approaches targeting individual
neurons, our work seeks more to design a general,
efficient, plug-and-play framework for arbitrary
types of transformer-based language models.

Dynamic Neural Network. SPIN also shares de-
sign principles with previous works under the per-
spective of dynamic neural network (Han et al.,
2021; Xu and McAuley, 2023), such as adaptive
parameter ensemble for CNN (Yang et al., 2019a),
Mixture-of-Experts (MoE) (Fedus et al., 2022),
and early exit strategies (Xin et al., 2020; Chen
et al., 2023). Specifically, like MoE, which exploits
model sparsity by routing among multiple model
components, SPIN leverages feature sparsification
to enhance performance; while unlike MoE’s inte-
grated routing process among FFN experts (Jiang
et al., 2024), SPIN operates as a decoupled, plug-
and-play module at the granularity of FFN neurons.
In terms of inference efficiency, SPIN aligns with
early exit methods by allowing off-ramping at cer-
tain layers, as discussed in 3.2.3 and Table 3.

5 Conclusion

In this paper, we introduce SPIN, a novel model-
agnostic plug-and-play framework designed for
text classification tasks. Our approach diverges
from traditional paradigms that predominantly rely
on the terminal hidden states of the final layer of
LLMs by leveraging the untapped potential of in-
ternal neurons. Our proposed framework sparsifies
neurons from intermediate layers guided by linear
probing-based selection, and integrates cross-layer
salient neurons to provide rich and multi-layered
features for text classification. We conduct com-
prehensive experiments and analysis, demonstrat-
ing that SPIN remarkably improves accuracy, effi-
ciency, and interpretability for text classification.

4673



Limitations

One of the primary limitations of the SPIN frame-
work is its reliance on publicly available model
architecture and weights, i.e., white-box LLMs.
This requirement poses a challenge when working
with some state-of-the-art (SoTA) models or propri-
etary fine-tuned models where the trained weights
or the architecture are not publicly disclosed. As a
result, while SPIN can theoretically be applied to
various types of LLMs to potentially improve its
performance, in practice, its deployment is limited
to those models for which comprehensive access
to internal mechanisms is publicly granted. Admit-
tedly, the classification head can be improved using
more sophisticated architectures, so as to further
improve the text classification performance. How-
ever, we use the simple sigmoid activation on top
of a linear transformation layer to better align with
prior works and ensure interpretability.

Ethics Consideration

Bias and fairness. One of the primary ethical
concerns in AI, particularly in natural language
processing, is the potential for biased outcomes.
LLMs, trained on large-scale internet data, can
inadvertently learn and perpetuate biases present
in the training data. SPIN, curating task-specific
internal neurons of LLMs, could also be suscep-
tible to these biases, and by construction SPIN is
capable to discover potential biased components
hidden inside LLMs. It is crucial to ensure that
the model is not misused to amplify societal biases,
particularly those related to race, gender, minor-
ity identity groups, or other sensitive attributes in
different contexts and cultures. Continuous moni-
toring and mitigation strategies are necessary to ad-
dress and reduce the impact of these biases, thereby
promoting fairness and ethical responsibility in AI
applications.

Dataset contents. The datasets utilized in our
research, namely IMDb, SST-2, AG News, and
particularly EDOS (detecting online sexism), inher-
ently contain a wide range of textual content, some
of which might be sensitive or potentially harm-
ful. The IMDb and SST-2 dataset reflect a broad
spectrum of public opinions, and there is a possibil-
ity of encountering offensive or sensitive language,
biased opinions, or controversial viewpoints. The
EDOS dataset is explicitly designed to study online
sexism, and as such, it contains examples of sexist

remarks and content. Researchers must employ
rigorous ethical standards, sensitivity, and trans-
parency when working with these datasets.

Acknowledgements

We gratefully acknowledge the insightful com-
ments and suggestions from our anonymous re-
viewers and area chair that helped us improve this
manuscript. Part of this material is funded by grants
from Natural Sciences and Engineering Research
Council of Canada, Canada Foundation for Innova-
tion, and Ontario Research Fund.

4674



References
Guillaume Alain and Yoshua Bengio. 2016. Under-

standing intermediate layers using linear classifier
probes. ArXiv preprint, abs/1610.01644.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-
Young Yun. 2023. Fast and robust early-exiting
framework for autoregressive language models with
synchronized parallel decoding. ArXiv preprint,
abs/2310.05424.

Steven Bills, Nick Cammarata, Dan Mossing,
Henk Tillman, Leo Gao, Gabriel Goh, Ilya
Sutskever, Jan Leike, Jeff Wu, and William
Saunders. 2023. Language models can ex-
plain neurons in language models. URL
https://openaipublic.blob.core.windows.net/neuron-
explainer/paper/index.html. (Date accessed: 14.05.
2023).

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Stein-
hardt. 2022. Discovering latent knowledge in lan-
guage models without supervision. ArXiv preprint,
abs/2212.03827.

Tommaso Caselli, Valerio Basile, Jelena Mitrović, and
Michael Granitzer. 2021. HateBERT: Retraining
BERT for abusive language detection in English. In
Proceedings of the 5th Workshop on Online Abuse
and Harms (WOAH 2021), pages 17–25, Online. As-
sociation for Computational Linguistics.

Michelangelo Ceci, Corrado Loglisci, G. Manco,
E. Masciari, Z. Ras, R. Goebel, and Yuzuru Tanaka.
2020. New frontiers in mining complex patterns:
8th international workshop, nfmcp 2019, held in con-
junction with ecml-pkdd 2019, würzburg, germany,
september 16, 2019, revised selected papers. New
Frontiers in Mining Complex Patterns.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2023. A sur-
vey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology.

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and
Jingren Zhou. 2023. Ee-llm: Large-scale training and

inference of early-exit large language models with
3d parallelism. ArXiv preprint, abs/2312.04916.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proc. of EMNLP,
pages 670–680, Copenhagen, Denmark. Association
for Computational Linguistics.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, Anthony Bau, and James R. Glass. 2019.
What is one grain of sand in the desert? analyz-
ing individual neurons in deep NLP models. In The
Thirty-Third AAAI Conference on Artificial Intelli-
gence, AAAI 2019, The Thirty-First Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019,
pages 6309–6317. AAAI Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. of NAACL-HLT, pages 4171–4186,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and
Yonatan Belinkov. 2020. Analyzing individual neu-
rons in pre-trained language models. In Proc. of
EMNLP, pages 4865–4880, Online. Association for
Computational Linguistics.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Neel Nanda, Tom Henighan, Scott Johnston, Sheer
ElShowk, Nicholas Joseph, Nova DasSarma, Ben
Mann, et al. 2022. Softmax linear units. Transformer
Circuits Thread.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1–39.

Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli.
2023. Chatgpt outperforms crowd workers for
text-annotation tasks. Proceedings of the National
Academy of Sciences, 120(30).

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine
Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
2023. Finding neurons in a haystack: Case studies
with sparse probing. ArXiv preprint, abs/2305.01610.

Wes Gurnee and Max Tegmark. 2023. Language
models represent space and time. ArXiv preprint,
abs/2310.02207.

Isabelle Guyon and Andre Elisseeff. 2003. An intro-
duction to variable and feature selection. Journal of
machine learning research, 3(Mar):1157–1182.

4675

https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/2310.05424
https://arxiv.org/abs/2310.05424
https://arxiv.org/abs/2310.05424
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2212.03827
https://arxiv.org/abs/2212.03827
https://doi.org/10.18653/v1/2021.woah-1.3
https://doi.org/10.18653/v1/2021.woah-1.3
https://doi.org/10.1007/978-3-030-48861-1
https://doi.org/10.1007/978-3-030-48861-1
https://doi.org/10.1007/978-3-030-48861-1
https://doi.org/10.1007/978-3-030-48861-1
https://dl.acm.org/doi/abs/10.1145/3641289
https://dl.acm.org/doi/abs/10.1145/3641289
https://arxiv.org/abs/2312.04916
https://arxiv.org/abs/2312.04916
https://arxiv.org/abs/2312.04916
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.1609/aaai.v33i01.33016309
https://doi.org/10.1609/aaai.v33i01.33016309
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.395
https://doi.org/10.18653/v1/2020.emnlp-main.395
https://transformer-circuits.pub/2022/solu/index.html
https://www.jmlr.org/papers/v23/21-0998.html
https://www.jmlr.org/papers/v23/21-0998.html
https://doi.org/10.1073/pnas.2305016120
https://doi.org/10.1073/pnas.2305016120
https://arxiv.org/abs/2305.01610
https://arxiv.org/abs/2305.01610
https://arxiv.org/abs/2310.02207
https://arxiv.org/abs/2310.02207
https://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf?ref=driverlayer.com/web
https://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf?ref=driverlayer.com/web


Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. 2021. Dynamic neural net-
works: A survey. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 44(11):7436–7456.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In Proc. of ICLR. OpenReview.net.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. ArXiv preprint, abs/2111.09543.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. ArXiv
preprint, abs/2203.15556.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proc. of ICML, volume 97 of Proceedings of Ma-
chine Learning Research, pages 2790–2799. PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In Proc. of ICLR. OpenRe-
view.net.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. ArXiv preprint, abs/2401.04088.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. ArXiv
preprint, abs/2001.08361.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proc. of EMNLP, pages
1746–1751, Doha, Qatar. Association for Computa-
tional Linguistics.

Hannah Rose Kirk, Wenjie Yin, Bertie Vidgen, and
Paul Röttger. 2023. Semeval-2023 task 10: Ex-
plainable detection of online sexism. ArXiv preprint,
abs/2303.04222.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proc. of ACL, pages 4582–4597, Online. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv preprint, abs/1907.11692.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proc. of ACL, pages 142–150, Portland, Oregon,
USA. Association for Computational Linguistics.

Daniel Matter, Miriam Schirmer, Nir Grinberg, and Jür-
gen Pfeffer. 2024. Close to human-level agreement:
Tracing journeys of violent speech in incel posts with
gpt-4-enhanced annotations.

Tomáš Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proc. of NAACL-HLT, pages
746–751, Atlanta, Georgia. Association for Compu-
tational Linguistics.

Andrew Y Ng. 2004. Feature selection, l 1 vs. l 2 regu-
larization, and rotational invariance. In Proceedings
of the twenty-first international conference on Ma-
chine learning, page 78.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-
ciently scaling transformer inference. Proceedings
of Machine Learning and Systems, 5.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. ArXiv preprint, abs/1704.01444.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and
Eibe Frank. 2011. Classifier chains for multi-label
classification. Machine learning, 85:333–359.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2022. Beyond the imitation
game: Quantifying and extrapolating the capabilities
of language models. ArXiv preprint, abs/2206.04615.

Xavier Suau, Luca Zappella, and Nicholas Apostoloff.
2020. Finding experts in transformer models. ArXiv
preprint, abs/2005.07647.

4676

https://ieeexplore.ieee.org/abstract/document/9560049/
https://ieeexplore.ieee.org/abstract/document/9560049/
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2001.08361
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://arxiv.org/abs/2303.04222
https://arxiv.org/abs/2303.04222
https://proceedings.neurips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/P11-1015
https://arxiv.org/abs/2401.02001
https://arxiv.org/abs/2401.02001
https://arxiv.org/abs/2401.02001
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://aclanthology.org/N13-1090
https://aclanthology.org/N13-1090
https://dl.acm.org/doi/abs/10.1145/1015330.1015435?casa_token=UiU0Fhk4hykAAAAA:6rMpSggFGNycN5XG0LBhwuFo7UHfHyecVbLJs_nnOMZjv_Cfs9R1X2Sg_YngQCwmOxjUbp1qZltR
https://dl.acm.org/doi/abs/10.1145/1015330.1015435?casa_token=UiU0Fhk4hykAAAAA:6rMpSggFGNycN5XG0LBhwuFo7UHfHyecVbLJs_nnOMZjv_Cfs9R1X2Sg_YngQCwmOxjUbp1qZltR
https://proceedings.mlsys.org/paper_files/paper/2023/hash/523f87e9d08e6071a3bbd150e6da40fb-Abstract-mlsys2023.html
https://proceedings.mlsys.org/paper_files/paper/2023/hash/523f87e9d08e6071a3bbd150e6da40fb-Abstract-mlsys2023.html
https://arxiv.org/abs/1704.01444
https://arxiv.org/abs/1704.01444
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://link.springer.com/article/10.1007/s10994-011-5256-5
https://link.springer.com/article/10.1007/s10994-011-5256-5
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2005.07647


Xianghui Sun, Yunjie Ji, Baochang Ma, and Xian-
gang Li. 2023. A comparative study between full-
parameter and lora-based fine-tuning on chinese in-
struction data for instruction following large language
model. ArXiv preprint, abs/2304.08109.

Teo Susnjak. 2024. Applying bert and chatgpt for sen-
timent analysis of lyme disease in scientific litera-
ture. In Borrelia burgdorferi: Methods and Proto-
cols, pages 173–183. Springer.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack
Lindsey, Trenton Bricken, Brian Chen, Adam Pearce,
Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy
Cunningham, Nicholas L Turner, Callum McDougall,
Monte MacDiarmid, C. Daniel Freeman, Theodore R.
Sumers, Edward Rees, Joshua Batson, Adam Jermyn,
Shan Carter, Chris Olah, and Tom Henighan. 2024.
Scaling monosemanticity: Extracting interpretable
features from claude 3 sonnet. Transformer Circuits
Thread.

Robert Tibshirani. 1996. Regression shrinkage and se-
lection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–
288.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. ArXiv preprint,
abs/2307.09288.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proc. of
ICLR. OpenReview.net.

Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou,
Zhiyuan Liu, and Juanzi Li. 2022. Finding skill
neurons in pre-trained transformer-based language
models. In Proc. of EMNLP, pages 11132–11152,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proc. of ACL,
pages 2246–2251, Online. Association for Computa-
tional Linguistics.

Canwen Xu and Julian McAuley. 2023. A survey on
dynamic neural networks for natural language pro-
cessing. In Findings of the Association for Compu-
tational Linguistics: EACL 2023, pages 2370–2381,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Brandon Yang, Gabriel Bender, Quoc V. Le, and Jiquan
Ngiam. 2019a. Condconv: Conditionally parameter-
ized convolutions for efficient inference. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 1305–1316.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019b.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 5754–5764.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural In-
formation Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 649–657.

4677

https://arxiv.org/abs/2304.08109
https://arxiv.org/abs/2304.08109
https://arxiv.org/abs/2304.08109
https://arxiv.org/abs/2304.08109
https://link.springer.com/protocol/10.1007/978-1-0716-3561-2_14
https://link.springer.com/protocol/10.1007/978-1-0716-3561-2_14
https://link.springer.com/protocol/10.1007/978-1-0716-3561-2_14
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://academic.oup.com/jrsssb/article/58/1/267/7027929?login=false
https://academic.oup.com/jrsssb/article/58/1/267/7027929?login=false
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://aclanthology.org/2022.emnlp-main.765
https://aclanthology.org/2022.emnlp-main.765
https://aclanthology.org/2022.emnlp-main.765
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://aclanthology.org/2023.findings-eacl.180
https://aclanthology.org/2023.findings-eacl.180
https://aclanthology.org/2023.findings-eacl.180
https://proceedings.neurips.cc/paper/2019/hash/f2201f5191c4e92cc5af043eebfd0946-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f2201f5191c4e92cc5af043eebfd0946-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html


A Additional Experiment Details

A.1 Dataset Description

We select the following 3 datasets, as details sum-
marized in Table 6:

• IMDb: The IMDb dataset (Maas et al., 2011)
is one of the most popular sentiment classifi-
cation datasets, curated for the binary classi-
fication task of positive and negative movie
reviews.

• SST-2: The SST-2 dataset for sentiment analy-
sis, part of the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang
et al., 2019), provides a binary classification
task based on the Stanford Sentiment Tree-
bank.

• EDOS (SemEval-2023 Task 10): Kirk et al.
(2023) collects dataset for facilitating ex-
ploratory experiments of Explainable Detec-
tion of Online Sexism (EDOS). The dataset
contributes a hierarchical taxonomy of sexism
content, in which we select Task A for our
experiments, where systems are expected to
predict whether a post is sexist or not.

Dataset Subset Label # Text

IMDb — pos, neg 50,000

GLUE sst2 pos, neg 70,000

EDOS Task A non_sexist, sexist 20,000

Table 6: All datasets and features used

A.2 Hyperparameter Settings

Here we provide the hyperparameter search space
across our experiments with SPIN in Table 7, and
the corresponding hyperparameter setting in Ta-
ble 8, to facilitate a better reproducibility of our
reported results.

B Additional Experiment Analysis

B.1 Trainable Parameters

We compare the number of trainable parameters
between baseline LLMs and our SPIN framework.
For baseline LLMs we refer to the model size re-
ported by huggingface safetensors. For SPIN, we
derive our estimation by calculating the total pa-
rameters of linear probes and classification head

Representation hidden state, activation
Pooling choice first, last, max, avg
λ {0.01, 0.1, 1, 5, 10}
η {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.8, 1}

Table 7: Hyperparameter search space of SPIN

67.0M

125M

137M

1.61G

248M

2.85G

24.9k

60.8k

60.8k

1.06M

111k

848k

10k 100k 1M 10M 100M 1B 10B

Flan-T5-XL

Flan-T5

GPT2-XL

GPT2

RoBERTa

DistilBERT Base
SPIN

Number of trainable parameters

Figure 5: The number of trainable parameters for base-
line LLM backbone and SPIN.

used at different stages of SPIN:

Nparam SPIN ≈ LD +
1

2
L
2(ρηD) (9)

where L refers to the number of layers of the LLM,
D ∈ {Dhs, Dact} the actual dimension of internal
representation used, and ρη the ratio of neurons
sparsified by the salient neuron selection. Here
the first half refers to the layer-wise salient neu-
ron selection process, where we trained L times
individual linear probes, each of which with D
trainable parameters. The second half takes a typi-
cal workflow of aggregation across all layers, with
L(L+1)

2
times training of classification heads with

sparsified neurons.
The estimated results are provided in Figure 5,

showing that the training process of SPIN yields at
least three orders of magnitude fewer parameters
than the LLM it works on.

B.2 Floating Point Arithmetic
In Figure 2 of training efficiency, for the total float-
ing point operations required in running LLM for-
ward pass, we refer to the empirical estimations by
Kaplan et al. (2020), from which we have

CLLM forward ≈ (2Nparam + 2LDhsNtoken) ⋅Ns
(10)

where Nparam represents the total amount of pa-
rameters with LLM, which we refer to the size re-
ported by huggingface safetensors for each model;

4678



IMDb SST-2 EDOS

LLM rep. pool λ η rep. pool. λ η rep. pool. λ η

DistilBERT act avg 5 1.0 act avg 10 1.0 hs max 5 0.8
RoBERTa act avg 10 0.5 act avg 10 0.6 hs max 5 0.5
GPT2 act avg 10 0.6 act avg 5 0.8 act avg 5 0.5
GPT2-M act avg 1 0.6 act max 1 0.6 act avg 1 0.4
GPT2-XL act avg 0.2 0.4 act avg 0.5 0.3 act avg 0.5 0.2
Flan-T5-S act avg 1 0.8 act avg 1 0.6 act max 0.5 0.6
Flan-T5 act avg 0.2 0.6 act avg 0.5 0.6 act avg 0.5 0.4
Flan-T5-XL act avg 0.2 0.3 act avg 0.2 0.4 act avg 0.2 0.2

Table 8: Hyperparameter settings of SPIN over frozen pretrained LLMs

L the number of layers, Dhs the dimension of hid-
den states, Ntoken the maximum number of tokens
for model input, and Ns the number of sentences
within the training and validation set.

For the floating point operations required in our
SPIN framework, we derive from the training cost
of a single linear regression:

CLR train ≈ I ⋅ (2D ⋅Ns +Ns) (11)

where I refers to the maximum number of itera-
tions for the training of each linear regression, and
D ∈ {Dhs, Dact} the actual dimension of internal
representation used. The 2D ⋅ Ns part is for the
multiplication and additions required in gradient
computation, and the Ns part is for applying logis-
tic functions on output, which becomes marginal
comparing with the dimension of input features.
The parameter update process is generally negligi-
ble in comparison to the gradient computation.

By incorporating L times CLR train for salient
neuron selection process and L(L+1)

2
times CLR train

for a typical workflow of integration across all lay-
ers, we get an approximation of

CSPIN ≈ I ⋅ 2LD + L
2(ρηD)) ⋅Ns (12)

in which ρη the ratio of neurons sparsified by the
salient neuron selection.

The floating point operation cost reported in
Figure 2 takes I = 64, D = Dact, ρη = 0.1,
Ns = 25000 for IMDb dataset, and other values
according to the corresponding model settings.

C Additional Results and Discussion

C.1 Parameter-Efficient Fine-Tuning

In this section, we discuss briefly on the compata-
bility and comparability of SPIN with Parameter-
Efficient Fine-Tuning (PEFT) techniques.

Models Base SPIN %impr.

DistilBERT Pretrained 86.95 89.78 +3.25
DistilBERT w/ LoRA SFT 87.71 90.58 +3.27
DistilBERT w/ Full SFT 92.80 92.88 +0.09

Table 9: Performance of SPIN and baseline methods
(Base) over pretrained, LoRA supervised fine-tuned
(LoRA SFT), and full fine-tuned (Full SFT) DistilBERT
for IMDb dataset.

Compatibility. SPIN is by construction compat-
ible with LLMs integrated with PEFT methods,
since SPIN relies solely on the internal representa-
tions within the model, regardless of whether and
how they are fine-tuned. According to He et al.
(2022), mainstream PEFT techniques typically in-
troduce additional structures into LLMs either se-
quentially between transformer block components
(as with adapters (Houlsby et al., 2019)) or paral-
lelly alongside transformer block components (as
in LoRA (Hu et al., 2022), prefix tuning (Li and
Liang, 2021), etc.), none of which hinders SPIN’s
process to acquire internal representations from
FFN activations and hidden states. Depending on
the extent of modifications to the LLM’s internal
mechanisms, SPIN requires no or minimal adjust-
ments to continue functioning as a plug-and-play
module over PEFT-modified LLMs. Here we show
results from an experiment using a LoRA-finetuned
DistilBERT model available on HuggingFace over
the IMDb dataset as an example. The performance
results presented in Table 9 demonstrate the effec-
tiveness of SPIN on PEFTed LLMs.

Comparability. A key distinction between SPIN
and PEFT methods is that SPIN is completely de-
coupled from LLMs. Here we present a series of
comparisons across several dimensions of concern.

• Performance. Both SPIN and PEFT achieve
performance approaching fully fine-tuned
models when working over pretrained LLMs.

4679



Models Base SPIN %impr.

DistilBERT 91.18 92.21 +1.13
GPT2 90.64 92.19 +1.71
Flan-T5-S 85.68 91.89 +7.24

Table 10: Performance (accuracy) of SPIN and baseline
method (Base) over LLMs for AG News dataset.

• Parameter Efficiency. Both methods share
a similar scale of trainable parameters. PEFT
requires hosting the entire LLM during the
whole training process for both the forward
and backward passes. In contrast, SPIN’s
training process, apart from recording internal
representations, can occur in highly computa-
tionally constrained environments, requiring
only a few classifiers to be updated.

• Training Time Efficiency. PEFT compo-
nents are by design highly coupled with the
LLM. When applied to pretrained LLMs,
though only the set of added parameters is up-
dated, gradient computation must still cascade
through the entire network, resulting actually
much more time than floating-point operations
in Figure 2 suggest (Sun et al., 2023). In con-
trast, SPIN trains lightweight linear probes in-
dependently from the LLM over the recorded
internal representations, hence the floating-
point operations can faithfully reflect the com-
putation time required. Additionally, SPIN’s
training can be more easily accelerated in par-
allel compared to PEFT methods.

• Inference Efficiency. SPIN naturally sup-
ports a range of dynamic neural network meth-
ods like early-exit by introducing no or mini-
mal adjustments, whereas PEFT does not.

• Interpretability. Neither PEFT nor full fine-
tuning offers interpretability comparable to
that of SPIN.

C.2 Multiclass Classification
Our experiments were all implemented on classi-
fication tasks with binary features. Classification
over multiclass labels (categories) can easily be
transformed to multiple binary classifications by
representing labels as one-hot encoded binary fea-
tures and independently training one binary classi-
fier for each feature (Read et al., 2011). Another
approach is by adapting our classification heads
into algorithms that naturally permit usage of more
than two classes. Here we test SPIN’s performance

Models Base SPIN %impr.

LLaMA2-7B 94.04 95.76 +1.83
LLaMA2-13B 94.55 96.06 +1.60

Table 11: Performance of SPIN and baseline meth-
ods (Base) over pretrained LLaMA2 models for IMDb
dataset.

(a) Base

(b) SPIN

Figure 6: Transferred token-wise breakdown of classifi-
cation results, with (a) baseline and (b) SPIN originally
trained on sentence-wise classification examples from
IMDb using GPT2-XL neurons and max pooling. Red
regions indicate predictions for negative tokens, and
green regions for positive ones.

on AG’s news topic classification dataset (Zhang
et al., 2015) and train Multinomial Logistic Re-
gressor as salient neuron selector and classification
head, as reported in Table 10.

C.3 Scalability

As mainstream LLMs continue to increase in scale,
in this part we showcase the scalability of SPIN
on larger models LLaMA2-7B and LLaMA2-13B
(Touvron et al., 2023). Results shown in Table
11 suggest that SPIN consistently outperforms the
model outputs by exploiting the ability of internal
neurons even from large models with 10B-level pa-
rameters. This is particularly significant, consider-
ing that fine-tuning modern LLMs on simpler tasks
as sentence classification and with limited train-
ing examples becomes increasingly uneconomical
and impractical as they continue scaling-up. SPIN
offers a viable solution, an efficient and effective
means to boost performance without extensive ad-
ditional resources and processes.

C.4 Token-wise Classification

We attribute SPIN’s adaptability of transferring
from sentence-wise to token-wise classification to
the introduction of max and average pooling strate-
gies during its training phase. These pooling pro-
cesses enables SPIN initially trained on broader

4680



Models Base SPIN p-value

DistilBERT 92.80 92.86±0.0371 0.0169
RoBERTa 94.67 95.62±0.0425 8 × 10

−7

GPT2 94.06 94.47±0.1224 0.0014

Table 12: Performance of SPIN (k=5 fold cross-
validation) and baseline methods (Base) over fine-tuned
LLMs for IMDb dataset, with 95% confidence interval
(z=1.96) and corresponding p-value result from t-tests.

textual scopes to recognize similar patterns at the
token level.

For encoder-based BERT variants, SPIN facil-
itates a previously unavailable transfer capability.
Conventional baseline methods structurally rely
on the first or special token for information gath-
ering, making direct transfer to token-level tasks
infeasible. These methods often require repetitive
sentence inputs with sliding context windows for
transferring, which leads to significantly higher
computational costs and time. In contrast, SPIN
overcomes this limitation by effectively utilizing
the internal representations from all tokens at the
beginning in training sentence-level classification.

For decoder-based variants, SPIN trained on
pooled records exhibits similar ability to conven-
tional methods trained on the last token’s output.
This allows for direct transfer from sentence-level
to token-level tasks, as demonstrated in Figure 6.
The extended SPIN prediction results align well
with the fine-grained, cumulative sentiment ex-
pressed at each token.

It is important to note that the use of causal atten-
tion in decoder models means that the activations
and hidden states of each token represent infor-
mation from all preceding positions, unlike the
bidirectional understanding in encoder-based mod-
els. This characteristic enables decoder models
to aggregate context in a sequentially cumulative
manner. For instance, in Figure 6, during the to-
ken positions of “couldn’t find myself agreeing
more with”, both the baseline method and SPIN
accurately capture multiple times of sentiment flip-
ping to the opposite, as expected in a cumulative
sentiment sequence. At word positions like “yet
somehow” “despite” and “nonetheless”, the result
of SPIN shows much clearer patterns than the base-
line method. This alignment facilitates better for a
transparent post-hoc breakdown of how each token
contributes to the overall sentence-level classifica-
tion, showcasing the robustness of our framework.

By bridging the gap across different transformer-

based model architectures and offering previously
obscured insights, SPIN holds significant poten-
tial as a practical tool for visualizing complex sen-
tences or documents with classification results at
varying levels of granularity. This capability lays
the foundation for more transparent and account-
able systems for end-users.

C.5 Statistical Significance
To ensure consistency, our aforementioned ex-
periments were conducted using the same
train/validation/test splits as established bench-
marks. In order to further validate the effective-
ness of our proposed SPIN framework, especially
regarding the relatively marginal gains over fine-
tuned models as shown in Table 2, we hereby per-
form a rigorous statistical significance evaluation
using k-fold cross-validation. As detailed in Table
12, the constant performance of the baseline model
(Base) from the original dataset split is used as the
mean value for the null hypothesis. We then apply
the one-sample Student’s t-test on the 5-fold cross-
validation results of SPIN, in testing the hypothesis
that SPIN can further improve the performance of
an already fine-tuned model. Each performance
result yields a p-value less than 0.05, indicating
that the improvements achieved by SPIN are statis-
tically significant across the three models tested.

C.6 What-Which-Where Plots
For given LLMs, we train and evaluate the classi-
fier on integrated features with each combination
of pooling function Pooling(xl), the sparsification
threshold η, and the number of layers integrated L.
We refer to following figures as what-which-where
plots for better visualizing and interpreting the per-
formance of SPIN on GPT2-XL over the IMDb
dataset, along with information of what sparsifica-
tion threshold is used, which pooling function is
selected, and where in depth the layer integration
(i.e., early exiting) takes place in LLMs. Respec-
tively, the pooling choice is indicated with different
marker shapes, the magnitude of η by the marker
sizes, and the number of integrated layers is shown
with different colors as described in the color bar
above. The horizontal axes represent the number
of salient neurons integrated. Additionally, in the
lower panels, we present how the number of salient
features evolves with different level of layer inte-
gration, and on the left sides of each figure are the
performance of SPIN grouped by different pooling
functions used.

4681



0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10k

0

20

40

1 10 100 1000 10k

single token
max pooling
avg pooling

0 4 8 12 16 20 24 28 32 36 40 44 48
Number of aggregated layers

Number of aggregated hidden state features Number of aggregated activation features

Ac
cu

ra
cy

ag
gr

eg
at

ed
 la

ye
rs

frozen baseline

fine-tuned baseline

frozen baseline

fine-tuned baseline

(a) Pretrained model

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10k

0

20

40

1 10 100 1000 10k

single token
max pooling
avg pooling

0 4 8 12 16 20 24 28 32 36 40 44 48
Number of aggregated layers

Number of aggregated hidden state features Number of aggregated activation features

Ac
cu

ra
cy

ag
gr

eg
at

ed
 la

ye
rs

frozen baseline

fine-tuned baseline

frozen baseline

fine-tuned baseline

(b) Fine-tuned model

Figure 7: What-which-where plots for the performance of SPIN on pretrained and fine-tuned GPT2-XL models
over IMDb dataset. The left subfigures are results with hidden states, and the right subfigures are with activations.

4682


